国标28181:什么是RTP协议与RTCP协议

前言

流媒体指的是在网络中使用流技术传输的连续时基媒体,其特点是在播放前不需要下载整个文件,而是采用边下边播的方式,它是视频会议、IP电话等应用场合的技术基础。RTP是进行实时流媒体传输的标准协议和关键技术。

随着Internet的日益普及,在网络上传输的数据已经不再局限于文字和图形,而是逐渐向声音和视频等多媒体格式过渡。目前在网络上传输音频/视频(Audio/Video,简称A/V)等多媒体文件时,基本上只有下载和流式传输两种选择。通常说来,A/V文件占据的存储空间都比较大,在带宽受限的网络环境中下载可能要耗费数分钟甚至数小时,所以这种处理方法的延迟很大。如果采用流式传输的话,声音,影响、动画等多媒体文件将由专门的流媒体服务器负责向用户连续、实时的发送,这样用户可以不必等整个文件全部下载文笔,而只需要经过几秒钟的启动延时就可以了,当这些多媒体数据在客户机上播放时,文件的剩余部分将继续从流媒体服务器下载。

流(Streaming)是近年在Internet上出现的新概念,其定义非常广泛,主要是指通过网络传输多媒体数据的技术总称。流媒体包含广义和狭义两种内涵:广义上的流媒体指的是使音频和视频形成稳定和连续的传输流和回放流的一系列技术、方法和协议的总称,即流媒体技术;狭义上的流媒体是相对于传统的下载-回放方式而言的,指的是一种从Internet上获取音频和视频等多媒体数据的新方法,它能够支持多媒体数据流的实时传输和实时播放。通过运用流媒体技术,服务器能够向客户机发送稳定和连续的多媒体数据流,客户机在接收数据的同时以一个稳定的速率回放,而不用等数据全部下载完之后再进行回放

由于受网络带宽、计算机处理能力和协议规范等方面的限制,要想从Internet上下载大量的音频和视频数据,无论从下载时间和存储空间上来讲都是不太现实的,而流媒体技术的出现则很好地解决了这一难题。目前流媒体技术主要用两种方法:顺序流(progressive streaming)传输和实时流(realtime streaming)传输,它们分别适合于不同的应用场合。

  • 顺序流传输采用顺序下载的方式进行传输,在下载的同时用户可以在线回放多媒体数据,但给定时刻只能观看已经下载的部分,不能跳到尚未下载的部分,也不能在传输期间根据网络状态对下载速度进行调整。由于标准的HTTP服务器可以发送这种形式的流媒体,而不需要其他特殊协议的支持,因此也常常被称作HTTP 流式传输。顺序流式传输比较适合于高质量的多媒体片段,如片头、片尾或者广告等。
  • 实时流式传输保证媒体信号带宽能够与当前网络状态相匹配,从而使得流媒体数据总是能够被实时传输,因此特别适合于现场事件。实时流传输支持随机访问,即用户可以通过快进或者后退操作来观看前面或者后面的内容。从理论上讲,实时流媒体一经播放就不会停顿,但事实上仍有可能发生周期性的暂停现象,尤其是在网络状况恶化时更是如此。与顺序流传输不同的是,实时流传输需要用到特定的流媒体服务器,而且还需要特定网络协议的支持。

实时传输协议(Real-time Transport Protocol,PRT)是在Internet上处理多媒体数据流的一种网络协议

  • 利用PRT能够在一对一(unicast,单播)或者一对多(multicast,多播)的网络环境中实现传流媒体数据的实时传输。
  • RTP通常使用UDP来进行多媒体数据的传输,但是如果需要的话也可以使用TCP或者ATM等其他协议。
  • 整个RPT协议由两个密切相关的部分组成:RTP数据协议和RTP控制协议。

实时流协议(Real Time Streaming Protocol,RTSP)最早由Real Networks和Netscape公司共同提出,它位于RTP和RTCP之上,其目的是希望通过IP网络有效地传输多媒体数据。

概述

  • RTP全名是Real-time Transport Protocol(实时传输协议)。它是IETF提出的一个标准,对应的RFC文档为RFC3550(RFC1889为其过期版本)。RFC3550不仅定义了RTP,而且定义了配套的相关协议RTCP(Real-time Transport Control Protocol,即实时传输控制协议)。
  • RTP被定义为在一对一或一对多的传输情况下工作,其目的是提供时间信息和实现流同步。RTP的典型应用建立在UDP(User Datagram Protocol,用户数据包协议)上,但也可以在TCP(Transfer Control Protocol,传输控制协议)或ATM(Asynchronous Transfer Mode,异步传输模式)等其他协议之上工作
  • 应用程序通常在 UDP 上运行 RTP 以便使用其多路结点和校验服务。RTP本身只保证实时数据的传输,并不能为按顺序传送数据包提供可靠的传送机制,也不提供流量控制或拥塞控制,它依靠RTCP提供这些服务。
  • RTP用来为IP网上的语音、图像、传真等多种需要实时传输的多媒体数据提供端到端的实时传输服务。 RTP为Internet上端到端的实时传输提供时间信息和流同步,但并不保证服务质量,服务质量由RTCP来提供。
    国标28181:什么是RTP协议与RTCP协议_第1张图片
  • RTP协议详细说明了在互联网上传递音频和视频的标准数据包格式。它一开始被设计为一个多播协议,但后来被用在很多单播应用中。RTP协议常用于流媒体系统(配合RTSP协议)、视频会议和一键通(Push to Talk)系统(配合H.323或SIP),使它成为IP电话产业的技术基础。RTP广泛应用于流媒体相关的通讯和娱乐,包括电话、视频会议、电视和基于网络的一键通业务(类似对讲机的通话)。
  • RTCP全名是Realtime Transport Control Protocol(实时传输控制协议)。它负责管理传输质量,在当前应用进程之间交换控制信息。在RTP会话期间,各参与者周期性地传送RTCP包,包中含有已发送的数据包的数量、丢失的数据包的数量等统计资料,因此,服务器可以利用这些信息动态地改变传输速率,甚至改变有效载荷类型。RTP和RTCP配合使用,能以有效的反馈和最小的开销使传输效率最佳化,故特别适合传送网上的实时数据。相对于RTP来说,RTCP所占的带宽非常小,通常只有5%。

RTP和RTCP位于传输层,但运行在UDP协议之上。UDP协议实时性更好,可减少数据传输延时,另外,应用程序在UDP上运行RTP还可利用UDP的多路复用,校验和服务。
国标28181:什么是RTP协议与RTCP协议_第2张图片

RTP相关概念介绍

  • 流媒体

    • 流媒体是指Internet上使用流式传输技术的连续时基媒体。当前在Internet上传输音频和视频等信息主要有两种方式:下载和流式传输两种方式。
      • 下载情况下,用户需要先下载整个媒体文件到本地,然后才能播放媒体文件。在视频直播等应用场合,由于生成整个媒体文件要等直播结束,也就是用户至少要在直播结束后才能看到直播节目,所以用下载方式不能实现直播。
      • 流式传输是实现流媒体的关键技术。使用流式传输可以边下载边观看流媒体节目。由于Internet是基于分组传输的,所以接收端收到的数据包往往有延迟和乱序(流式传输构建在UDP上)。要实现流式传输,就是要从降低延迟和恢复数据包时序入手。在发送端,为降低延迟,往往对传输数据进行预处理(降低质量和高效压缩)。在接收端为了恢复时序,采用了接收缓冲;而为了实现媒体的流畅播放,则采用了播放缓冲。
        + 使用接收缓冲,可以将接收到的数据包缓存起来,然后根据数据包的封装信息(如包序号和时戳等),将乱序的包重新排序,最后将重新排序了的数据包放入播放缓冲播放。
        + 为什么需要播放缓冲呢?容易想到,由于网络不可能很理想,并且对数据包排序需要处理时耗,我们得到排序好的数据包的时间间隔是不等的。如果不用播放缓冲,那么播放节目会很卡,这叫时延抖动。相反,使用播放缓冲,在开始播放时,花费几十秒钟先将播放缓冲填满(例如PPLIVE),可以有效地消除时延抖动,从而在不太损失实时性的前提下实现流媒体的顺畅播放。
    • 到目前为止,Internet 上使用较多的流式视频格式主要有以下三种:RealNetworks 公司的RealMedia,Apple 公司的QuickTime 以及Microsoft 公司的Advanced Streaming Format (ASF) 。
    • 上面在谈接收缓冲时,说到了流媒体数据包的封装信息(包序号和时戳等),这在后面的RTP封装中会有体现。另外,RealMedia这些流式媒体格式只是编解码有不同,但对于RTP来说,它们都是待封装传输的流媒体数据而没有什么不同。
  • 混频器(Mixer):一种中间系统,将一个或多个源的RTP数据包合成一个新的RTP数据包,然后转发出去。混频器可能会改变数据包的数据格式,并对各个流组合的新数据包生成一个新SSRC。
    国标28181:什么是RTP协议与RTCP协议_第3张图片

  • 转换器(Translator):一种中间系统,转发RTP数据包但不改变数据包的同步源标识符,可用于通过IP多播无法直接到达的用户区,如在防火墙两端使用转换器,外侧转换器通过安全连接将数据传输到内侧转换器。

国标28181:什么是RTP协议与RTCP协议_第4张图片
RTP利用混频器和转换器完成实时数据传输,混频器接收来自一个或多个发送方的RTP数据包,并把它们组合成一个新的RTP数据包继续转发。这个组合数据包使用新的SSRC标识,组合数据包将作为新的发送方加入到RTP传输中。混频器将不同的媒体流组合在一起,需要通过转换器来对单个媒体流进行操作,可进行编码转换或协议翻译。典型的RTP数据包传输流程如下图所示,其中S1、S2、S3、S4是数据源的发送端,R4是RTP数据包的接收端。

国标28181:什么是RTP协议与RTCP协议_第5张图片

RTP工作原理

  • RTP协议从上层接收流媒体信息码流(如H.263),装配成RTP数据包发送给下层,下层协议提供RTP和RTCP的分流。如在UDP中,RTP使用一个偶数号端口,则相应的RTCP使用其后的奇数号端口。
  • RTCP向RTP会话中的所有成员周期性的发送控制包,RTCP使用和RTP数据包相同的传输机制。RTP会话使用合法的偶数端口(2n),对应的RTCP包使用下一个奇数端口(2n+1)。
  • RTP数据包没有长度限制,它的最大包长只受下层协议的限制。
  • RTP用于在单播或多播网络中传送实时数据。它们典型的应用场合有如下几个。
    • 简单的多播音频会议:语音通信通过一个多播地址和一对端口来实现。一个用于音频数据(RTP),另一个用于控制包(RTCP)。
    • 音频和视频会议:如果在一次会议中同时使用了音频和视频会议,这两种媒体将分别在不同的RTP会话中传送,每一个会话使用不同的传输地址(IP地址+端口)。如果一个用户同时使用了两个会话,则每个会话对应的RTCP包都使用规范化名字CNAME(Canonical Name)。与会者可以根据RTCP包中的CNAME来获取相关联的音频和视频,然后根据RTCP包中的计时信息(Network time protocol)来实现音频和视频的同步。

国标28181:什么是RTP协议与RTCP协议_第6张图片
在典型的应用场合下,RTP 一般是在传输协议之上作为应用程序的一部分加以实现的。

  • RTP协议的目的是提供实时数据(如交互式的音频和视频)的端到端传输服务,因此在RTP中没有连接的概念,它可以建立在底层的面向连接或者面向非连接的传输协议之上
  • RTP也不依赖于特别的网络地址格式,而仅仅只需要底层传输协议支持组帧(Framing)和分段(Segmentation)就足够了;
  • 另外RTP 本身还不提供任何可靠性机制,这些都要由传输协议或者应用程序自己来保证。

RTP报文分析

RTP数据协议负责对流媒体数据进行封包并实现媒体流的实时传输,每一个RTP数据报都由头部(Header)和负载(Payload)两个部分组成,其中头部前12个字节的含义是固定的,负载可以是音频或者视频数据。

国标28181:什么是RTP协议与RTCP协议_第7张图片

RTP Header

RTP被划分在传输层或应用层,它建立在UDP上,同UDP协议一样,为了实现其实时传输功能,RTP也有固定的封装形式。
国标28181:什么是RTP协议与RTCP协议_第8张图片
前12字节是固定的,CSRC可以有多个或者0个。

  • 版本号(V):2比特,用来标志使用的RTP版本,当前协议版本号为2
  • 填充位(P):1比特,如果P=1,则在该报文的尾部填充一个或多个额外的八位组,它们不是有效载荷的一部分
  • 扩展位(X):1比特,如果X=1,则在RTP报头后跟有一个扩展报头
  • CSRC计数器(CC):4比特,指示CSRC标识符个数
  • 标记位(M):1比特,不同的有效载荷有不同的含义,对于视频,标记一帧的结束;对于音频,标记会话的开始。
  • 有效荷载类型(PT):7比特,标明RTP负载的格式,包括所采用的编码算法、采样频率、承载通道等。
    • 如GSM音频、JPEM图像等,在流媒体中大部分是用来区分音频流和视频流,这样便于客户端进行解析。
    • 例如,类型2表明该RTP数据包中承载的是用ITU G.721算法编码的语音数据,采样频率为8000Hz,并且采用单声道。
  • 序列号(SN):16比特,用于标识发送者所发送的RTP报文的序列号,每发送一个报文,序列号增1。
    • 这个字段当下层的承载协议用UDP的时候,网络状况不好的时候可以用来检查丢包。当出现网络抖动的情况可以用来对数据进行重新排序。
    • 用来为接收方提供探测数据丢失的方法,但如何处理丢失的数据则是应用程序自己的事情,RTP协议本身并不负责数据的重传。
    • 序列号的初始值是随机的,同时音频包和视频包的sequence是分别计数的。
  • 时间戳:32比特,必须使用90kHZ时钟频率(程序中的90000)。
    • 记录了负载中第一个字节的采样时间,接收方能够时间戳能够确定数据的到达是否受到了延迟抖动的影响,但具体如何来补偿延迟抖动则是应用程序自己的事情。
    • 接受者使用时戳来计算延迟和延迟抖动,并进行同步控制。可以根据RTP包的时间戳来获得数据包的时序。
    • 时间戳是去除抖动和实现同步不可缺少的。
  • 同步源标识符(SSRC):32比特,同步源就是指RTP包流的来源,它通过RTP报头中的一个32为数字SSRC标识符来标识,而不依赖网络地址,接收者将根据SSRC标识符来区分不同的信源,进行RTP报文的分组。。在同一个RTP会话中不能有两个相同的SSRC值。该标识符是随机选取的 RFC1889推荐了MD5随机算法。
  • 贡献源列表(CSRC List):每个CSRC标识符占32位,可以有0~15个CSRC。
    • CSRC标识紧跟在RTP固定头部之后,用来表示RTP数据报的来源
    • RTP协议允许在同一个会话中存在多个数据源,它们可以通过RTP混合器合并为一个数据源。
    • 例如,可以产生一个CSRC列表来表示一个电话会议,该会议通过一个 RTP混合器将所有讲话者的语音数据组合为一个RTP数据源。

从RTP 数据报的格式不难看出,它包含了传输媒体的类型、格式、序列号、时间戳以及是否有附加数据等信息,这些都为实时的流媒体传输提供了相应的基础。

取一段码流如下:

80 e0 00 1e 00 00 d2 f0 00 00 00 00 41 9b 6b 49 €?....??....A?kI

e1 0f 26 53 02 1a ff06 59 97 1d d2 2e 8c 50 01 ?.&S....Y?.?.?P.

cc 13 ec 52 77 4e e50e 7b fd 16 11 66 27 7c b4 ?.?RwN?.{?..f'|?

f6 e1 29 d5 d6 a4 ef3e 12 d8 fd 6c 97 51 e7 e9 ??)????>.??l?Q??

cfc7 5e c8 a9 51 f6 82 65 d6 48 5a 86 b0 e0 8c ??^??Q??e?HZ????

其中,
80 是V_P_X_CC
e0 是M_PT
00 1e 是SequenceNum
00 00 d2 f0 是Timestamp
00 00 00 00是SSRC

把前两字节换成二进制如下
1000 0000 1110 0000

按顺序解释如下:
10 是V;
0 是P;
0 是X;
0000 是CC;
1 是M;
110 0000 是PT;

(1)时间戳与同步

  • 时间戳段是RTP报文头中说明数据包时间的同步信息,是数据能以正确的时间顺序恢复的关键。时间戳的值给出了分组中数据的第一个字节的采样时间(Sampling Instant),要求发送方时间戳的时钟是连续、单调增长的,即使在没有数据输入或发送数据时也是如此。在静默时,发送方不必发送数据,保持时间戳的增长,在接收端,由于接收到的数据分组的序号没有丢失,就知道没有发生数据丢失,而且只要比较前后分组的时间戳的差异,就可以确定输出的时间间隔。
  • RTP规定一次会话的初始时间戳必须随机选择,但协议没有规定时间戳的单位,也没有规定该值的精确解释,而是由负载类型来确定时钟的颗粒,这样各种应用类型可以根据需要选择合适的输出计时精度。
  • 在RTP传输音频数据时,一般选定逻辑时间戳速率与采样速率相同,但是在传输视频数据时,必须使时间戳速率大于每帧的一个滴答。如果数据是在同一时刻采样的,协议标准还允许多个分组具有相同的时间戳值。
  • RTCP的一个关键作用就是能让接收方同步多个RTP流,例如:当音频与视频一起传输的时候,由于编码的不同,RTP使用两个流分别进行传输,这样两个流的时间戳以不同的速率运行,接收方必须同步两个流,以保证声音与影像的一致。为能进行流同步,RTCP要求发送方给每个传送一个唯一的标识数据源的规范名(Canonical Name),尽管由一个数据源发出的不同的流具有不同的同步源标识(SSRC),但具有相同的规范名,这样接收方就知道哪些流是有关联的。

(2) SSRC的作用

  • SSRC相当于一个RTP传输session的ID,就象每个人都有一个名字一样,每一个RTP传输也都有一个名字。这个数字是随机产生,并且要保证唯一。当RTP session改变(如IP等)时,这个ID也要改变。

(3) 序列号字段是否可以作为流内的同步标时
序列号只表示了包发出的先后顺序,它表示不了任何时间上的其它概念,所有严格的说,序列号并不能作为流内的同步标志。但是,由于一般来说,包的发送时间都会有严格限制,比如音频包是每秒种发送30个数据包,也就是说,每个包间隔1000/30MS,而这个时间就可以作为一个同步时间来播放。也就是说,按照序列号,每1000/30MS间隔播放一个数据包,这样也能保证同步,但是这时候请考虑丢包问题。

(4) 绝对时间戳和相对时间戳在进行同步处理时有什么不同

当我们取得绝对时间后,我们就可以根据这个绝对时间来播放这些数据包。这个绝对时间,加上我们需要的延时(用于数据传输,解码等等的时间)就是我们的播放时间,这样我们可以保证时间的严格同步(相当于把对方的动作延时一段时间后原原本本的再现出来)。目前,在RTP中,能得到这个绝对时间的办法只有RTCP。

对于相对时间戳,我们更关心的是两个时间戳之间的时间间隔,依靠这个时间间隔,来确定两个包的播放时间间隔。

(5) 单个媒体内的同步和不同媒体流之间的同步在处理方式上有什么不同
应该说,不同媒体之间同步比单媒体同步要复杂得多,除了要保证本身的播放要和时间同步外,还要保证两个或多个媒体间同步(比如音视频的同步)。这种不同更关心的两个时间戳时间的换算统一,不同编码有不同的采样频率,那么时间戳的增长速度就不同。另外,两个时间戳也需要有一个标准时间来表示时间戳的同步。最简单的方法是两个媒体的第一个时间戳相同,表示两个流的采集开始时间统一。另外还可以通过RTCP来做不同流之间的同步。

(6) 时间戳字段如何用于作为流间同步标识
在RTP协议中,我们取得时间戳的方法有两个:一个是RTP包中的时间戳,另外一个是RTCP包中的绝对时间戳和相对时间戳。绝对时间戳的概念上面我已经说了,它可以表示系统的绝对时间。而RTCP包中的相对时间就是RTP包中的时间。根据这两个时间,不同流都可以纠正自己播放时间和真正时间的偏差以达到和绝对时间同步的目的。

RTP Payload

H264码流

在这里插入图片描述
荷载格式定义三个不同的基本荷载结构,接收者可以通过RTP荷载的第一个字节后5位(如图2)识别荷载结构。

  1. 单个NAL单元包:荷载中只包含一个NAL单元。NAL头类型域等于原始 NAL单元类型,即在范围1到23之间

  2. 聚合包:本类型用于聚合多个NAL单元到单个RTP荷载中。本包有四种版本,单时间聚合包类型A (STAP-A),单时间聚合包类型B (STAP-B),多时间聚合包类型(MTAP)16位位移(MTAP16), 多时间聚合包类型(MTAP)24位位移(MTAP24)。赋予STAP-A, STAP-B, MTAP16, MTAP24的NAL单元类型号分别是 24,25, 26, 27

  3. 分片单元:用于分片单个NAL单元到多个RTP包。现存两个版本FU-A,FU-B,用NAL单元类型 28,29标识

常用的打包时的分包规则是:如果小于MTU采用单个NAL单元包,如果大于MTU就采用FUs分片方式。
因为常用的打包方式就是单个NAL包和FU-A方式,所以我们只解析这两种。

PS码流

RTCP

RTCP(Real-time ControlProtocol,RTCP)实时传输控制协议的主要功能是:服务质量的监视与反馈、媒体间的同步,以及多播组中成员的标识。RTCP控制协议需要与RTP数据协议一起配合使用

  • 当应用程序启动一个RTP会话时将同时占用两个端口,分别供RTP和RTCP使用。
  • RTP本身并不能为按序传输数据报提供可靠的保证,也不提供流量控制和拥塞控制,这些都由RTCP来负责完成。
  • 通常RTCP会采用与RTP相同的分发技术,在RTP会话期间,每个会话参与者周期性地向所有其他参与者发送RTCP控制信息包。每个RTCP信息包不封装声音数据或者电视数据,而是封装发送端(和 / 或者)接收端的统计报表。应用程序通过接收这些数据,从中获取会话参与者的相关资料,以及网络状态、分组丢失概率等反馈信息,从而能够实现对服务质量进行控制或者对网络状态进行诊断。
  • RTCP也是用UDP来传送的。

RTCP协议的功能是通过不同的RTCP数据报来实现的,主要有如下几种类型:RR(接收者报告包)、SR(源报告包)、SEDS(源描述包)、BYE(离开申明)和APP(特殊应用包)五类5类

  • SR  发送端报告,所谓发送端是指发出RTP数据报的应用程序或者终端,发送端同时也可以是接收端。
  • RR  接收端报告,所谓接收端是指仅接收但不发送RTP数据报的应用程序或者终端。
  • SDES  源描述,主要功能是作为会话成员有关标识信息的载体,如用户名、邮件地址、电话号码等,此外还具有向会话成员传达会话控制信息的功能。
  • BYE  通知离开,主要功能是指示某一个或者几个源不再有效,即通知会话中的其他成员自己将退出会话。
  • APP  由应用程序自己定义,解决了RTCP的扩展性问题,并且为协议的实现者提供了很大的灵活性。

国标28181:什么是RTP协议与RTCP协议_第9张图片

RTCP数据包携带有服务质量监控的必要信息,能够对服务质量进行动态的调整,并能够对网络拥塞进行有效的控制。由于RTCP数据报采用的是多播方式,因此会话中的所有成员都可以通过RTCP数据报返回的控制信息,来了解其他参与者的当前情况。在一个典型的应用场合下:

  • 发送媒体流的应用程序将周期性的产生发送端报告SR,该RTCP数据报含有不同媒体流间的同步信息,以及已经发送的数据报和字节的计数,接收端根据这些信息可以估计出实际的数据传输速率。
  • 另一方面,接收端会向所有已知的发送端发送接收端报告RR,该RTCP数据报含有已接收数据报的最大序列号、丢失的数据报数目、延时抖动和时间戳等重要信息,发送端应用根据这些信息可以估计出往返时延,并且可以根据数据报丢失概率和时延抖动情况动态调整发送速率,以改善网络拥塞状况,或者根据网络状况平滑地调整应用程序的服务质量。

SR

发送端报告包,用于发送和接收活动源的统计信息;

发送端报告分组SR(Sender Report)用来使发送端以多播方式向所有接收端报告发送情况。SR分组的主要内容有:相应的RTP流的SSRC(定义同步源),RTP流中最新产生的RTP分组的时间戳和NTP,RTP流包含的分组数,RTP流包含的字节数。SR包的封装如下图所示:

国标28181:什么是RTP协议与RTCP协议_第10张图片
版本(V):同RTP包头域。

填充(P):同RTP包头域。

接收报告计数器(RC):5比特,该SR包中的接收报告块的数目,可以为零。

包类型(PT):8比特,SR包是200。

长度域(Length):16比特,其中存放的是该SR包以32比特为单位的总长度减一。

同步源(SSRC of sender):SR包发送者的同步源标识符。与对应RTP包中的SSRC一样。

NTP Timestamp(Network time protocol)SR包发送时的绝对时间值。NTP的作用是同步不同的RTP媒体流。

RTP Timestamp:与NTP时间戳对应,与RTP数据包中的RTP时间戳具有相同的单位和随机初始值。

Sender’s packet count:从开始发送包到产生这个SR包这段时间里,发送者发送的RTP数据包的总数. SSRC改变时,这个域清零。

Sender`s octet count:从开始发送包到产生这个SR包这段时间里,发送者发送的净荷数据的总字节数(不包括头部和填充)。发送者改变其SSRC时,这个域要清零。

同步源n的SSRC标识符:该报告块中包含的是从该源接收到的包的统计信息。

丢失率(Fraction Lost):表明从上一个SR或RR包发出以来从同步源n(SSRC_n)来的RTP数据包的丢失率。

累计的包丢失数目:从开始接收到SSRC_n的包到发送SR,从SSRC_n传过来的RTP数据包的丢失总数。

收到的扩展最大序列号:从SSRC_n收到的RTP数据包中最大的序列号,

接收抖动(Interarrival jitter):RTP数据包接受时间的统计方差估计

上次SR时间戳(Last SR,LSR):取最近从SSRC_n收到的SR包中的NTP时间戳的中间32比特。如果目前还没收到SR包,则该域清零。

上次SR以来的延时(Delay since last SR,DLSR):上次从SSRC_n收到SR包到发送本报告的延时。

RR

接收者报告包,用于接收非活动站的统计信息;

SR源报告包和RR接收者报告包用于提供接收质量反馈,除包类型代码外,SR与RR间唯一的差别是源报告包含有一个20字节发送者信息段。RR针对每个信源都提供信息包丢失数、已收信息包最大序列号、到达时间抖动、接收最后一个SR的时间、接收最后一个SR的延迟等信息。SR不仅提供接收质量反馈信息(与RR相同),而且提供SSRC标识符、NTP时间戳、RTP时间戳、发送包数以及发送字节数等。根据接收者是否为发送者来决定使用SR还是RR包,活动源在发出最后一个数据包之后或前一个数据包与下一个数据包间隔期间发送SR;否则,就发送RR;SR和RR包都可没有接收报告块也可以包括多个接收报告块,其发布报告表示的源不一定是在CSRC列表上的起作用的源,每个接收报告块提供从特殊源接收数据的统计。最大可有31个接收报告块嵌入在SR 或 RR包中,丢失包累计数差别给出间隔期间丢包的数量,而系列号的差别给出间隔期间希望发送的包数量,两者之比等于经过间隔期间包丢失百分比。从发送者信息,第三方监控器可计算载荷平均数据速率与没收到数据间隔的平均包速率,两者比值给出平均载荷大小。如假设包丢失与包大小无关,那么特殊接收者收到的包数量给出此接收者收到的表观流量。

SDES

源描述包,用于报告和站点相关的信息,包括CNAME;

SDES源描述包提供了直观的文本信息来描述会话的参加者,包括CNAME、NAME、EMAIL、PHONE、LOC等源描述项,这些为接收方获取发送方的有关信息提供了方便。SDES 包由包头与数据块组成,数据块可以没有,也可有多个。包头由版本(V)、填充(P)、长度指示、包类型(PT)和源计数(SC)组成。PT占8位,用于识别RTCP的SDES包,SC占5位,指示包含在SDES包中的SSRC/CSRC块数量,零值有效,但没有意义。数据块由源描述项组成,源描述项的内容如下:

CNAME: 规范终端标识SDES项

类似SSRC标识,RTCP为RTP连接中每一个参加者赋予唯一一个CNAME标识。在发生冲突或重启程序时,由于随机分配的SSRC标识可能发生变化,CNAME项可以提供从SSRC标识到仍为常量的源标识的绑定。

为方便第三方监控,CNAME应适合程序或人员定位源。

NAME:用户名称SDES项

这是用于描述源的真正的名称,如"John Doe, Bit Recycler, Megacorp",可以是用户想要的任意形式。由于采用文本信息来描述,对诸如会议应用,可以对参加者直接列表显示,NAME项是除CNAME项以外发送最频繁的项目。NAME值在一次RTP会话期间应该保持为常数,但它不该成为连接的所有参加者中唯一依赖。

EMAIL:电子邮件地址SDES项

邮件地址格式由RFC822规定,如"[email protected]"。一次RTP会话期间,EMAIL项的内容希望保持不变。

PHONE:电话号码SDES项

电话号码应带有加号,代替国际接入代码,如"+1 908 555 1212"即为美国电话号码。

LOC:用户地理位置SDES项

根据应用,此项具有不同程度的细节。对会议应用,字符串如"Murray Hill, New Jersey"就足够了。然而,对活动标记系统,字符串如"Room 2A244, AT&T BL MH"也许就适用。细节留给实施或用户,但格式和内容可用设置指示。在一次RTP会话期间,除移动主机外,LOC值期望保持不变。

TOOL:应用或工具名称SDES项

TOOL项包含一个字符串,表示产生流的应用的名称与版本,如"videotool 1.2"。这部分信息对调试很有用,类似于邮件或邮件系统版本SMTP头。TOOL值在一次RTP会话期间保持不变。

NOTE: 通知/状态SDES项

NOTE 项旨在描述源当前状态的过渡信息,如"on the phone, can’t talk",或在讲座期间用于传送谈话的题目,它的语法可在设置中显式定义。NOTE项一般只用于携带例外信息,而不应包含在全部参加者中,因为这将降低接收报告和CNAME发送的速度,损害协议的性能。一般NOTE 项不作为用户设置文件的项目,也不会自动产生。

由于NOTE项对显示很重要,当会话的参加者处于活动状态时,其它非CNAME项(如NAME)传输速率将会降低,结果使NOTE项占用RTCP部分带宽。若过渡信息不活跃,NOTE项继续以同样的速度重复发送几次,并以一个串长为零的字符串通知接收者。

PRIV: 专用扩展SDES项

PRIV项用于定义实验或应用特定的SDES扩展,它由长字符串对组成的前缀,后跟填充该项其他部分和携带所需信息的字符串值组成。前缀长度段为8位。前缀字符串是定义PRIV项人员选择的名称,唯一对应应用接收到的其它PRIV项。应用实现者可选择使用应用名称,如有必要,外加附加子类型标识。另外,推荐其它人根据其代表的实体选择名称,然后,在实体内部协调名称的使用。

注意,前缀应尽可能的短。SDES的PRIV项前缀没在IANA处注册。如证实某些形式的PRIV项具有通用性, IANA应给它分配一个正式的SDES项类型,这样就不再需要前缀,从而简化应用,并提高传输的效率。

BYE

断开RTCP包,是站点离开系统的报告,表示结束;

如混合器接收到一个BYE包,混合器转发BYE包,而不改变SSRC/CSRC 标识。如混合器关闭,在关闭之前它应该发出一个BYE包,列出混合器处理的所有源,而不只是自己的SSRC标识。作为可选项,BYE包可包括一个8位八进制计数,后跟文本信息,表示离开原因,如:“cameramalfunction"或"RTPloop detected”。字符串的编码与在SDES 项中所描述的相同。如字符串信息至BYE包下32位边界结束处,字符串就不以空结尾;否则,BYE包以空八进制填充。

APP

APP包用于开发新应用和新特征的实验,不要求注册包类型值。带有不可识别名称的APP包应被忽略掉。测试后,如确定应用广泛,推荐重新定义每个APP包,而不用向IANA注册子类型和名称段。

应用特定函数。

RTSP

RTSP,RTP,RTCP的区别:

  • RTSP发起/终结流媒体
  • RTP传输流媒体数据
  • RTCP对RTP进行控制,同步:

RTP是数据协议,负责对流媒体数据进行封包并实现媒体流的实时传输
RTCP控制协议,RTP本身并不能为按序传输数据报提供可靠的保证,也不提供流量控制和拥塞控制,这些都由RTCP来负责完成。
RTSP是应用层协议,它提供了一个可供扩展的框架,它的意义在于使得实时流媒体数据的受控和点播变得可能。

  • 总的来说,RTSP是一个流媒体表示协议,主要用来控制具有实时特性的数据发送,但是它本身并不传输数据,而是必须依赖下层传输协议所提供的某些服务。
  • RTSP 可以对流媒体提供诸如播放、暂停、快进等操作,它负责定义具体的控制消息、操作方法、状态码等,此外还描述了与RTP间的交互操作。

RTSP 在制定时较多地参考了HTTP/1.1协议,甚至许多描述与HTTP/1.1完全相同。RTSP之所以特意使用与HTTP/1.1类似的语法和操作,在很大程度上是为了兼容现有的Web基础结构,正因如此,HTTP/1.1的扩展机制大都可以直接引入到RTSP 中。

由RTSP 控制的媒体流集合可以用表示描述(Presentation Description)来定义,所谓表示是指流媒体服务器提供给客户机的一个或者多个媒体流的集合,而表示描述则包含了一个表示中各个媒体流的相关信息,如数据编码/解码算法、网络地址、媒体流的内容等。

虽然RTSP服务器同样也使用标识符来区别每一流连接会话(Session),但RTSP连接并没有被绑定到传输层连接(如TCP等),也就是说在整个 RTSP连接期间,RTSP用户可打开或者关闭多个对RTSP服务器的可靠传输连接以发出RTSP 请求。此外,RTSP连接也可以基于面向无连接的传输协议(如UDP等)。

RTSP协议目前支持以下操作:

  • 检索媒体  允许用户通过HTTP或者其它方法向媒体服务器提交一个表示描述。如表示是组播的,则表示描述就包含用于该媒体流的组播地址和端口号;如果表示是单播的,为了安全在表示描述中应该只提供目的地址。
  • 邀请加入  媒体服务器可以被邀请参加正在进行的会议,或者在表示中回放媒体,或者在表示中录制全部媒体或其子集,非常适合于分布式教学。
  • 添加媒体  通知用户新加入的可利用媒体流,这对现场讲座来讲显得尤其有用。与HTTP/1.1类似,RTSP请求也可以交由代理、通道或者缓存来进行处理。

RTP 是目前解决流媒体实时传输问题的最好办法,如果需要在Linux平台上进行实时流媒体编程,可以考虑使用一些开放源代码的RTP库,如LIBRTP、 JRTPLIB等。而其中最有名的要数jrtplib

文章目录

  • 前言
  • 概述
  • RTP相关概念介绍
  • RTP工作原理
  • RTP报文分析
    • RTP Header
    • RTP Payload
      • H264码流
      • PS码流
  • RTCP
    • SR
    • RR
    • SDES
    • BYE
    • APP
  • RTSP
  • 参考

参考

  • RTP协议分析
  • RTP协议全解析(H264码流和PS流)

你可能感兴趣的:(C++,c++)