基于Redis的分布式MultiLock对象允许对Lock对象进行分组并将它们作为单个锁进行处理。每个RLock对象可能属于不同的Redisson实例。
如果获取的Redisson实例MultiLock崩溃,那么它可能永远挂在获取状态。为了避免这种情况,Redisson维护了一个锁看门狗,它会在持有者Redisson实例处于活动状态时延长锁过期时间。默认情况下,锁定看门狗超时为30s,可以通过Config.lockWatchdogTimeout设置进行更改。作者的另外一篇文章有对看门狗机制有解析:基于Redisson的可重入分布式锁
leaseTime:在指定的时间间隔后锁将自动释放
MultiLock对象的行为符合java锁规范。这意味着只有锁的拥有者线程才能解锁它,否则会抛出IllegalMonitorStateException异常。否则考虑使用RSemaphore对象。
普通使用示例:
RLock lock1 = redisson1.getLock("lock1");
RLock lock2 = redisson2.getLock("lock2");
RLock lock3 = redisson3.getLock("lock3");
RLock multiLock = anyRedisson.getMultiLock(lock1, lock2, lock3);
// traditional lock method
multiLock.lock();
// or acquire lock and automatically unlock it after 10 seconds
multiLock.lock(10, TimeUnit.SECONDS);
// or wait for lock aquisition up to 100 seconds
// and automatically unlock it after 10 seconds
boolean res = multiLock.tryLock(100, 10, TimeUnit.SECONDS);
if (res) {
try {
...
} finally {
multiLock.unlock();
}
}
Async接口使用的代码示例:
RLock lock1 = redisson1.getLock("lock1");
RLock lock2 = redisson2.getLock("lock2");
RLock lock3 = redisson3.getLock("lock3");
RLock multiLock = anyRedisson.getMultiLock(lock1, lock2, lock3);
RFuture<Void> lockFuture = multiLock.lockAsync();
// or acquire lock and automatically unlock it after 10 seconds
RFuture<Void> lockFuture = multiLock.lockAsync(10, TimeUnit.SECONDS);
// or wait for lock aquisition up to 100 seconds
// and automatically unlock it after 10 seconds
RFuture<Boolean> lockFuture = multiLock.tryLockAsync(100, 10, TimeUnit.SECONDS);
lockFuture.whenComplete((res, exception) -> {
// ...
multiLock.unlockAsync();
});
Reactive接口使用的代码示例:
RedissonReactiveClient anyRedisson = redissonClient.reactive();
RLockReactive lock1 = redisson1.getLock("lock1");
RLockReactive lock2 = redisson2.getLock("lock2");
RLockReactive lock3 = redisson3.getLock("lock3");
RLockReactive multiLock = anyRedisson.getMultiLock(lock1, lock2, lock3);
Mono<Void> lockMono = multiLock.lock();
// or acquire lock and automatically unlock it after 10 seconds
Mono<Void> lockMono = multiLock.lock(10, TimeUnit.SECONDS);
// or wait for lock aquisition up to 100 seconds
// and automatically unlock it after 10 seconds
Mono<Boolean> lockMono = multiLock.tryLock(100, 10, TimeUnit.SECONDS);
lockMono.doOnNext(res -> {
// ...
})
.doFinally(multiLock.unlock())
.subscribe();
RxJava3接口使用的代码示例:
RedissonRxClient anyRedisson = redissonClient.rxJava();
RLockRx lock1 = redisson1.getLock("lock1");
RLockRx lock2 = redisson2.getLock("lock2");
RLockRx lock3 = redisson3.getLock("lock3");
RLockRx multiLock = anyRedisson.getMultiLock(lock1, lock2, lock3);
Completable lockRes = multiLock.lock();
// or acquire lock and automatically unlock it after 10 seconds
Completable lockRes = multiLock.lock(10, TimeUnit.SECONDS);
// or wait for lock aquisition up to 100 seconds
// and automatically unlock it after 10 seconds
Single<Boolean> lockRes = multiLock.tryLock(100, 10, TimeUnit.SECONDS);
lockRes.doOnSuccess(res -> {
// ...
})
.doFinally(multiLock.unlock())
.subscribe();
// 这里相对简单,就是创建了一个RLock集合,为了后续分别去获取锁
final List<RLock> locks = new ArrayList<>();
@Override
public RLock getMultiLock(RLock... locks) {
return new RedissonMultiLock(locks);
}
public RedissonMultiLock(RLock... locks) {
if (locks.length == 0) {
throw new IllegalArgumentException("Lock objects are not defined");
}
this.locks.addAll(Arrays.asList(locks));
}
leaseTime:指定加锁的时间。超过这个时间后锁便自动解开了。
为了方便我们的源码分析,假设我们的locks的size为6。leaseTime为2s
@Override
public void lock(long leaseTime, TimeUnit unit) {
try {
lockInterruptibly(leaseTime, unit);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
@Override
public void lockInterruptibly(long leaseTime, TimeUnit unit) throws InterruptedException {
// 基础等待时间设置为连锁数量*1500,单位是毫秒
// 6*1500=9000ms 也就是9s
long baseWaitTime = locks.size() * 1500;
// 设置等待时间为-1
long waitTime = -1;
// 如果锁释放的时间为-1,就让等待时间等于基础等待时间9s
// lock的无参方法默认leaseTime=-1
if (leaseTime == -1) {
waitTime = baseWaitTime;
} else {
// 如果锁的释放时间不为-1,把leaseTime转为毫秒
leaseTime = unit.toMillis(leaseTime);
// 把锁的释放时间传给等待时间,如果leaseTime=2s那么waitTime也等于2s
waitTime = leaseTime;
if (waitTime <= 2000) {
// 也就是说leaseTime即使小于2s,waitTime也会被重置为2s
waitTime = 2000;
} else if (waitTime <= baseWaitTime) {
// 如果leaseTime大于2s,并且小于9s,将重新设置等待时间,我们暂且还不知道这个等待时间做什么用。
// 如果leaseTime等于6,那么waitTime=6,此时waitTime小于9s,重新设置waitTime
// 将waitTime设置为大于等于3小于6的整数。(此处不明白看下面的解释)
waitTime = ThreadLocalRandom.current().nextLong(waitTime/2, waitTime);
} else {
// 如果leaseTime大于2s而且大于9s(baseWaitTime),同样重新设置waitTime的值
// 如果传入的leaseTime=10s,那么waitTime一开始也是10s,并且大于baseWaitTime的9s
// 将waitTime设置为大于等于9s,小于10s的整数。
waitTime = ThreadLocalRandom.current().nextLong(baseWaitTime, waitTime);
}
}
while (true) {
// 传入waitTime开始尝试获取锁了
if (tryLock(waitTime, leaseTime, TimeUnit.MILLISECONDS)) {
return;
}
}
}
ThreadLocalRandom.current().nextLong(origin, bound)是用于生成一个指定范围内的随机长整数。
具体解释如下:
ThreadLocalRandom.current() 返回当前线程的 ThreadLocalRandom 实例,用于生成随机数。
nextLong(origin, bound) 生成一个介于 origin(包含)和 bound(不包含)之间的随机长整型数。这意味着生成的随机数大于等于 origin,并且小于 bound。
此处为什么需要去修改waitTime的值,为什么还得整个随机数,使用baseWaitTime调整waitTime的作用是什么?
waitTime:表示尝试获取锁的等待时间。它指定了在尝试获取锁时最长的等待时间。
leaseTime: 指定加锁的时间。超过这个时间后锁便自动解开了。
TimeUnit:时间单位
// 假设传入的waitTime=2s leaseTime=2s
public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {
// 定义了一个新的释放时间newLeaseTime=-1
long newLeaseTime = -1;
// 如果传入了时间的tryLock,leaseTime就不等于-1,不传默认值为-1
if (leaseTime != -1) {
// 将新的锁释放时间设置为waitTime的2倍,单位是毫秒,也就是4000ms
newLeaseTime = unit.toMillis(waitTime)*2;
}
// 获取当前时间(毫秒)
long time = System.currentTimeMillis();
// remain==保持,先翻译为保持时间,定义为-1
long remainTime = -1;
if (waitTime != -1) {
// 保持时间设置为waitTime,2000ms
remainTime = unit.toMillis(waitTime);
}
// calcLockWaitTime(remainTime);-->return Math.max(remainTime / locks.size(), 1);
// 300ms=lockWaitTime
long lockWaitTime = calcLockWaitTime(remainTime);
// return 0
int failedLocksLimit = failedLocksLimit();
List<RLock> acquiredLocks = new ArrayList<>(locks.size());
// 循环获取锁
for (ListIterator<RLock> iterator = locks.listIterator(); iterator.hasNext();) {
// 获取到的redisson实例生成的锁
RLock lock = iterator.next();
// 锁获取标识
boolean lockAcquired;
try {
if (waitTime == -1 && leaseTime == -1) {
lockAcquired = lock.tryLock();
} else {
// awaitTime=300ms
long awaitTime = Math.min(lockWaitTime, remainTime);
// 直接去获取锁,返回true or false
lockAcquired = lock.tryLock(awaitTime, newLeaseTime, TimeUnit.MILLISECONDS);
}
} catch (RedisResponseTimeoutException e) {
// 如果发生了RedisResponseTimeoutException,会先解锁。因为这个时候不确定是否加锁成功了,所以解锁设置标识为失败。
unlockInner(Arrays.asList(lock));
lockAcquired = false;
} catch (Exception e) {
// 其他异常设置标识为false
lockAcquired = false;
}
if (lockAcquired) {
// 如果加锁成功 放入集合中
acquiredLocks.add(lock);
} else {
// 6-当前成功的数量=0,直接退出循环,也就是说超过了最大的失败限制
// 这里RedissonRedLock有重写,红锁有自己的规则
if (locks.size() - acquiredLocks.size() == failedLocksLimit()) {
break;
}
// failedLocksLimit==0,那么只要失败就进入这个逻辑
if (failedLocksLimit == 0) {
// 会把获取到锁的一次性解锁
unlockInner(acquiredLocks);
if (waitTime == -1 && leaseTime == -1) {
return false;
}
// 重置failedLocksLimit=0
failedLocksLimit = failedLocksLimit();
// 清空获取到锁的集合
acquiredLocks.clear();
// reset iterator
while (iterator.hasPrevious()) {
iterator.previous();
}
} else {
// RedissonRedLock才会进入这个逻辑
failedLocksLimit--;
}
}
// 如果remainTime不为-1
// remainTime=2000ms
if (remainTime != -1) {
// 查看remainTime的剩余时间
remainTime -= System.currentTimeMillis() - time;
// 重置time
time = System.currentTimeMillis();
// 如果保持时间也就是之前的waitTime小于0,也就是说超过了尝试获取锁时最长的等待时间,释放所有已获得的锁,并返回false,加锁失败
if (remainTime <= 0) {
unlockInner(acquiredLocks);
return false;
}
}
}
// 如果没有超过尝试获取锁时最长等待时间,并且leaseTime不为-1
if (leaseTime != -1) {
// 创建了一个RFuture集合
List<RFuture<Boolean>> futures = new ArrayList<>(acquiredLocks.size());
for (RLock rLock : acquiredLocks) {
//为每个锁设置过期时间,是一个异步的操作
RFuture<Boolean> future = ((RedissonLock) rLock).expireAsync(unit.toMillis(leaseTime), TimeUnit.MILLISECONDS);
futures.add(future);
}
for (RFuture<Boolean> rFuture : futures) {
// 阻塞当前线程,同步等待每个异步操作的结果
rFuture.syncUninterruptibly();
}
}
return true;
}