度量两个矩阵的相似性

问题

如果有2个矩阵 Y ∈ R n × q Y \in R^{n \times q} YRn×q Z ∈ R n × c Z \in R^{n \times c} ZRn×c ,如何度量两个矩阵的相似性?

回答

采用The Hilbert-Schmidt Independence Criterion (HSIC)进行度量。
H S I C ( Z , Y ) = ( n − 1 ) − 2 T r ( H K H Q ) HSIC(Z, Y) = (n − 1)^{-2}Tr(HKHQ) HSIC(Z,Y)=(n1)2Tr(HKHQ)
其中, K = Z Z T K = ZZ^T K=ZZT and Q = Y Y T Q = YY^T Q=YYT are the inner
product of instances in Z and Y respectively and H = I − 1 n e e T H = I − \frac{1}{n} ee^T H=In1eeT and
I I I denote the identity matrix(单位矩阵),and e e e be a vector of all ones.

理解

  • 计算结果值越大,表示越接近。

参考:
[1] Huang R, Wu Z. Multi-label feature selection via manifold regularization and dependence maximization[J]. Pattern Recognition, 2021, 120: 108149.
[2] Gretton A , Bousquet O , Smola A , et al. Measuring Statistical Dependence with Hilbert-Schmidt Norms[J]. Springer, Berlin, Heidelberg, 2005.

你可能感兴趣的:(ML,矩阵,线性代数,机器学习)