聚类分析 | MATLAB实现基于AHC聚类算法可视化

聚类分析 | MATLAB实现基于AHC聚类算法可视化

目录

    • 聚类分析 | MATLAB实现基于AHC聚类算法可视化
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

聚类分析 | MATLAB实现基于AHC聚类算法可视化_第1张图片

基本介绍

AHC聚类算法,聚类结果可视化,MATLAB程序。
Agglomerative Hierarchical Clustering(自底向上的层次聚类)是一种经典的聚类算法,它的主要思想是将每个数据点视为一个簇,然后将距离最近的两个簇合并,直到达到预设的聚类个数或者所有数据点都被合并为一个簇。
从Excel表格中读取,直接替换数据就可以使用,不需要对程序大幅度改动。程序内有详细注释,便于理解程序运行。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现基于AHC聚类算法可视化
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

cosD = pdist(meas,'cosine');
clustTreeCos = linkage(cosD,'average');
cophenet(clustTreeCos,cosD)

ans =

    0.9360
[h,nodes] = dendrogram(clustTreeCos,0);
h_gca = gca;
h_gca.TickDir = 'out';
h_gca.TickLength = [.002 0];
h_gca.XTickLabel = [];
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826



figure
hidx = cluster(clustTreeCos,'criterion','distance','cutoff',.006);
for i = 1:5
    clust = find(hidx==i);
    plot3(meas(clust,1),meas(clust,2),meas(clust,3),ptsymb{i});
    hold on
end
hold off
xlabel('Sepal Length');
ylabel('Sepal Width');
zlabel('Petal Length');
view(-137,10);
grid on

————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

你可能感兴趣的:(聚类分析,AHC,聚类算法可视化,层次聚类)