梅涅劳斯定理和塞瓦定理

图库: link

梅涅劳斯定理

证明:

梅涅劳斯定理和塞瓦定理_第1张图片

A A A E E E 分别作 B C BC BC 的平行线, 分别交 D E F DEF DEF, A B AB AB 所在直线于 A ′ A' A, E ′ E' E.

将所有比值都转换为 A A ′ AA' AA, E E ′ EE' EE, B F BF BF, F C FC FC 之间的比值: E C / E A = F C / A A ′ EC/EA=FC/AA' EC/EA=FC/AA, A D / B D = A A ′ / B F AD/BD=AA'/BF AD/BD=AA/BF, 进而命题得证.

(过 D D D B C BC BC 的平行线交 A C AC AC 所在直线于 D ′ D' D, 也可证得此命题.)

推论1. 分别作直线 A D AD AD, C F CF CF, B E BE BE 关于 ∠ A \angle A A, ∠ C \angle C C, ∠ B \angle B B 的对称直线, 分别与 B C BC BC, A B AB AB, A C AC AC 交于 D ′ D' D, F ′ F' F, E ′ E' E, 则此三点亦共线.

对于 △ A B C \triangle ABC ABC 和截线 D ′ , E ′ , F ′ D', E', F' D,E,F,
sin ⁡ ∠ D ′ A B sin ⁡ ∠ D ′ A C sin ⁡ ∠ E ′ B C sin ⁡ ∠ A B C sin ⁡ ∠ A C F ′ sin ⁡ ∠ A C B = sin ⁡ C A D sin ⁡ B A D sin ⁡ A B E sin ⁡ C B E sin ⁡ B C F sin ⁡ A C F \frac{\sin \angle D'AB}{\sin \angle D'AC} \frac{\sin\angle E'BC}{\sin\angle ABC} \frac{\sin\angle ACF'}{\sin\angle ACB} = \frac{\sin CAD }{\sin BAD} \frac{\sin ABE}{\sin CBE} \frac{\sin BCF}{\sin ACF} sinDACsinDABsinABCsinEBCsinACBsinACF=sinBADsinCADsinCBEsinABEsinACFsinBCF
对于 △ A B C \triangle ABC ABC 和截线 D , E , F D, E, F D,E,F, 应用梅涅劳斯定理可知后者等于1.

应用梅涅劳斯定理第一角元形式逆定理可知三点共线.

推论2. △ A B C \triangle ABC ABC 的三个外角平分线分别和对边相交, 所得的三个点共线.

证明: 对于 △ A B C \triangle ABC ABC F , E , D F, E, D F,E,D,
sin ⁡ ∠ F B A sin ⁡ ∠ F B C sin ⁡ ∠ C A D sin ⁡ ∠ B A D sin ⁡ ∠ B C E sin ⁡ ∠ A C E = sin ⁡ ( π / 2 − B / 2 ) sin ⁡ ( π / 2 + B / 2 ) sin ⁡ ( π / 2 − A / 2 ) sin ⁡ ( π / 2 + A / 2 ) sin ⁡ ( π / 2 + C / 2 ) sin ⁡ ( π / 2 − C / 2 ) = 1 \frac{\sin \angle FBA}{\sin \angle FBC} \frac{\sin\angle CAD}{\sin\angle BAD} \frac{\sin\angle BCE}{\sin\angle ACE} = \frac{\sin (\pi/2-B/2) }{\sin (\pi/2+B/2)} \frac{\sin (\pi/2-A/2)}{\sin (\pi/2 + A/2)} \frac{\sin (\pi/2+C/2)}{\sin (\pi/2-C/2)} = 1 sinFBCsinFBAsinBADsinCADsinACEsinBCE=sin(π/2+B/2)sin(π/2B/2)sin(π/2+A/2)sin(π/2A/2)sin(π/2C/2)sin(π/2+C/2)=1
应用梅涅劳斯定理第一角元形式逆定理可知三点共线.

推论3. △ A B C \triangle ABC ABC 的三个顶点作其外接圆的切线, 分别和对边相交, 所得的三个点共线.

对于 △ A B C \triangle ABC ABC 和截线 A 1 B 1 C 1 A_1 B_1 C_1 A1B1C1,
sin ⁡ ∠ A 1 A B sin ⁡ ∠ A 1 A C sin ⁡ ∠ B 1 B C sin ⁡ ∠ B 1 B A sin ⁡ ∠ C 1 C A sin ⁡ ∠ C 1 C B = sin ⁡ C sin ⁡ B sin ⁡ A sin ⁡ C sin ⁡ B sin ⁡ A = 1 \frac{\sin \angle A_1AB}{\sin \angle A_1AC} \frac{\sin\angle B_1BC}{\sin\angle B_1BA} \frac{\sin\angle C_1CA}{\sin\angle C_1CB} = \frac{\sin C }{\sin B} \frac{\sin A}{\sin C} \frac{\sin B}{\sin A} = 1 sinA1ACsinA1ABsinB1BAsinB1BCsinC1CBsinC1CA=sinBsinCsinCsinAsinAsinB=1
应用梅涅劳斯定理第一角元形式逆定理可知三点共线.

推论4. 若 ∠ A 1 P B = ∠ A P B 1 \angle A_{1}PB= \angle APB_{1} A1PB=APB1, 则 ∠ A 1 P C = ∠ A P C 1 \angle A_{1}PC= \angle APC_{1} A1PC=APC1, ∠ B P C 1 = ∠ C P B 1 \angle BPC_{1}= \angle CPB_{1} BPC1=CPB1.

推论5. 如图, 已知 ⨀ O 1 \bigodot O_{1} O1, ⨀ O 2 \bigodot O_{2} O2, ⨀ O 3 \bigodot O_{3} O3 △ A B C \triangle ABC ABC 旁切圆, A 1 A_{1} A1, A 2 A_{2} A2, B 1 B_{1} B1, B 2 B_{2} B2 C 1 C_{1} C1, C 2 C_{2} C2, 分别为切点, A 3 A_{3} A3, B 3 B_{3} B3, C 3 C_{3} C3 为三条切点弦所在直线与旁切圆所切的边所在直线的交点, 三条切点弦所在直线交出 P 1 P_1 P1, P 2 P_2 P2, P 3 P_3 P3 三点. (1) P 1 A P_{1}A P1A, P 2 B P_{2}B P2B, P 3 C P_{3}C P3C 分别垂直于 B C BC BC, A C AC AC, A B AB AB 三边. (2) A 3 A_3 A3, B 3 B_3 B3, C 3 C_3 C3 三点共线.

(1) 先证明 P 1 A ⊥ B C P_{1}A\bot BC P1ABC, 其余可同理证明.

P P P A A A B C BC BC 的垂线交 B C BC BC A 0 A_{0} A0, A 0 ′ A_{0}' A0.

可求得 C 2 A 0 / B 1 A 0 = tan ⁡ C / 2 / tan ⁡ B / 2 C_2 A_0/B_1 A_0=\tan C/2/\tan B/2 C2A0/B1A0=tanC/2/tanB/2.

C 2 A 0 ′ / B 1 A 0 ′ = O 3 A / O 2 A = O 3 C 2 / O 2 B 1 = C 2 C tan ⁡ ( C / 2 ) / B 1 B / tan ⁡ ( B / 2 ) = tan ⁡ ( C / 2 ) / tan ⁡ ( B / 2 ) C_2 A_{0}^{'}/B_1 A_{0}^{'}=O_{3}A/O_{2}A=O_{3}C_{2}/O_{2}B_{1}=C_{2}C \tan (C/2)/B_{1}B/\tan (B/2)=\tan (C/2)/\tan (B/2) C2A0/B1A0=O3A/O2A=O3C2/O2B1=C2Ctan(C/2)/B1B/tan(B/2)=tan(C/2)/tan(B/2)

(2) 设 A A 1 = B B 1 = C C 1 = x AA_1=BB_1=CC_1=x AA1=BB1=CC1=x

△ A B C \triangle ABC ABC 和截线 P 1 P 2 P_1 P_2 P1P2 应用梅涅劳斯定理, A C 3 / B C 3 = A C 1 / C C 1 ⋅ C C 2 / B C 2 = ( x − b ) / ( x − a ) AC_3/ BC_3 = AC_{1}/CC_{1} \cdot CC_{2}/BC_{2}=(x-b)/(x-a) AC3/BC3=AC1/CC1CC2/BC2=(xb)/(xa)

△ A B C \triangle ABC ABC 和截线 P 2 P 3 P_2 P_3 P2P3 应用梅涅劳斯定理, B A 3 / C A 3 = A A 2 / C A 2 ⋅ B A 1 / A A 1 = ( x − c ) / ( x − b ) BA_3/ CA_3 = AA_{2}/CA_{2} \cdot BA_{1}/AA_{1}=(x-c)/(x-b) BA3/CA3=AA2/CA2BA1/AA1=(xc)/(xb)

△ A B C \triangle ABC ABC 和截线 P 1 P 3 P_1 P_3 P1P3 应用梅涅劳斯定理, C B 3 / A B 3 = B B 2 / A B 2 ⋅ C B 1 / B B 1 = ( x − a ) / ( x − c ) CB_{3}/AB_{3}=BB_{2}/AB_{2} \cdot CB_{1}/BB_{1}=(x-a)/(x-c) CB3/AB3=BB2/AB2CB1/BB1=(xa)/(xc)

所以 A C 3 / B C 3 ⋅ B A 3 / C A 3 ⋅ C B 3 / A B 3 = 1 AC_3/ BC_3 \cdot BA_3/ CA_3 \cdot CB_{3}/AB_{3}=1 AC3/BC3BA3/CA3CB3/AB3=1. 由梅涅劳斯定理逆定理可知 P 1 , P 2 , P 3 P_{1}, P_{2}, P_{3} P1,P2,P3 三点共线.

推论6. 如图, ∠ A A 1 A 2 = ∠ A A 2 A 1 = ∠ B B 1 B 2 = ∠ B B 2 B 1 = ∠ C C 1 C 2 = ∠ C C 2 C 1 \angle AA_1A_2= \angle AA_2A_1=\angle BB_1B_2= \angle BB_2B_1=\angle CC_1C_2= \angle CC_2C_1 AA1A2=AA2A1=BB1B2=BB2B1=CC1C2=CC2C1, 求证: K 1 K_1 K1 ~ K 6 K_6 K6 共圆.

证明:

梅涅劳斯定理和塞瓦定理_第2张图片

证明: 证明 K 5 K 6 / / B C K_{5}K_{6}// BC K5K6//BC:

显然 B B B, C C C, B 2 B_2 B2, C 1 C_1 C1 共圆; A A A, C C C, A 2 A_2 A2, C 1 C_1 C1 共圆; A A A, B B B, A 1 A_1 A1, B 2 B_2 B2 共圆

A K 6 / K 6 A 1 = A C 1 / B C 1 ⋅ B C / A 1 C AK_{6}/K_{6}A_{1}=AC_{1}/BC_{1}\cdot BC/A_{1}C AK6/K6A1=AC1/BC1BC/A1C

A K 5 / K 5 A 2 = A B 2 / B 2 C ⋅ B C / B A 2 AK_{5}/K_{5}A_{2}=AB_{2}/B_{2}C\cdot BC/BA_{2} AK5/K5A2=AB2/B2CBC/BA2

A B 2 / A C 1 = A B / A C AB_{2}/AC_{1}=AB/AC AB2/AC1=AB/AC, B C 1 / B A 2 = B C / A B BC_{1}/BA_{2}=BC/AB BC1/BA2=BC/AB, A B 2 / A C 1 = A B / A C AB_{2}/AC_{1}=AB/AC AB2/AC1=AB/AC, A 1 C / B 2 C = A C / B C A_{1}C/B_{2}C=AC/BC A1C/B2C=AC/BC

同理 K 2 K 3 / / B C K_{2}K_{3}//BC K2K3//BC, K 3 , K 6 , K 2 , K 5 K_{3}, K_{6}, K_{2}, K_{5} K3,K6,K2,K5 四点共圆, 同理还可得到 , K 1 , K 4 , K 3 , K 6 K_{1}, K_{4}, K_{3}, K_{6} K1,K4,K3,K6 四点共圆, K 1 , K 4 , K 2 , K 5 K_{1}, K_{4}, K_{2}, K_{5} K1,K4,K2,K5 四点共圆, 由戴维斯定理可知六点共圆.

推论7. 三个圆每两个的外公切线交点三点共线.

证明: 如图. 易证 O 1 O 2 O_{1}O_{2} O1O2 V 3 V_{3} V3, O 1 O 3 O_{1}O_{3} O1O3 V 2 V_{2} V2, O 2 O 3 O_{2}O_{3} O2O3 V 1 V_{1} V1. 对于 △ O 1 O 2 O 3 \triangle O_1 O_2 O_3 O1O2O3 V 1 V_{1} V1, V 2 V_{2} V2, V 3 V_{3} V3, 易证
O 1 V 3 O 2 V 3 O 2 V 1 O 3 V 1 O 3 V 2 O 1 V 2 = r 1 r 2 r 2 r 3 r 3 r 1 = 1 \frac{O_{1}V_{3}}{O_{2}V_{3}} \frac{O_{2}V_{1}}{O_{3}V_{1}} \frac{O_{3}V_{2}}{O_{1}V_{2}} = \frac{r_1}{r_2}\frac{r_2}{r_3}\frac{r_3}{r_1} = 1 O2V3O1V3O3V1O2V1O1V2O3V2=r2r1r3r2r1r3=1
由梅涅劳斯定理逆定理可知, V 1 V_{1} V1, V 2 V_{2} V2, V 3 V_{3} V3 三点共线.

练习1. 如图, A B = A D AB=AD AB=AD, B C = C D BC=CD BC=CD, 过 B D BD BD 上的一点 P P P 作一条直线分别交 A D AD AD, B C BC BC E E E, F F F, 再过点 P P P 作一条直线分别交 A B AB AB, C D CD CD G G G, H H H. 设 G F GF GF E H EH EH 分别交 B D BD BD I I I, J J J, 求证: P I P B = P J P D \frac{PI}{PB}=\frac{PJ}{PD} PBPI=PDPJ.

正面: 过 B B B A D AD AD, C D CD CD 的平行线, 分别交 G H GH GH, E F EF EF L L L, M M M, 连结 L M LM LM. 易证 ∠ L B G = ∠ F B M \angle LBG=\angle FBM LBG=FBM, ∠ G B P = ∠ M B P \angle GBP=\angle MBP GBP=MBP. 所以
sin ⁡ ∠ P B L sin ⁡ ∠ G B L ⋅ sin ⁡ ∠ G B I sin ⁡ ∠ L B F ⋅ sin ⁡ ∠ F B M sin ⁡ ∠ P B M = 1 \frac{\sin\angle PBL}{\sin\angle GBL}\cdot \frac{\sin\angle GBI }{\sin\angle LBF}\cdot \frac{\sin\angle FBM}{\sin\angle PBM}=1 sinGBLsinPBLsinLBFsinGBIsinPBMsinFBM=1
由梅涅劳斯定理(第二角元形式)逆定理可知 L M LM LM 经过 I I I.

P I / P J = r PI/PJ=r PI/PJ=r, P E / P M = r PE/PM=r PE/PM=r, △ D E P ∼ △ B M P \triangle DEP\sim \triangle BMP DEPBMP, 所以 P D / P B = P E / P M = r PD/PB=PE/PM=r PD/PB=PE/PM=r.

练习2. 如图, △ A B C \triangle ABC ABC 为非直角三角形, H H H 为垂心, D D D, E E E, F F F 为三角形三条垂线的垂足, 过 H H H 分别作三边的平行线, 三条线分别与 △ D E F \triangle DEF DEF 三边所在直线相交, 求证三交点共线.

证明: 对于 △ F D E \triangle FDE FDE, 截线 P Q R PQR PQR 和点 H H H, 易证
sin ⁡ ∠ Q H F sin ⁡ ∠ Q H D sin ⁡ ∠ R H D sin ⁡ ∠ R H E sin ⁡ ∠ E H P sin ⁡ ∠ F H P = cos ⁡ A cos ⁡ C cos ⁡ B cos ⁡ A cos ⁡ C cos ⁡ A = 1 \frac{\sin \angle QHF}{\sin \angle QHD} \frac{\sin \angle RHD}{\sin \angle RHE} \frac{\sin \angle EHP}{\sin \angle FHP} = \frac{\cos A}{\cos C}\frac{\cos B}{\cos A}\frac{\cos C}{\cos A} = 1 sinQHDsinQHFsinRHEsinRHDsinFHPsinEHP=cosCcosAcosAcosBcosAcosC=1
由梅涅劳斯定理第二角元形式的逆定理可知命题成立.

练习3. 如图, P P P △ A B C \triangle ABC ABC 外一点, 过 P P P P A PA PA, P B PB PB, P C PC PC 的垂线分别交 B C BC BC, A C AC AC, A B AB AB 三边于点 D D D, E E E, F F F, 则 D D D, E E E, F F F 三点共线.

由第二角元形式易证

练习4. 如图, 已知 A C AC AC 平分 ∠ B A D \angle BAD BAD, 求证 ∠ G A C = ∠ F A C \angle GAC = \angle FAC GAC=FAC.

△ D F C \triangle DFC DFC 和截线 E P B EPB EPB 应用梅涅劳斯定理, 可知

sin ⁡ F A C / sin ⁡ E A C = sin ⁡ F A B / sin ⁡ E A D \sin FAC / \sin EAC = \sin FAB/\sin EAD sinFAC/sinEAC=sinFAB/sinEAD

∠ F A C > ∠ E A C \angle FAC>\angle EAC FAC>EAC, 则 ∠ F A B > ∠ E A D \angle FAB>\angle EAD FAB>EAD, 进而 ∠ B A C > ∠ C A D \angle BAC>\angle CAD BAC>CAD.

练习5. 如图, A 1 A_{1} A1 B C BC BC 中点, A 2 A_{2} A2 ∠ B A C \angle BAC BAC 角平分线与 B C BC BC 的交点, K A 2 / / A C KA_{2}//AC KA2//AC, 求证: A A 2 ⊥ K C AA_{2}\bot KC AA2KC.

C K CK CK 的垂线交 B C BC BC A 2 ′ A_{2}' A2, 对 △ B D C \triangle BDC BDC 和截线 A E A 2 AEA_{2} AEA2 应用梅涅劳斯定理可知
D A ⋅ B A 2 ′ ⋅ C E A B ⋅ A 2 ′ C ⋅ D E = 1 \frac{DA \cdot BA_{2}' \cdot CE}{AB \cdot A_{2}'C \cdot DE} =1 ABA2CDEDABA2CE=1
B A 2 ′ A 2 ′ C = A B A C \frac{BA_{2}'}{A_{2}'C}=\frac{AB}{AC} A2CBA2=ACAB, 所以 A 2 ′ A_{2}' A2 就是 A 2 A_{2} A2

练习x. 如图, G G G △ A B C \triangle ABC ABC 的垂心, X Y XY XY 为过 G G G 平行于 B C BC BC 的直线, M M M B C BC BC 中点, 求证 △ Q P M ∼ △ A B C \triangle QPM \sim \triangle ABC QPMABC.

练习6.

如图, D D D, E E E 为以 B C BC BC 为直径所作的圆分别与 A B AB AB, A C AC AC 的交点, D F ⊥ B C DF \bot BC DFBC, E G ⊥ B C EG \bot BC EGBC, 求证: P M PM PM 在过 A A A B C BC BC 所作的垂线上.

显然 P P P 是垂心, 设 A P AP AP 的垂足为 Q Q Q, A P AP AP E F EF EF M ′ M' M, 交 D G DG DG M ′ ′ M'' M′′

△ E F C \triangle EFC EFC 和截线 A Q AQ AQ 应用梅涅劳斯定理, 可知

F M ′ / M ′ E = F Q / Q C ⋅ C A / A E FM'/M'E=FQ/QC \cdot CA/AE FM/ME=FQ/QCCA/AE,

同理
D M ′ ′ / M ′ ′ G = A D / A B ⋅ B Q / Q G DM''/M''G=AD/AB \cdot BQ/QG DM′′/M′′G=AD/ABBQ/QG

F Q / Q C ⋅ C A / A E A D / A B ⋅ B Q / Q G = ( A B ⋅ A C ) ⋅ F Q ⋅ G Q ( A D ⋅ A E ) ⋅ B Q ⋅ C Q = 1 \frac{FQ/QC \cdot CA/AE}{AD/AB \cdot BQ/QG}=\frac{(AB\cdot AC) \cdot FQ \cdot GQ}{(AD\cdot AE) \cdot BQ \cdot CQ}=1 AD/ABBQ/QGFQ/QCCA/AE=(ADAE)BQCQ(ABAC)FQGQ=1

( F Q / B Q = A D / A B FQ/BQ=AD/AB FQ/BQ=AD/AB, G Q / C Q = A E / A C GQ/CQ=AE/AC GQ/CQ=AE/AC)

所以 M ′ M' M M ′ ′ M'' M′′ 重合, 说明 M ′ M' M 也在 D G DG DG 上, 因此就是 M M M.

练习7. 如图, A B C D ABCD ABCD 为平行四边形, M N / / A B MN//AB MN//AB, E F / / A B EF//AB EF//AB, 求证: M F MF MF, B D BD BD, E N EN EN 三线共点.

证明: 设 M F MF MF B D BD BD G G G, E N EN EN B D BD BD G ′ G' G, 对于 △ A B D \triangle ABD ABD 和截线 F M G FMG FMG, △ C B D \triangle CBD CBD 和截线 E N G ′ ENG' ENG 分别应用梅涅劳斯定理, 可以证得 B G / D G = B G ′ / D G ′ BG/DG=BG'/DG' BG/DG=BG/DG, 因此 G G G G ′ G' G 重合.

练习8. 如图, P P P △ A B C \triangle ABC ABC 内一点, P A PA PA, P B PB PB, P C PC PC 的垂线分别交 B C BC BC, A C AC AC, A B AB AB 三边所在直线于 A ′ , B ′ , C ′ A', B', C' A,B,C, 求证这三点共线.

证明: 对 △ A B C \triangle ABC ABC A ′ , B ′ , C ′ A', B', C' A,B,C, 以及点 P P P, 易证
sin ⁡ ∠ B ′ P A sin ⁡ ∠ B ′ P C sin ⁡ ∠ C P A ′ sin ⁡ ∠ B P A ′ sin ⁡ ∠ B P C ′ sin ⁡ ∠ A P C ′ = 1 \frac{\sin \angle B'PA}{\sin \angle B'PC} \frac{\sin \angle CPA'}{\sin \angle BPA'} \frac{\sin \angle BPC'}{\sin \angle APC'} = 1 sinBPCsinBPAsinBPAsinCPAsinAPCsinBPC=1
由梅涅劳斯定理第二角元形式逆定理可整得此结论.

塞瓦定理可用面积法证明, 具体略.

你可能感兴趣的:(其他,几何学)