PCL Corespondence Grouping 方法进行3D模板匹配

/*
* 此例程使用pcl_recognition 组件讲解 3D目标的识别。特别指出,例程主要讲解Corespondence Grouping算法
* 通过点对点的比对相似性进行点阵的聚类来识别场景中的物体。每一个输出点阵,都是识别的物体的实例,另外
* 算法还输出一个6DOF的转换矩阵来表示目标在场景中的位姿信息
* 
* 
*/


#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

typedef pcl::PointXYZRGBA PointType;
typedef pcl::Normal NormalType;
typedef pcl::ReferenceFrame RFType;
typedef pcl::SHOT352 DescriptorType;

std::string model_filename_;
std::string scene_filename_;

//Algorithm params
bool show_keypoints_      (false);
bool show_correspondences_(false);
bool use_cloud_resolution_(false);
bool  use_hough_          (true);
float model_ss_           (0.01f);
float scene_ss_           (0.03f);
float rf_rad_             (0.015f);
float descr_rad_          (0.02f);
float cg_size_            (0.01f);
float cg_thresh_          (5.0f);

void
showHelp(char* filename)
{
    std::cout << std::endl;
    std::cout << "***************************************************************************" << std::endl;
    std::cout << "*                                                                         *" << std::endl;
    std::cout << "*             Correspondence Grouping Tutorial - Usage Guide              *" << std::endl;
    std::cout << "*                                                                         *" << std::endl;
    std::cout << "***************************************************************************" << std::endl << std::endl;
    std::cout << "Usage: " << filename << " model_filename.pcd scene_filename.pcd [Options]" << std::endl << std::endl;
    std::cout << "Options:" << std::endl;
    std::cout << "     -h:                     Show this help." << std::endl;
    std::cout << "     -k:                     Show used keypoints." << std::endl;
    std::cout << "     -c:                     Show used correspondences." << std::endl;
    std::cout << "     -r:                     Compute the model cloud resolution and multiply" << std::endl;
    std::cout << "                             each radius given by that value." << std::endl;
    std::cout << "     --algorithm (Hough|GC): Clustering algorithm used (default Hough)." << std::endl;
    std::cout << "     --model_ss val:         Model uniform sampling radius (default 0.01)" << std::endl;
    std::cout << "     --scene_ss val:         Scene uniform sampling radius (default 0.03)" << std::endl;
    std::cout << "     --rf_rad val:           Reference frame radius (default 0.015)" << std::endl;
    std::cout << "     --descr_rad val:        Descriptor radius (default 0.02)" << std::endl;
    std::cout << "     --cg_size val:          Cluster size (default 0.01)" << std::endl;
    std::cout << "     --cg_thresh val:        Clustering threshold (default 5)" << std::endl << std::endl;
}

void
parseCommandLine(int argc, char* argv[])
{
    //Show help
    if (pcl::console::find_switch(argc, argv, "-h"))
    {
        showHelp(argv[0]);
        exit(0);
    }

    //Model & scene filenames
    std::vector<int> filenames;
    filenames = pcl::console::parse_file_extension_argument(argc, argv, ".pcd");
    if (filenames.size() != 2)
    {
        std::cout << "Filenames missing.\n";
        showHelp(argv[0]);
        exit(-1);
    }

    model_filename_ = argv[filenames[0]];
    scene_filename_ = argv[filenames[1]];

    //Program behavior
    if (pcl::console::find_switch(argc, argv, "-k"))
    {
        show_keypoints_ = true;
    }
    if (pcl::console::find_switch(argc, argv, "-c"))
    {
        show_correspondences_ = true;
    }
    if (pcl::console::find_switch(argc, argv, "-r"))
    {
        use_cloud_resolution_ = true;
    }

    std::string used_algorithm;
    if (pcl::console::parse_argument(argc, argv, "--algorithm", used_algorithm) != -1)
    {
        if (used_algorithm.compare("Hough") == 0)
        {
            use_hough_ = true;
        }
        else if (used_algorithm.compare("GC") == 0)
        {
            use_hough_ = false;
        }
        else
        {
            std::cout << "Wrong algorithm name.\n";
            showHelp(argv[0]);
            exit(-1);
        }
    }

    //General parameters
    pcl::console::parse_argument(argc, argv, "--model_ss", model_ss_);
    pcl::console::parse_argument(argc, argv, "--scene_ss", scene_ss_);
    pcl::console::parse_argument(argc, argv, "--rf_rad", rf_rad_);
    pcl::console::parse_argument(argc, argv, "--descr_rad", descr_rad_);
    pcl::console::parse_argument(argc, argv, "--cg_size", cg_size_);
    pcl::console::parse_argument(argc, argv, "--cg_thresh", cg_thresh_);
}


/// 
/// 计算点云的空间平均分辨率
/// 
/// 
/// 
double
computeCloudResolution(const pcl::PointCloud<PointType>::ConstPtr& cloud)
{
    double res   = 0.0;
    int n_points = 0;
    int nres;
    std::vector<int> indices(2);
    std::vector<float> sqr_distances(2);
    pcl::search::KdTree<PointType> tree;
    tree.setInputCloud(cloud);

    for (std::size_t i = 0; i < cloud->size(); ++i)
    {
        if (!std::isfinite((*cloud)[i].x))
        {
            continue;
        }
        //Considering the second neighbor since the first is the point itself.
        nres = tree.nearestKSearch(i, 2, indices, sqr_distances);
        if (nres == 2)
        {
            res += sqrt(sqr_distances[1]);
            ++n_points;
        }
    }
    if (n_points != 0)
    {
        res /= n_points;
    }
    return res;
}

int
main(int argc, char* argv[])
{
    parseCommandLine(argc, argv);

    pcl::PointCloud<PointType>::Ptr model(new pcl::PointCloud<PointType>());
    pcl::PointCloud<PointType>::Ptr model_keypoints(new pcl::PointCloud<PointType>());
    pcl::PointCloud<PointType>::Ptr scene(new pcl::PointCloud<PointType>());
    pcl::PointCloud<PointType>::Ptr scene_keypoints(new pcl::PointCloud<PointType>());
    pcl::PointCloud<NormalType>::Ptr model_normals(new pcl::PointCloud<NormalType>());
    pcl::PointCloud<NormalType>::Ptr scene_normals(new pcl::PointCloud<NormalType>());
    pcl::PointCloud<DescriptorType>::Ptr model_descriptors(new pcl::PointCloud<DescriptorType>());
    pcl::PointCloud<DescriptorType>::Ptr scene_descriptors(new pcl::PointCloud<DescriptorType>());

    //
    //  Load clouds
    //
    if (pcl::io::loadPCDFile(model_filename_, *model) < 0)
    {
        std::cout << "Error loading model cloud." << std::endl;
        showHelp(argv[0]);
        return (-1);
    }
    if (pcl::io::loadPCDFile(scene_filename_, *scene) < 0)
    {
        std::cout << "Error loading scene cloud." << std::endl;
        showHelp(argv[0]);
        return (-1);
    }

    //
    //  Set up resolution invariance
    //
    if (use_cloud_resolution_)
    {
        float resolution = static_cast<float> (computeCloudResolution(model));
        if (resolution != 0.0f)
        {
            model_ss_ *= resolution;
            scene_ss_ *= resolution;
            rf_rad_ *= resolution;
            descr_rad_ *= resolution;
            cg_size_ *= resolution;
        }

        std::cout << "Model resolution:       " << resolution << std::endl;
        std::cout << "Model sampling size:    " << model_ss_ << std::endl;
        std::cout << "Scene sampling size:    " << scene_ss_ << std::endl;
        std::cout << "LRF support radius:     " << rf_rad_ << std::endl;
        std::cout << "SHOT descriptor radius: " << descr_rad_ << std::endl;
        std::cout << "Clustering bin size:    " << cg_size_ << std::endl << std::endl;
    }

    //
    //  计算每个点的法向量 normal法向量
    //
    pcl::NormalEstimationOMP<PointType, NormalType> norm_est;
    norm_est.setKSearch   (10); //使用临近的10个点进行计算
    norm_est.setInputCloud(model);
    norm_est.compute      (*model_normals);

    norm_est.setInputCloud(scene);
    norm_est.compute      (*scene_normals);

    //
    //  Downsample Clouds to Extract keypoints
    //

    pcl::UniformSampling<PointType> uniform_sampling;
    uniform_sampling.setInputCloud  (model);
    uniform_sampling.setRadiusSearch(model_ss_);
    uniform_sampling.filter         (*model_keypoints);
    std::cout << "Model total points: " << model->size() << "; Selected Keypoints: " << model_keypoints->size() << std::endl;

    uniform_sampling.setInputCloud  (scene);
    uniform_sampling.setRadiusSearch(scene_ss_);
    uniform_sampling.filter         (*scene_keypoints);
    std::cout << "Scene total points: " << scene->size() << "; Selected Keypoints: " << scene_keypoints->size() << std::endl;


    //
    //  Compute Descriptor for keypoints
    //
    pcl::SHOTEstimationOMP<PointType, NormalType, DescriptorType> descr_est;//SHOT算法 关键点描述子
    descr_est.setRadiusSearch (descr_rad_);

    descr_est.setInputCloud   (model_keypoints);
    descr_est.setInputNormals (model_normals);
    descr_est.setSearchSurface(model);
    descr_est.compute         (*model_descriptors);

    descr_est.setInputCloud   (scene_keypoints);
    descr_est.setInputNormals (scene_normals);
    descr_est.setSearchSurface(scene);
    descr_est.compute         (*scene_descriptors);

    //
    //  Find Model-Scene Correspondences with KdTree
    //
    pcl::CorrespondencesPtr model_scene_corrs(new pcl::Correspondences());

    pcl::KdTreeFLANN<DescriptorType> match_search;
    match_search.setInputCloud(model_descriptors);//

    //  For each scene keypoint descriptor, find nearest neighbor into the model keypoints descriptor cloud and add it to the correspondences vector.
    for (std::size_t i = 0; i < scene_descriptors->size(); ++i)
    {
        std::vector<int> neigh_indices(1);
        std::vector<float> neigh_sqr_dists(1);
        if (!std::isfinite(scene_descriptors->at(i).descriptor[0])) //skipping NaNs
        {
            continue;
        }

        //计算每一点相对于model中点的欧式几何距离,根据SHOT算法给定0.25阈值以下的为匹配到的点,并将点进行保存
        int found_neighs = match_search.nearestKSearch(scene_descriptors->at(i), 1, neigh_indices, neigh_sqr_dists);
        if (found_neighs == 1 && neigh_sqr_dists[0] < 0.25f) //  add match only if the squared descriptor distance is less than 0.25 (SHOT descriptor distances are between 0 and 1 by design)
        {
            pcl::Correspondence corr(neigh_indices[0], static_cast<int> (i), neigh_sqr_dists[0]);
            model_scene_corrs->push_back(corr);
        }
    }
    std::cout << "Correspondences found: " << model_scene_corrs->size() << std::endl;

    //
    //  Actual Clustering
    //
    std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations;
    std::vector<pcl::Correspondences> clustered_corrs;

    //  Using Hough3D
    if (use_hough_)
    {
        //
        //  Compute (Keypoints) Reference Frames only for Hough
        //
        pcl::PointCloud<RFType>::Ptr model_rf(new pcl::PointCloud<RFType>());
        pcl::PointCloud<RFType>::Ptr scene_rf(new pcl::PointCloud<RFType>());

        pcl::BOARDLocalReferenceFrameEstimation<PointType, NormalType, RFType> rf_est;
        rf_est.setFindHoles                   (true);
        rf_est.setRadiusSearch                (rf_rad_);

        rf_est.setInputCloud                  (model_keypoints);
        rf_est.setInputNormals                (model_normals);
        rf_est.setSearchSurface               (model);
        rf_est.compute                        (*model_rf);

        rf_est.setInputCloud                  (scene_keypoints);
        rf_est.setInputNormals                (scene_normals);
        rf_est.setSearchSurface               (scene);
        rf_est.compute                        (*scene_rf);

        //  Clustering
        pcl::Hough3DGrouping<PointType, PointType, RFType, RFType> clusterer;
        clusterer.setHoughBinSize             (cg_size_);
        clusterer.setHoughThreshold           (cg_thresh_);
        clusterer.setUseInterpolation         (true);
        clusterer.setUseDistanceWeight        (false);

        clusterer.setInputCloud               (model_keypoints);
        clusterer.setInputRf                  (model_rf);
        clusterer.setSceneCloud               (scene_keypoints);
        clusterer.setSceneRf                  (scene_rf);
        clusterer.setModelSceneCorrespondences(model_scene_corrs);

        //clusterer.cluster (clustered_corrs);
        clusterer.recognize                   (rototranslations, clustered_corrs);
    }
    else // Using GeometricConsistency
    {
        pcl::GeometricConsistencyGrouping<PointType, PointType> gc_clusterer;
        gc_clusterer.setGCSize(cg_size_);
        gc_clusterer.setGCThreshold(cg_thresh_);

        gc_clusterer.setInputCloud(model_keypoints);
        gc_clusterer.setSceneCloud(scene_keypoints);
        gc_clusterer.setModelSceneCorrespondences(model_scene_corrs);

        //gc_clusterer.cluster (clustered_corrs);
        gc_clusterer.recognize(rototranslations, clustered_corrs);
    }

    //
    //  Output results
    //
    std::cout << "Model instances found: " << rototranslations.size() << std::endl;
    for (std::size_t i = 0; i < rototranslations.size(); ++i)
    {
        std::cout << "\n    Instance " << i + 1 << ":" << std::endl;
        std::cout << "        Correspondences belonging to this instance: " << clustered_corrs[i].size() << std::endl;

        // Print the rotation matrix and translation vector
        Eigen::Matrix3f rotation = rototranslations[i].block<3, 3>(0, 0);
        Eigen::Vector3f translation = rototranslations[i].block<3, 1>(0, 3);

        printf("\n");
        printf("            | %6.3f %6.3f %6.3f | \n", rotation(0, 0), rotation(0, 1), rotation(0, 2));
        printf("        R = | %6.3f %6.3f %6.3f | \n", rotation(1, 0), rotation(1, 1), rotation(1, 2));
        printf("            | %6.3f %6.3f %6.3f | \n", rotation(2, 0), rotation(2, 1), rotation(2, 2));
        printf("\n");
        printf("        t = < %0.3f, %0.3f, %0.3f >\n", translation(0), translation(1), translation(2));
    }

    //
    //  Visualization
    //
    pcl::visualization::PCLVisualizer viewer("Correspondence Grouping");
    viewer.addPointCloud(scene, "scene_cloud");

    pcl::PointCloud<PointType>::Ptr off_scene_model(new pcl::PointCloud<PointType>());
    pcl::PointCloud<PointType>::Ptr off_scene_model_keypoints(new pcl::PointCloud<PointType>());

    if (show_correspondences_ || show_keypoints_)
    {
        //  We are translating the model so that it doesn't end in the middle of the scene representation
        pcl::transformPointCloud(*model, *off_scene_model, Eigen::Vector3f(-1, 0, 0), Eigen::Quaternionf(1, 0, 0, 0));
        pcl::transformPointCloud(*model_keypoints, *off_scene_model_keypoints, Eigen::Vector3f(-1, 0, 0), Eigen::Quaternionf(1, 0, 0, 0));

        pcl::visualization::PointCloudColorHandlerCustom<PointType> off_scene_model_color_handler(off_scene_model, 255, 255, 128);
        viewer.addPointCloud(off_scene_model, off_scene_model_color_handler, "off_scene_model");
    }

    if (show_keypoints_)
    {
        pcl::visualization::PointCloudColorHandlerCustom<PointType> scene_keypoints_color_handler(scene_keypoints, 0, 0, 255);
        viewer.addPointCloud(scene_keypoints, scene_keypoints_color_handler, "scene_keypoints");
        viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "scene_keypoints");

        pcl::visualization::PointCloudColorHandlerCustom<PointType> off_scene_model_keypoints_color_handler(off_scene_model_keypoints, 0, 255, 255);
        viewer.addPointCloud(off_scene_model_keypoints, off_scene_model_keypoints_color_handler, "off_scene_model_keypoints");
        viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "off_scene_model_keypoints");
    }

    for (std::size_t i = 0; i < rototranslations.size(); ++i)//将model转换到目标位置进行显示
    {
        pcl::PointCloud<PointType>::Ptr rotated_model(new pcl::PointCloud<PointType>());
        pcl::transformPointCloud(*model, *rotated_model, rototranslations[i]);

        std::stringstream ss_cloud;
        ss_cloud << "instance" << i;

        pcl::visualization::PointCloudColorHandlerCustom<PointType> rotated_model_color_handler(rotated_model, 255, 0, 0);
        viewer.addPointCloud(rotated_model, rotated_model_color_handler, ss_cloud.str());

        if (show_correspondences_)
        {
            for (std::size_t j = 0; j < clustered_corrs[i].size(); ++j)
            {
                std::stringstream ss_line;
                ss_line << "correspondence_line" << i << "_" << j;
                PointType& model_point = off_scene_model_keypoints->at(clustered_corrs[i][j].index_query);
                PointType& scene_point = scene_keypoints->at(clustered_corrs[i][j].index_match);

                //  We are drawing a line for each pair of clustered correspondences found between the model and the scene
                viewer.addLine<PointType, PointType>(model_point, scene_point, 0, 255, 0, ss_line.str());
            }
        }
    }

    while (!viewer.wasStopped())
    {
        viewer.spinOnce();
    }

    return (0);
}

PCL Corespondence Grouping 方法进行3D模板匹配_第1张图片

你可能感兴趣的:(PCL,c++)