一.项目概述
基本需求
- 用户在短时间内频繁登录失败,有程序恶意攻击的可能
- 同一用户(可以是不同IP)在2秒内连续两次登录失败,需要报警
解决思路
- 将用户的登录失败行为存入 ListState,设定定时器2秒后触发,查看 ListState 中有几次失败登录
- 更加精确的检测,可以使用 CEP 库实现事件流的模式匹配
二.代码
2.1 pom文件配置
pom文件配置如下:
org.apache.flink
flink-java
1.10.1
provided
org.apache.flink
flink-streaming-java_2.11
1.10.1
provided
org.apache.flink
flink-connector-kafka_2.11
1.10.1
org.apache.flink
flink-core
1.10.1
org.apache.flink
flink-clients_2.11
1.10.1
org.apache.flink
flink-connector-redis_2.11
1.1.5
mysql
mysql-connector-java
8.0.19
org.apache.flink
flink-statebackend-rocksdb_2.11
1.10.1
org.apache.flink
flink-table-planner-blink_2.11
1.10.1
org.apache.flink
flink-table-planner_2.11
1.10.1
org.apache.flink
flink-table-api-java-bridge_2.11
1.10.1
org.apache.flink
flink-streaming-scala_2.11
1.10.1
org.apache.flink
flink-table-common
1.10.1
org.apache.flink
flink-csv
1.10.1
org.apache.flink
flink-cep_2.11
1.10.1
2.2 POJO类
LoginEvent
private Long userId;
private String ip;
private String loginState;
private Long timestamp;
LoginFailWarning
private Long userId;
private Long firstFailTime;
private Long lastFailTime;
private String warningMsg;
2.3 恶意登陆监控 - KeyedProcessFunction
代码:
package com.zqs.flink.project.loginfail_detect;
/**
* @author 只是甲
* @date 2021-10-20
* @remark 登陆失败监控
*/
import com.zqs.flink.project.loginfail_detect.beans.LoginFailWarning;
import com.zqs.flink.project.loginfail_detect.beans.LoginEvent;
import org.apache.flink.api.common.state.ListState;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.shaded.guava18.com.google.common.collect.Lists;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
import java.net.URL;
import java.util.ArrayList;
import java.util.Iterator;
public class LoginFail {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
// 1. 从文件中读取
URL resource = LoginFail.class.getResource("/LoginLog.csv");
DataStream loginEventStream= env.readTextFile(resource.getPath())
.map(line -> {
String[] fields = line.split(",");
return new LoginEvent(new Long(fields[0]), fields[1], fields[2], new Long(fields[3]));
})
.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor(Time.seconds(3)) {
@Override
public long extractTimestamp(LoginEvent element) {
return element.getTimestamp()*1000L;
}
});
// 自定义处理函数检测连续登录失败事件
SingleOutputStreamOperator warningStream = loginEventStream
.keyBy(LoginEvent::getUserId)
.process(new LoginFailDetectWarning(2));
warningStream.print();
env.execute("login fail detect job");
}
// 实现自定义KeyedProcessFunction
public static class LoginFailDetectWarning0 extends KeyedProcessFunction{
// 定义属性,最大连续登录失败次数
private Integer maxFailTimes;
public LoginFailDetectWarning0(Integer maxFailTimes) {
this.maxFailTimes = maxFailTimes;
}
// 定义状态: 保存2秒内所有登陆失败事件
ListState loginFailEventListState;
// 定义状态: 保存注册的定时器时间戳
ValueState timerTsState;
@Override
public void open(Configuration parameters) throws Exception {
loginFailEventListState = getRuntimeContext().getListState(new ListStateDescriptor("login-fail-list", LoginEvent.class));
timerTsState = getRuntimeContext().getState(new ValueStateDescriptor("timer-ts", Long.class));
}
@Override
public void processElement(LoginEvent value, Context ctx, Collector out) throws Exception {
// 判断当前登陆事件
if ( "fail".equals(value.getLoginState()) ){
// 1. 如果是失败事件, 添加到列表状态中
loginFailEventListState.add(value);
// 如果没有定时器,注册一个2秒之后的定时器
if(timerTsState.value() == null ){
Long ts = (value.getTimestamp() + 2) * 1000L;
ctx.timerService().registerEventTimeTimer(ts);
timerTsState.update(ts);
}
} else {
// 2. 如果是登陆成功, 删除定时器,清空状态,重新开始
if( timerTsState.value() != null )
ctx.timerService().deleteEventTimeTimer(timerTsState.value());
loginFailEventListState.clear();
timerTsState.clear();
}
}
@Override
public void onTimer(long timestamp, OnTimerContext ctx, Collector out) throws Exception {
// 定时器触发, 说明2秒内没有登陆成功来, 判断ListState中的失败个数
ArrayList loginFailEvents = Lists.newArrayList(loginFailEventListState.get());
Integer failTimes = loginFailEvents.size();
if( failTimes >= maxFailTimes ){
// 如果超出设定的最大失败次数,输出报警
out.collect( new LoginFailWarning(ctx.getCurrentKey(),
loginFailEvents.get(0).getTimestamp(),
loginFailEvents.get(failTimes -1).getTimestamp(),
"login fail in 2s for " + failTimes + " times"
));
}
// 清空状态
loginFailEventListState.clear();
timerTsState.clear();
}
}
// 实现自定义KeyedProcessFunction
public static class LoginFailDetectWarning extends KeyedProcessFunction{
// 定义属性, 最大连续登陆失败次数
private Integer maxFailTimes;
public LoginFailDetectWarning(Integer maxFailTimes) {
this.maxFailTimes = maxFailTimes;
}
// 定义状态: 保存2秒内所有的登陆失败事件
ListState loginEventListState;
@Override
public void open(Configuration parameters) throws Exception {
loginEventListState = getRuntimeContext().getListState(new ListStateDescriptor("login-fail-list", LoginEvent.class));
}
@Override
public void processElement(LoginEvent value, Context ctx, Collector out) throws Exception {
// 判断当前事件登陆状态
if ( "fail".equals(value.getLoginState()) ){
// 1. 如果是登陆失败, 获取状态中之前的登陆失败事件, 继续判断是否已有失败事件
Iterator iterator = loginEventListState.get().iterator();
if( iterator.hasNext() ){
// 1.1 如果已经有登陆失败事件, 继续判断是否已有失败事件
// 获取已有的登陆失败事件
LoginEvent firstFailEvent = iterator.next();
if (value.getTimestamp() - firstFailEvent.getTimestamp() <= 2){
// 1.1.1 如果2秒之内, 输出报警
out.collect( new LoginFailWarning(value.getUserId(), firstFailEvent.getTimestamp(), value.getTimestamp(), "login fail 2 times in 2s"));
}
// 不管报不报警, 这次都已处理完毕,直接更新状态
loginEventListState.clear();
loginEventListState.add(value);
} else {
// 1.2 如果没有登陆失败,直接将当前事件存入ListState
loginEventListState.add(value);
}
} else {
// 2. 如果是登陆成功,直接清空状态
loginEventListState.clear();
}
}
}
}
2.4 恶意登陆监控 - CEP
代码:
package com.zqs.flink.project.loginfail_detect;
/**
* @author 只是甲
* @date 2021-10-20
* @remark 登陆失败监控 - CEP
*/
import com.zqs.flink.project.loginfail_detect.beans.LoginEvent;
import com.zqs.flink.project.loginfail_detect.beans.LoginFailWarning;
import org.apache.flink.cep.CEP;
import org.apache.flink.cep.PatternSelectFunction;
import org.apache.flink.cep.PatternStream;
import org.apache.flink.cep.pattern.Pattern;
import org.apache.flink.cep.pattern.conditions.SimpleCondition;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.time.Time;
import sun.rmi.runtime.Log;
import java.net.URL;
import java.util.List;
import java.util.Map;
public class LoginFailWithCep {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
// 1. 从文件中读取数据
URL resource = LoginFailWithCep.class.getResource("/LoginLog.csv");
DataStream loginEventStream = env.readTextFile(resource.getPath())
.map(line -> {
String[] fields = line.split(",");
return new LoginEvent(new Long(fields[0]), fields[1], fields[2], new Long(fields[3]));
})
.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor(Time.seconds(3)) {
@Override
public long extractTimestamp(LoginEvent element) {
return element.getTimestamp() * 1000L;
}
});
// 1. 定义一个匹配模式
// firstFail -> secondFail, within 2s
Pattern loginFailPattern0 = Pattern
.begin("firstFail").where(new SimpleCondition() {
@Override
public boolean filter(LoginEvent value) throws Exception {
return "fail".equals(value.getLoginState());
}
})
.next("secondFail").where(new SimpleCondition() {
@Override
public boolean filter(LoginEvent value) throws Exception {
return "fail".equals(value.getLoginState());
}
})
.next("thirdFail").where(new SimpleCondition() {
@Override
public boolean filter(LoginEvent value) throws Exception {
return "fail".equals(value.getLoginState());
}
})
.within(Time.seconds(3));
Pattern loginFailPattern = Pattern
.begin("failEvents").where(new SimpleCondition() {
@Override
public boolean filter(LoginEvent value) throws Exception {
return "fail".equals(value.getLoginState());
}
}).times(3).consecutive()
.within(Time.seconds(5));
// 2. 将匹配模式应用到数据流上,得到一个pattern stream
PatternStream patternStream = CEP.pattern(loginEventStream.keyBy(LoginEvent::getUserId), loginFailPattern);
// 3. 检出符合匹配条件的复杂事件,进行转换处理,得到报警信息
SingleOutputStreamOperator warningStream = patternStream.select(new LoginFailMatchDetectWarning());
warningStream.print();
env.execute("login fail detect with cep job");
}
// 实现自定义的PatternSelectFunction
public static class LoginFailMatchDetectWarning implements PatternSelectFunction{
@Override
public LoginFailWarning select(Map> pattern) throws Exception {
LoginEvent firstFailEvent = pattern.get("failEvents").get(0);
LoginEvent lastFailEvent = pattern.get("failEvents").get(pattern.get("failEvents").size() - 1);
return new LoginFailWarning(firstFailEvent.getUserId(), firstFailEvent.getTimestamp(), lastFailEvent.getTimestamp(), "login fail " + pattern.get("failEvents").size() + " times");
}
}
}
测试记录:
参考:
- https://www.bilibili.com/video/BV1qy4y1q728