ViT论文Pytorch代码解读

ViT论文代码实现

论文地址:https://arxiv.org/abs/2010.11929
Pytorch代码地址:https://github.com/lucidrains/vit-pytorch

ViT结构图

ViT论文Pytorch代码解读_第1张图片

调用代码

import torch
from vit_pytorch import ViT

def test():
    v = ViT(
        image_size = 256, 
        patch_size = 32,  
        num_classes = 1000,  
        dim = 1024,  
        depth = 6,  
        heads = 16,  
        mlp_dim = 2048,  
        dropout = 0.1,
        emb_dropout = 0.1
    )

    img = torch.randn(1, 3, 256, 256)

    preds = v(img)
    print(preds.shape)
    assert preds.shape == (1, 1000), 'correct logits outputted'

if __name__ == '__main__':
    test()

ViT结构

class ViT(nn.Module):
    def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool='cls', channels=3,
                 dim_head=64, dropout=0., emb_dropout=0.):
        super().__init__()
        
        # 将image_size和patch_size都转换为(height, width)形式
        image_height, image_width = pair(image_size)
        patch_height, patch_width = pair(patch_size)
		
		# 检查图像尺寸是否可以被patch尺寸整除
        assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'

		# 计算图像中的patch数量
        num_patches = (image_height // patch_height) * (image_width // patch_width)
		
		# 计算每个patch的维度(即每个patch的元素数量)
        patch_dim = channels * patch_height * patch_width
        
        # 确保池化方式是'cls'或'mean'
        assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'

		# 将图像转换为patch嵌入的操作
        self.to_patch_embedding = nn.Sequential(
            Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=patch_height, p2=patch_width),  # 图像切分重排,后文有注释
            # 注:此时的维度为[b, h*w/p1/p2, p1*p2*c]:[批处理尺寸、图像中patch的数、每个patch的元素数量]
            nn.LayerNorm(patch_dim),  # 对patch进行层归一化
            nn.Linear(patch_dim, dim),  # 使用线性层将patch的维度从patch_dim转化为dim
            nn.LayerNorm(dim),  # 对结果进行层归一化
        )
		
        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))  # 初始化位置嵌入
        self.cls_token = nn.Parameter(torch.randn(1, 1, dim))  # 初始化CLS token(用于分类任务的特殊token)
        self.dropout = nn.Dropout(emb_dropout)

        self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)  # 定义Transformer模块
 
        self.pool = pool  # 设置池化方式('cls'或'mean')
        self.to_latent = nn.Identity()  # 设置一个恒等映射(在此实现中不改变数据,但可以在子类或其他变种中进行修改)

        self.mlp_head = nn.Linear(dim, num_classes)   # 定义MLP头部,用于最终的分类

    def forward(self, img):
        x = self.to_patch_embedding(img) # 第一步,将图片切分为若干小块
		# 此时维度为:[b, h*w/p1/p2, dim]
        b, n, _ = x.shape
		
		# 第二步,设置位置编码
        cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b=b)  # 将cls_token复制b个 
        # (为每个输入图像复制一个CLS token,使输入批次中的每张图像都有一个相应的CLS token)
        x = torch.cat((cls_tokens, x), dim=1)  # 将CLS token与patch嵌入合并; cat之后,原来的维度[1,64,1024],就变成了[1,65,1024]
        x += self.pos_embedding[:, :(n + 1)] # 原数据和位置编码直接进行相加操作,即完成结构图中的【Patch + Position Embedding】操作
        
        x = self.dropout(x)

		# 第三步,Transformer的Encoder结构
        x = self.transformer(x)
        
        x = x.mean(dim=1) if self.pool == 'mean' else x[:, 0]   # 根据所选的池化方式进行池化

        x = self.to_latent(x)  # 将数据传递给恒等映射
        return self.mlp_head(x)  # 使用MLP头部进行分类
  

Rearrange解释:
y = x.transpose(0, 2, 3, 1)
可以写成:y = rearrange(x, ‘b c h w -> b h w c’)

关于pos_embedding和cls_token的逻辑讲解:
ViT论文Pytorch代码解读_第2张图片如图所示,红色框框出的部分。
图像被切分为多个小块之后,经过self.to_patch_embedding 中的Rearrange,原本的[b,c,h,w]维度变为[b, h*w/p1/p2, p1*p2*c]。
再经过线性层nn.Linear(patch_dim, dim),维度变为[b, h*w/p1/p2, dim]。
输出结果即为上图中黄色框标出的部分的粉色条(不包括紫色条,是因为此处还没进行Position Embedding操作)。
继续往下走,进行torch.cat((cls_tokens, x), dim=1),此时将xcls_tokens进行concat操作,得到红色框框出的所有粉色条(在原本的基础上增加了带*号的粉色条)。
记下来的x += self.pos_embedding[:, :(n + 1)]操作就是将xpos_embedding直接进行相加,用图表示出来就是上图中整个红色框框出的部分了(紫色条就是传说中的pos_embedding)。
举一个有数字的例子:
原本输入图像维度为[1, 3, 256, 256],dim设置为1023,经过self.to_patch_embedding后维度变为:[1,64,1024],cls_tokens的维度为:[1,1,1024],经过concat操作后,x的维度变为[1,65,1024],然后经过pos_embedding加操作后,维度依然是[1,65,1024],因为在设置变量pos_embedding时的维度就是torch.randn(1, num_patches + 1, dim)
~这个解释应该够清晰了吧!~

Transformer Encoder结构

# 定义前馈神经网络
class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout=0.):
        super().__init__()
        self.net = nn.Sequential(
            # Vit_base: dim=768,hidden_dim=3072
            nn.LayerNorm(dim),
            nn.Linear(dim, hidden_dim),  # 将输入从dim维映射到hidden_dim维
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),  # 将隐藏状态从hidden_dim维映射回到dim维
            nn.Dropout(dropout) 
        )

    def forward(self, x):
        return self.net(x)


class Attention(nn.Module):
    def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
        super().__init__()
        inner_dim = dim_head * heads  # 64*8=512  # 计算内部维度
        project_out = not (heads == 1 and dim_head == dim) # 判断是否需要投影输出,投影输出就是是否需要经过线性层
        # 如果只有一个attention头并且其维度与输入相同则不需要投影输出,否则需要。

        self.heads = heads
        self.scale = dim_head ** -0.5 # 缩放因子,通常是头维度的平方根的倒数

        self.norm = nn.LayerNorm(dim)

        self.attend = nn.Softmax(dim=-1)   # softmax函数用于最后一个维度,计算注意力权重
        self.dropout = nn.Dropout(dropout)

        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False) # 一个线性层生成Q, K, V

		# 判断是否需要投影输出
        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout)
        ) if project_out else nn.Identity()

    def forward(self, x):
        x = self.norm(x)

        qkv = self.to_qkv(x).chunk(3, dim=-1)  # 用线性层生成QKV,并在最后一个维度上分块;相当于写3遍nn.Linear
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=self.heads), qkv) 
        # 将[batch_size, sequence_length, heads_dimension] 转换为 [batch_size, number_of_heads, sequence_length, dimension_per_head]

        dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale  # 计算Q和K的点乘,然后进行缩放
        # q: [batch_size, number_of_heads, sequence_length, dimension_per_head]
        # k转置后:[batch_size, number_of_heads, sequence_length, dimension_per_head] -> [batch_size, number_of_heads, dimension_per_head, sequence_length]
        # q和k点乘后:[batch_size, number_of_heads, sequence_length, sequence_length]

        attn = self.attend(dots)   # 使用softmax函数获取注意力权重
        attn = self.dropout(attn)
		
		# 使用注意力权重对V进行加权
        out = torch.matmul(attn, v) 
        out = rearrange(out, 'b h n d -> b n (h d)') # 使用rearrange函数重新组织输出的维度
        return self.to_out(out)  # 投影输出(如果需要)


class Transformer(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.layers = nn.ModuleList([])
        for _ in range(depth):  # depth设置为几层,就重复几次
            self.layers.append(nn.ModuleList([
                Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout),
                FeedForward(dim, mlp_dim, dropout=dropout)
            ]))

    def forward(self, x):
        for attn, ff in self.layers:  # 残差
            x = attn(x) + x
            x = ff(x) + x

        return self.norm(x)

如上就是ViT的整体结构了。

附:完整代码

import torch
from torch import nn

from einops import rearrange, repeat
from einops.layers.torch import Rearrange


# helpers

def pair(t):
    return t if isinstance(t, tuple) else (t, t)


# classes

class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout=0.):
        super().__init__()
        self.net = nn.Sequential(
            # Vit_base: dim=768,hidden_dim=3072
            nn.LayerNorm(dim),
            nn.Linear(dim, hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout)
        )

    def forward(self, x):
        return self.net(x)


class Attention(nn.Module):
    def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
        super().__init__()
        inner_dim = dim_head * heads  # 64*8=512
        project_out = not (heads == 1 and dim_head == dim)

        self.heads = heads
        self.scale = dim_head ** -0.5

        self.norm = nn.LayerNorm(dim)

        self.attend = nn.Softmax(dim=-1)
        self.dropout = nn.Dropout(dropout)

        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout)
        ) if project_out else nn.Identity()

    def forward(self, x):
        x = self.norm(x)

        qkv = self.to_qkv(x).chunk(3, dim=-1)  # 相当于写3遍nn.Linear
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=self.heads), qkv)
        # 将[batch_size, sequence_length, heads_dimension] 转换为 [batch_size, number_of_heads, sequence_length, dimension_per_head]

        dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
        # q: [batch_size, number_of_heads, sequence_length, dimension_per_head]
        # k转置后:[batch_size, number_of_heads, sequence_length, dimension_per_head] -> [batch_size, number_of_heads, dimension_per_head, sequence_length]
        # q和k点乘后:[batch_size, number_of_heads, sequence_length, sequence_length]

        attn = self.attend(dots)
        attn = self.dropout(attn)

        out = torch.matmul(attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        return self.to_out(out)


class Transformer(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout),
                FeedForward(dim, mlp_dim, dropout=dropout)
            ]))

    def forward(self, x):
        for attn, ff in self.layers:
            x = attn(x) + x
            x = ff(x) + x

        return self.norm(x)


class ViT(nn.Module):
    def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool='cls', channels=3,
                 dim_head=64, dropout=0., emb_dropout=0.):
        super().__init__()
        image_height, image_width = pair(image_size)
        patch_height, patch_width = pair(patch_size)

        assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'

        num_patches = (image_height // patch_height) * (image_width // patch_width)
        patch_dim = channels * patch_height * patch_width
        assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'

        self.to_patch_embedding = nn.Sequential(
            Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=patch_height, p2=patch_width),  # 图像切分重排
            nn.LayerNorm(patch_dim),
            nn.Linear(patch_dim, dim),
            nn.LayerNorm(dim),
        )
        # Rearrange解释:
        # y = x.transpose(0, 2, 3, 1)
        # 可以写成:y = rearrange(x, 'b c h w -> b h w c')

        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
        self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
        self.dropout = nn.Dropout(emb_dropout)

        self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)

        self.pool = pool
        self.to_latent = nn.Identity()

        self.mlp_head = nn.Linear(dim, num_classes)

    def forward(self, img):
        x = self.to_patch_embedding(img)
        b, n, _ = x.shape

        cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b=b)  # 数字编码,将cls_token复制b个
        x = torch.cat((cls_tokens, x), dim=1)  # cat之后,原来的维度[1,64,1024],就变成了[1,65,1024]
        x += self.pos_embedding[:, :(n + 1)]
        x = self.dropout(x)

        x = self.transformer(x)

        x = x.mean(dim=1) if self.pool == 'mean' else x[:, 0]

        x = self.to_latent(x)
        return self.mlp_head(x)

附:训练代码

model = ViT(
    dim=128,
    image_size=224,
    patch_size=32,
    num_classes=2,
    transformer=efficient_transformer,
    channels=3,
).to(device)


# loss function
criterion = nn.CrossEntropyLoss()
# optimizer
optimizer = optim.Adam(model.parameters(), lr=lr)
# scheduler
scheduler = StepLR(optimizer, step_size=1, gamma=gamma)


for epoch in range(epochs):
    epoch_loss = 0
    epoch_accuracy = 0

    for data, label in tqdm(train_loader):
        data = data.to(device)
        label = label.to(device)

        output = model(data)
        loss = criterion(output, label)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        acc = (output.argmax(dim=1) == label).float().mean()
        epoch_accuracy += acc / len(train_loader)
        epoch_loss += loss / len(train_loader)

    with torch.no_grad():
        epoch_val_accuracy = 0
        epoch_val_loss = 0
        for data, label in valid_loader:
            data = data.to(device)
            label = label.to(device)

            val_output = model(data)
            val_loss = criterion(val_output, label)

            acc = (val_output.argmax(dim=1) == label).float().mean()
            epoch_val_accuracy += acc / len(valid_loader)
            epoch_val_loss += val_loss / len(valid_loader)

    print(
        f"Epoch : {epoch+1} - loss : {epoch_loss:.4f} - acc: {epoch_accuracy:.4f} - val_loss : {epoch_val_loss:.4f} - val_acc: {epoch_val_accuracy:.4f}\n"
    )

你可能感兴趣的:(论文代码详解,pytorch,人工智能,python,transformer,深度学习)