Hands on RL 之 Off-policy Maximum Entropy Actor-Critic (SAC)

Hands on RL 之 Off-policy Maximum Entropy Actor-Critic (SAC)

文章目录

  • Hands on RL 之 Off-policy Maximum Entropy Actor-Critic (SAC)
    • 1. 理论基础
      • 1.1 Maximum Entropy Reinforcement Learning, MERL
      • 1.2 Soft Policy Evaluation and Soft Policy Improvement in SAC
      • 1.3 Two Q Value Neural Network
      • 1.4 Tricks
      • 1.5 Pesudocode
    • 2. 代码实现
      • 2.1 SAC处理连续动作空间
      • 2.2 SAC处理离散动作空间
    • Reference

​ Soft actor-critic方法又被称为Off-policy maximum entropy actor-critic algorithm。

1. 理论基础

1.1 Maximum Entropy Reinforcement Learning, MERL

​ 在MERL原论文中,引入了熵的概念,熵定义如下:

随机变量 x x x符合 P P P的概率分布,那么随机变量 x x x的熵 H ( P ) \mathcal{H}(P) H(P)
H ( P ) = E x ∼ P [ − log ⁡ p ( x ) ] \mathcal{H}(P)=\mathbb{E}_{x\sim P}[-\log p(x)] H(P)=ExP[logp(x)]
标准的RL算法的目标是能够找到最大化累计收益的策略
π std ∗ = arg ⁡ max ⁡ π ∑ t E ( s t , a t ) ∼ ρ π [ r ( s t , a t ) ] \pi^*_{\text{std}} = \arg \max_\pi \sum_t \mathbb{E}_{(s_t,a_t)\sim \rho_\pi}[r(s_t, a_t)] πstd=argπmaxtE(st,at)ρπ[r(st,at)]
引入了熵最大化的RL算法的目标是
π M E R L ∗ = arg ⁡ max ⁡ π ∑ t E ( s t , a t ) ∼ ρ π [ r ( s t , a t ) + α H ( π ( ⋅ ∣ s t ) ) ] \pi^*_{MERL} = \arg\max_\pi \sum_t \mathbb{E}_{(s_t,a_t)\sim\rho_\pi}[r(s_t,a_t) + \alpha \mathcal{H}(\pi(\cdot|s_t))] πMERL=argπmaxtE(st,at)ρπ[r(st,at)+αH(π(st))]
其中, ρ π \rho_\pi ρπ表示在策略 π \pi π下状态空间对的概率分布, α \alpha α是温度系数,用于调节对熵的重视程度。

类似的,我们也可以在RL的动作值函数,和状态值函数中同样引入熵的概念。

标准的RL算法的值函数
standard Q function: Q π ( s , a ) = E s t , a t ∼ ρ π [ ∑ t = 0 ∞ γ t r ( s t , a t ) ∣ s 0 = s , a 0 = a ] standard V function: V π ( s ) = E s t , a t ∼ ρ π [ ∑ t = 0 ∞ γ t r ( s t , a t ) ∣ s 0 = s ] \begin{aligned} \text{standard Q function:} \quad Q^\pi(s,a) & = \mathbb{E}_{s_t,a_t\sim\rho_\pi}[\sum_{t=0}^\infty \gamma^t r(s_t,a_t)|s_0=s, a_0=a] \\ \text{standard V function:} \quad V^\pi(s) & =\mathbb{E}_{s_t,a_t\sim\rho_\pi}[\sum_{t=0}^\infty \gamma^t r(s_t,a_t)|s_0=s] \end{aligned} standard Q function:Qπ(s,a)standard V function:Vπ(s)=Est,atρπ[t=0γtr(st,at)s0=s,a0=a]=Est,atρπ[t=0γtr(st,at)s0=s]

根据MERL的目标函数,在值函数中引入熵的概念之后就获得了Soft Value Function, SVF
Soft Q function: Q soft π ( s , a ) = E s t , a t ∼ ρ π [ ∑ t = 0 ∞ γ t r ( s t , a t ) + α ∑ t = 1 ∞ γ t H ( π ( ⋅ ∣ s t ) ) ∣ s 0 = s , a 0 = a ] Soft V function: V soft π ( s ) = E s t , a t ∼ ρ π [ ∑ t = 0 ∞ γ t ( r ( s t , a t ) + α H ( π ( ⋅ ∣ s t ) ) ) ∣ s 0 = s ] \begin{aligned} \text{Soft Q function:} \quad Q_{\text{soft}}^\pi(s,a) & = \mathbb{E}_{s_t,a_t\sim\rho_\pi}[\sum_{t=0}^\infty \gamma^t r(s_t,a_t) + \alpha \sum_{t=1}^\infty\gamma^t\mathcal{H} (\pi(\cdot|s_t)) |s_0=s, a_0=a] \\ \text{Soft V function:} \quad V_{\text{soft}}^\pi(s) & =\mathbb{E}_{s_t,a_t\sim\rho_\pi}[\sum_{t=0}^\infty \gamma^t \Big( r(s_t,a_t) + \alpha \mathcal{H} (\pi(\cdot|s_t)) \Big)|s_0=s] \end{aligned} Soft Q function:Qsoftπ(s,a)Soft V function:Vsoftπ(s)=Est,atρπ[t=0γtr(st,at)+αt=1γtH(π(st))s0=s,a0=a]=Est,atρπ[t=0γt(r(st,at)+αH(π(st)))s0=s]

观察上式我们就可以获得Soft Bellman Equation
Q soft π ( s , a ) = E s ′ ∼ p ( s ′ ∣ s , a ) a ′ ∼ π [ r ( s , a ) + γ ( Q soft π ( s ′ , a ′ ) + α H ( π ( ⋅ ∣ s ′ ) ) ) ] = E s ′ ∼ p ( s ′ ∣ s , a ) [ r ( s , a ) + γ V soft π ( s ) ] \begin{aligned} Q_{\text{soft}}^\pi(s,a) & = \mathbb{E}_{s^\prime \sim p(s^\prime|s,a)\\ a^\prime\sim \pi}[r(s,a) + \gamma \Big( Q_{\text{soft}}^\pi(s^\prime,a^\prime) + \alpha \mathcal{H}(\pi(\cdot|s^\prime)) \Big)] \\ & = \mathbb{E}_{s^\prime\sim p(s^\prime|s,a)} [r(s,a) + \gamma V_{\text{soft}}^\pi(s)] \end{aligned} Qsoftπ(s,a)=Esp(ss,a)aπ[r(s,a)+γ(Qsoftπ(s,a)+αH(π(s)))]=Esp(ss,a)[r(s,a)+γVsoftπ(s)]

V soft π ( s ) = E s t , a t ∼ ρ π [ ∑ t = 0 ∞ γ t ( r ( s t , a t ) + α H ( π ( ⋅ ∣ s t ) ) ) ∣ s 0 = s ] = E s t , a t ∼ ρ π [ ∑ t = 0 ∞ γ t r ( s t , a t ) + α ∑ t = 1 ∞ γ t H ( π ( ⋅ ∣ s t ) ) + α H ( π ( ⋅ ∣ s t ) ∣ s 0 = s ] = E s t , a t ∼ ρ π [ Q soft π ( s , a ) ∣ s 0 = s , a 0 = a ] + α H ( π ( ⋅ ∣ s t ) ) = E a ∼ π [ Q soft π ( s , a ) − α log ⁡ π ( a ∣ s ) ] \begin{aligned} V_{\text{soft}}^\pi(s) & = \mathbb{E}_{s_t,a_t\sim\rho_\pi}[\sum_{t=0}^\infty \gamma^t \Big( r(s_t,a_t) + \alpha \mathcal{H} (\pi(\cdot|s_t)) \Big)|s_0=s] \\ & = \mathbb{E}_{s_t,a_t\sim\rho_\pi}[\sum_{t=0}^\infty \gamma^t r(s_t,a_t) + \alpha \sum_{t=1}^\infty\gamma^t\mathcal{H} (\pi(\cdot|s_t)) + \alpha \mathcal{H}(\pi(\cdot|s_t)|s_0=s] \\ & = \mathbb{E}_{s_t,a_t\sim\rho_\pi}[Q_{\text{soft}}^\pi(s,a)|s_0=s,a_0=a] + \alpha \mathcal{H}(\pi(\cdot|s_t)) \\ & = \textcolor{blue}{\mathbb{E}_{a\sim\pi}[Q_{\text{soft}}^\pi(s,a) - \alpha \log \pi(a|s)]} \end{aligned} Vsoftπ(s)=Est,atρπ[t=0γt(r(st,at)+αH(π(st)))s0=s]=Est,atρπ[t=0γtr(st,at)+αt=1γtH(π(st))+αH(π(st)s0=s]=Est,atρπ[Qsoftπ(s,a)s0=s,a0=a]+αH(π(st))=Eaπ[Qsoftπ(s,a)αlogπ(as)]

1.2 Soft Policy Evaluation and Soft Policy Improvement in SAC

soft Q function的值迭代公式
Q soft π ( s , a ) = E s ′ ∼ p ( s ′ ∣ s , a ) a ′ ∼ π [ r ( s , a ) + γ ( Q soft π ( s ′ , a ′ ) + α H ( π ( ⋅ ∣ s ′ ) ) ) ] = E s ′ ∼ p ( s ′ ∣ s , a ) [ r ( s , a ) + γ V soft π ( s ) ] \begin{align} Q_{\text{soft}}^\pi(s,a) & = \mathbb{E}_{s^\prime \sim p(s^\prime|s,a)\\ a^\prime\sim \pi}[r(s,a) + \gamma \Big( Q_{\text{soft}}^\pi(s^\prime,a^\prime) + \alpha \mathcal{H}(\pi(\cdot|s^\prime)) \Big)] \tag{1.1} \\ & = \mathbb{E}_{s^\prime\sim p(s^\prime|s,a)} [r(s,a) + \gamma V_{\text{soft}}^\pi(s)] \tag{1.2} \end{align} Qsoftπ(s,a)=Esp(ss,a)aπ[r(s,a)+γ(Qsoftπ(s,a)+αH(π(s)))]=Esp(ss,a)[r(s,a)+γVsoftπ(s)](1.1)(1.2)

soft V function的值迭代公式

V soft π ( s ) = E a ∼ π [ Q soft π ( s , a ) − α log ⁡ π ( a ∣ s ) ] (1.3) V_{\text{soft}}^\pi(s)= \mathbb{E}_{a\sim\pi}[Q_{\text{soft}}^\pi(s,a) - \alpha \log \pi(a|s)] \tag{1.3} Vsoftπ(s)=Eaπ[Qsoftπ(s,a)αlogπ(as)](1.3)

在SAC中如果我们只打算维持一个Q值函数,那么使用式子 ( 1 , 1 ) (1,1) (1,1)进行值迭代即可,

如果需要同时维持Q,V两个函数,那么使用式子 ( 1 , 2 ) , ( 1 , 3 ) (1,2),(1,3) (1,2),(1,3)进行值迭代。

下面直接给出训练中的损失函数

V值函数的损失函数

J V ( ψ ) = E s t ∼ D [ 1 2 ( V ψ ( s t ) − E a t ∼ π ϕ [ Q θ ( s t , a t ) − log ⁡ π ϕ ( a t ∣ s t ) ] ) 2 ] J_{V(\psi)} = \mathbb{E}_{s_t\sim\mathcal{D}} \Big[\frac{1}{2}(V_{\psi}(s_t) - \mathbb{E}_{a_t\sim\pi_{\phi}}[Q_\theta(s_t,a_t)- \log \pi_\phi(a_t|s_t)])^2 \Big] JV(ψ)=EstD[21(Vψ(st)Eatπϕ[Qθ(st,at)logπϕ(atst)])2]

Q值函数的损失函数

J Q ( θ ) = E ( s t , a t ) ∼ D [ 1 2 ( Q θ ( s t , a t ) − Q ^ ( s t , a t ) ) ] Q ^ ( s t , a t ) = r ( s t , a t ) + γ E s t + 1 ∼ p [ V ψ ( s t + 1 ) ] Q ^ ( s t , a t ) = r ( s t , a t ) + γ Q θ ( s t + 1 , a t + 1 ) J_{Q(\theta)} = \mathbb{E}_{(s_t,a_t)\sim\mathcal{D}} \Big[ \frac{1}{2}\Big( Q_\theta(s_t,a_t) - \hat{Q}(s_t,a_t) \Big) \Big] \\ \hat{Q}(s_t,a_t) = r(s_t,a_t) + \gamma \mathbb{E}_{s_{t+1}\sim p}[V_{\psi}(s_{t+1})] \\ \hat{Q}(s_t,a_t) = r(s_t,a_t) + \gamma Q_\theta(s_{t+1},a_{t+1}) JQ(θ)=E(st,at)D[21(Qθ(st,at)Q^(st,at))]Q^(st,at)=r(st,at)+γEst+1p[Vψ(st+1)]Q^(st,at)=r(st,at)+γQθ(st+1,at+1)

策略 π \pi π的损失函数

J π ( ϕ ) = E s t ∼ D [ D K L ( π ϕ ( ⋅ ∣ s t ) ∣ ∣ exp ⁡ ( Q θ ( s t , ⋅ ) ) Z θ ( s t ) ) ] J_\pi(\phi) = \mathbb{E}_{s_t\sim \mathcal{D}} \Big[ \mathbb{D}_{KL}\Big( \pi_\phi(\cdot|s_t) \big|\big| \frac{\exp(Q_\theta(s_t,\cdot))}{Z_\theta(s_t)} \Big) \Big] Jπ(ϕ)=EstD[DKL(πϕ(st) Zθ(st)exp(Qθ(st,)))]

其中, Z θ ( s t ) Z_\theta(s_t) Zθ(st)是分配函数 (partition function)

KL散度的定义如下

​ 假设对随机变量 ξ \xi ξ,存在两个概率分布P和Q,其中P是真实的概率分布,Q是较容易获得的概率分布。如果 ξ \xi ξ是离散的随机变量,那么定义从P到Qd KL散度为

D K L ( P ∣ ∣ Q ) = ∑ i P ( i ) ln ⁡ ( P ( i ) Q ( i ) ) \mathbb{D}_{KL}(P\big|\big|Q) = \sum_i P(i)\ln(\frac{P(i)}{Q(i)}) DKL(P Q)=iP(i)ln(Q(i)P(i))

如果 ξ \xi ξ是连续变量,则定义从P到Q的KL散度为

D K L ( P ∣ ∣ Q ) = ∫ − ∞ ∞ p ( x ) ln ⁡ ( p ( x ) q ( x ) ) d x \mathbb{D}_{KL}(P\big|\big|Q) = \int^\infty_{-\infty}p(\mathbb{x})\ln(\frac{p(\mathbb{x})}{q(\mathbb{x})}) d\mathbb{x} DKL(P Q)=p(x)ln(q(x)p(x))dx

那么根据离散的KL散度定义,我们可以将策略 π \pi π的损失函数展开如下

J π ( ϕ ) = E s t ∼ D [ D K L ( π ϕ ( ⋅ ∣ s t ) ∣ ∣ exp ⁡ ( Q θ ( s t , ⋅ ) ) Z θ ( s t ) ) ] = E s t ∼ D [ ∑ π ϕ ( ⋅ ∣ s t ) ln ⁡ ( π ϕ ( ⋅ ∣ s t ) Z θ ( s t ) exp ⁡ ( Q θ ( s t , ⋅ ) ) ) ] = E s t ∼ D , a t ∼ π ϕ [ ln ⁡ ( π ϕ ( ⋅ ∣ s t ) + ln ⁡ ( Z θ ( s t ) ) − Q θ ( s t , ⋅ ) ] = E s t ∼ D , a t ∼ π ϕ [ ln ⁡ ( π ϕ ( ⋅ ∣ s t ) ) − Q θ ( s t , ⋅ ) ] \begin{align} J_\pi(\phi) & = \mathbb{E}_{s_t\sim \mathcal{D}} \Big[ \mathbb{D}_{KL}\Big( \pi_\phi(\cdot|s_t) \big|\big| \frac{\exp(Q_\theta(s_t,\cdot))}{Z_\theta(s_t)} \Big) \Big] \\ & = \mathbb{E}_{s_t\sim\mathcal{D}} \Big[ \sum\pi_\phi(\cdot|s_t) \ln(\frac{\pi_\phi(\cdot|s_t)Z_\theta(s_t)}{\exp(Q_\theta(s_t,\cdot))}) \Big] \\ & = \mathbb{E}_{s_t\sim\mathcal{D}, a_t\sim \pi_\phi} \Big[ \ln(\pi_\phi(\cdot|s_t) + \ln(Z_\theta(s_t)) - Q_\theta(s_t,\cdot) \Big] \\ & = \textcolor{blue}{\mathbb{E}_{s_t\sim\mathcal{D}, a_t\sim \pi_\phi} \Big[ \ln(\pi_\phi(\cdot|s_t)) - Q_\theta(s_t,\cdot) \Big]} \tag{1.4} \end{align} Jπ(ϕ)=EstD[DKL(πϕ(st) Zθ(st)exp(Qθ(st,)))]=EstD[πϕ(st)ln(exp(Qθ(st,))πϕ(st)Zθ(st))]=EstD,atπϕ[ln(πϕ(st)+ln(Zθ(st))Qθ(st,)]=EstD,atπϕ[ln(πϕ(st))Qθ(st,)](1.4)

最后一步是因为,分配函数 Z θ Z_\theta Zθ与策略 π \pi π无关,所以对梯度没有影响,所以在目标函数中可以直接忽略。

然后又引入了 reparameter的方法,

a t = f ϕ ( ϵ t ; s t ) , ϵ ∼ N a_t = f_\phi(\epsilon_t;s_t), \epsilon\sim\mathcal{N} at=fϕ(ϵt;st),ϵN

将上式带入 ( 1.4 ) (1.4) (1.4)中则有

J π ( ϕ ) = E s t ∼ D , a t ∼ π ϕ [ ln ⁡ ( π ϕ ( f ϕ ( ϵ t ; s t ) ∣ s t ) ) − Q θ ( s t , f ϕ ( ϵ t ; s t ) ) ] J_\pi(\phi)=\mathbb{E}_{s_t\sim\mathcal{D}, a_t\sim \pi_\phi} \Big[ \ln\Big(\pi_\phi\big(f_\phi(\epsilon_t;s_t)|s_t\big)\Big) - Q_\theta\Big(s_t,f_\phi(\epsilon_t;s_t)\Big) \Big] Jπ(ϕ)=EstD,atπϕ[ln(πϕ(fϕ(ϵt;st)st))Qθ(st,fϕ(ϵt;st))]

最后,只需要不断收集数据,缩小这两个损失函数,就可以得到收敛到一个解。

1.3 Two Q Value Neural Network

​ SAC的策略网络与DDPG中策略网络直接估计动作值大小不同,SAC的策略网络是估计连续动作空间Gaussian分布的均值和方差,再从这个Gaussian 分布中均匀采样获得连续的动作值。SAC中可以维护一个V值函数网络,也可以不维护V值函数网络,但是SAC中必须的是两个Q值函数网络及两个Q值网络的target network和一个策略网络 π \pi π。为什么要维护两个Q值网络呢?这是因为为了减少Q值网络存在的过高估计的问题。然后用两个Q值网络中较小的Q值网络来计算损失函数,假设存在两个Q值网络 Q ( θ 1 ) , Q ( θ 2 ) Q(\theta_1),Q(\theta_2) Q(θ1),Q(θ2)和其对应的target network Q ( θ 1 − ) , Q ( θ 2 − ) Q(\theta_1^-),Q(\theta_2^-) Q(θ1),Q(θ2)

​ 那么Q值函数的损失函数就成了

J Q ( θ ) = E ( s t , a t ) ∼ D [ 1 2 ( Q θ ( s t , a t ) − Q ^ ( s t , a t ) ) ] Q ^ ( s t , a t ) = r ( s t , a t ) + γ V ψ ( s t + 1 ) V ψ ( s t + 1 ) = Q θ ( s t + 1 , a t + 1 ) − α log ⁡ ( π ( a t + 1 ∣ s t + 1 ) ) \begin{align} J_Q(\theta) & = \mathbb{E}_{(s_t,a_t)\sim\mathcal{D}} \Big[ \frac{1}{2}\Big( Q_\theta(s_t,a_t) - \hat{Q}(s_t,a_t) \Big) \Big] \tag{1.5} \\ \hat{Q}(s_t,a_t) & = r(s_t,a_t) + \gamma V_\psi(s_{t+1}) \tag{1.6} \\ V_\psi(s_{t+1}) & = Q_\theta(s_{t+1}, a_{t+1}) - \alpha \log (\pi(a_{t+1}|s_{t+1})) \tag{1.7} \end{align} JQ(θ)Q^(st,at)Vψ(st+1)=E(st,at)D[21(Qθ(st,at)Q^(st,at))]=r(st,at)+γVψ(st+1)=Qθ(st+1,at+1)αlog(π(at+1st+1))(1.5)(1.6)(1.7)

结合式子 1.5 , 1.6 , 1.7 1.5, 1.6, 1.7 1.5,1.6,1.7则有

J Q ( θ ) = E ( s t , a t ) ∼ D [ 1 2 ( Q θ ( s t , a t ) − ( r ( s t , a t ) + γ ( min ⁡ j = 1 , 2 Q θ j − ( s t + 1 , a t + 1 ) − α log ⁡ π ( a t + 1 ∣ s t + 1 ) ) ) ) 2 ] J_Q(\theta) = \textcolor{red}{\mathbb{E}_{(s_t,a_t)\sim\mathcal{D}} \Big[ \frac{1}{2}\Big( Q_\theta(s_t,a_t) - \Big(r(s_t,a_t)+\gamma \big(\min_{j=1,2}Q_{\theta_j^-}(s_{t+1},a_{t+1}) - \alpha \log\pi(a_{t+1}|s_{t+1}) \big) \Big) \Big)^2 \Big]} JQ(θ)=E(st,at)D[21(Qθ(st,at)(r(st,at)+γ(j=1,2minQθj(st+1,at+1)αlogπ(at+1st+1))))2]

因为SAC也是一种离线的算法,为了让训练更加稳定,这里使用了目标Q网络 Q ( θ − ) Q(\theta^-) Q(θ),同样是两个目标网络,与两个Q网络相对应,SAC中目标Q网络的更新方式和DDPG中一致。

​ 之前推导了策略 π ( ϕ ) \pi(\phi) π(ϕ)的损失函数如下

J π ( ϕ ) = E s t ∼ D , a t ∼ π ϕ [ ln ⁡ ( π ϕ ( ⋅ ∣ s t ) ) − Q θ ( s t , ⋅ ) ] J_\pi(\phi) = \mathbb{E}_{s_t\sim\mathcal{D}, a_t\sim \pi_\phi} \Big[ \ln(\pi_\phi(\cdot|s_t)) - Q_\theta(s_t,\cdot) \Big] Jπ(ϕ)=EstD,atπϕ[ln(πϕ(st))Qθ(st,)]

再引入reparameter化简之后,就成了

J π ( ϕ ) = E s t ∼ D , a t ∼ π ϕ [ ln ⁡ ( π ϕ ( f ϕ ( ϵ t ; s t ) ∣ s t ) ) − Q θ ( s t , f ϕ ( ϵ t ; s t ) ) ] J_\pi(\phi)=\mathbb{E}_{s_t\sim\mathcal{D}, a_t\sim \pi_\phi} \Big[ \ln\Big(\pi_\phi\big(f_\phi(\epsilon_t;s_t)|s_t\big)\Big) - Q_\theta\Big(s_t,f_\phi(\epsilon_t;s_t)\Big) \Big] Jπ(ϕ)=EstD,atπϕ[ln(πϕ(fϕ(ϵt;st)st))Qθ(st,fϕ(ϵt;st))]

利用双Q网络取最小,再将上述目标函数进行改写

J π ( ϕ ) = E s t ∼ D , a t ∼ π ϕ [ ln ⁡ ( π ϕ ( f ϕ ( ϵ t ; s t ) ∣ s t ) ) − min ⁡ j = 1 , 2 Q θ j ( s t , f ϕ ( ϵ t ; s t ) ) ] J_\pi(\phi)= \textcolor{red}{\mathbb{E}_{s_t\sim\mathcal{D}, a_t\sim \pi_\phi} \Big[ \ln\Big(\pi_\phi\big(f_\phi(\epsilon_t;s_t)|s_t\big)\Big) - \min_{j=1,2}Q_{\theta_j}\Big(s_t,f_\phi(\epsilon_t;s_t)\Big) \Big]} Jπ(ϕ)=EstD,atπϕ[ln(πϕ(fϕ(ϵt;st)st))j=1,2minQθj(st,fϕ(ϵt;st))]

Hands on RL 之 Off-policy Maximum Entropy Actor-Critic (SAC)_第1张图片

1.4 Tricks

​ SAC还集成了一些别的算法的常用技巧,比如Replay Buffer来产生independent and identically distribution的样本,使用了Double DQN中target network的思想使用两个网络。SAC中最重要的一个技巧是自动调整熵正则项,在 SAC 算法中,如何选择熵正则项的系数非常重要。在不同的状态下需要不同大小的熵:在最优动作不确定的某个状态下,熵的取值应该大一点;而在某个最优动作比较确定的状态下,熵的取值可以小一点。为了自动调整熵正则项,SAC 将强化学习的目标改写为一个带约束的优化问题:

max ⁡ π E π [ ∑ t r ( s t , a t ) ] s.t. E ( s t , a t ) ∼ ρ π [ − log ⁡ ( π t ( a t ∣ s t ) ) ] ≥ H 0 \max_\pi \mathbb{E}_\pi\Big[ \sum_t r(s_t,a_t) \Big] \quad \text{s.t.} \quad \mathbb{E}_{(s_t,a_t)\sim\rho_\pi}[-\log (\pi_t(a_t|s_t))] \ge \mathcal{H}_0 πmaxEπ[tr(st,at)]s.t.E(st,at)ρπ[log(πt(atst))]H0

H 0 \mathcal{H}_0 H0 是预先定义好的最小策略熵的阈值。通过一些数学技巧简化,可以得到温度 α \alpha α的损失函数

J ( α ) = E s t ∼ R , a t ∼ π ( ⋅ ∣ s t ) [ − α log ⁡ ( π t ( a t ∣ s t ) ) − α H 0 ] J(\alpha) = \textcolor{red}{\mathbb{E}_{s_t\sim R,a_t\sim \pi(\cdot|s_t)}[-\alpha\log(\pi_t(a_t|s_t))-\alpha\mathcal{H}_0]} J(α)=EstR,atπ(st)[αlog(πt(atst))αH0]

1.5 Pesudocode

Hands on RL 之 Off-policy Maximum Entropy Actor-Critic (SAC)_第2张图片

2. 代码实现

2.1 SAC处理连续动作空间

采用gymnasiumPendulum-v1的连续动作环境,整体代码如下

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Normal

from tqdm import tqdm
import collections
import random
import numpy as np
import matplotlib.pyplot as plt
import gym

# replay buffer
class ReplayBuffer():
    def __init__(self, capacity):
        self.buffer = collections.deque(maxlen=capacity)
    
    def add(self, s, r, a, s_, d):
        self.buffer.append((s,r,a,s_,d))
    
    def sample(self, batch_size):
        transitions = random.sample(self.buffer, batch_size)
        states, rewards, actions, next_states, dones = zip(*transitions)
        return np.array(states), rewards, actions, np.array(next_states), dones
    
    def size(self):
        return len(self.buffer)

# Actor
class PolicyNet_Continuous(nn.Module):
    """动作空间符合高斯分布,输出动作空间的均值mu,和标准差std"""
    def __init__(self, state_dim, hidden_dim, action_dim, action_bound):
        super(PolicyNet_Continuous, self).__init__()
        self.fc1 = nn.Sequential(
            nn.Linear(in_features=state_dim, out_features=hidden_dim),
            nn.ReLU()
        )
        self.fc_mu = nn.Linear(in_features=hidden_dim, out_features=action_dim)
        self.fc_std = nn.Sequential(
            nn.Linear(in_features=hidden_dim, out_features=action_dim),
            nn.Softplus()
        )
        self.action_bound = action_bound

    def forward(self, s):
        x = self.fc1(s)
        mu = self.fc_mu(x)
        std = self.fc_std(x)
        distribution = Normal(mu, std)
        normal_sample = distribution.rsample()
        normal_log_prob = distribution.log_prob(normal_sample)
        # get action limit to [-1,1]
        action = torch.tanh(normal_sample)
        # get tanh_normal log probability
        tanh_log_prob = normal_log_prob - torch.log(1 - torch.tanh(action).pow(2) + 1e-7)
        # get action bounded
        action = action * self.action_bound
        return action, tanh_log_prob


# Critic
class QValueNet_Continuous(nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(QValueNet_Continuous, self).__init__()
        self.fc1 = nn.Sequential(
            nn.Linear(in_features=state_dim + action_dim, out_features=hidden_dim),
            nn.ReLU()
        )
        self.fc2 = nn.Sequential(
            nn.Linear(in_features=hidden_dim, out_features=hidden_dim),
            nn.ReLU()
        )
        self.fc_out = nn.Linear(in_features=hidden_dim, out_features=1)
    
    def forward(self, s, a):
        cat = torch.cat([s,a], dim=1)
        x = self.fc1(cat)
        x = self.fc2(x)
        return self.fc_out(x)

# maximize entropy deep reinforcement learning SAC
class SAC_Continuous():
    def __init__(self, state_dim, hidden_dim, action_dim, action_bound,
                    actor_lr, critic_lr, alpha_lr, target_entropy, tau, gamma,
                    device):
        # actor
        self.actor = PolicyNet_Continuous(state_dim, hidden_dim, action_dim, action_bound).to(device)
        # two critics
        self.critic1 = QValueNet_Continuous(state_dim, hidden_dim, action_dim).to(device)
        self.critic2 = QValueNet_Continuous(state_dim, hidden_dim, action_dim).to(device)
        # two target critics
        self.target_critic1 = QValueNet_Continuous(state_dim, hidden_dim, action_dim).to(device)
        self.target_critic2 = QValueNet_Continuous(state_dim, hidden_dim, action_dim).to(device)
        # initialize with same parameters
        self.target_critic1.load_state_dict(self.critic1.state_dict())
        self.target_critic2.load_state_dict(self.critic2.state_dict())
        # specify optimizers
        self.optimizer_actor = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
        self.optimizer_critic1 = torch.optim.Adam(self.critic1.parameters(), lr=critic_lr)
        self.optimizer_critic2 = torch.optim.Adam(self.critic2.parameters(), lr=critic_lr)
        # 使用alpha的log值可以使训练稳定
        self.log_alpha = torch.tensor(np.log(0.01), dtype=torch.float, requires_grad = True)
        self.optimizer_log_alpha = torch.optim.Adam([self.log_alpha], lr=alpha_lr)

        self.target_entropy = target_entropy
        self.gamma = gamma
        self.tau = tau
        self.device = device
    
    def take_action(self, state):
        state = torch.tensor(np.array([state]), dtype=torch.float).to(self.device)
        action, _ = self.actor(state)
        return [action.item()]
    
    # calculate td target
    def calc_target(self, rewards, next_states, dones):
        next_action, log_prob = self.actor(next_states)
        entropy = -log_prob
        q1_values = self.target_critic1(next_states, next_action)
        q2_values = self.target_critic2(next_states, next_action)
        next_values = torch.min(q1_values, q2_values) + self.log_alpha.exp() * entropy
        td_target = rewards + self.gamma * next_values * (1-dones)
        return td_target

    # soft update method
    def soft_update(self, net, target_net):
        for param_target, param in zip(target_net.parameters(), net.parameters()):
            param_target.data.copy_(param_target.data * (1.0-self.tau) + param.data * self.tau)
        
    def update(self, transition_dict):
        states = torch.tensor(transition_dict['states'], dtype=torch.float).to(self.device)
        rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1,1).to(self.device)
        actions = torch.tensor(transition_dict['actions'], dtype=torch.float).view(-1,1).to(self.device)
        next_states = torch.tensor(transition_dict['next_states'], dtype=torch.float).to(self.device)
        dones = torch.tensor(transition_dict['dones'], dtype=torch.float).view(-1,1).to(self.device)

        rewards = (rewards + 8.0) / 8.0     #对倒立摆环境的奖励进行重塑,方便训练

        # update two Q-value network
        td_target = self.calc_target(rewards, next_states, dones).detach()
        critic1_loss = torch.mean(F.mse_loss(td_target, self.critic1(states, actions)))
        critic2_loss = torch.mean(F.mse_loss(td_target, self.critic2(states, actions)))

        self.optimizer_critic1.zero_grad()
        critic1_loss.backward()
        self.optimizer_critic1.step()
        self.optimizer_critic2.zero_grad()
        critic2_loss.backward()
        self.optimizer_critic2.step()

        # update policy network
        new_actions, log_prob = self.actor(states)
        entropy = - log_prob
        q1_value = self.critic1(states, new_actions)
        q2_value = self.critic2(states, new_actions)
        actor_loss = torch.mean(-self.log_alpha.exp() * entropy - torch.min(q1_value, q2_value))
        self.optimizer_actor.zero_grad()
        actor_loss.backward()
        self.optimizer_actor.step()

        # update temperature alpha
        alpha_loss = torch.mean((entropy - self.target_entropy).detach() * self.log_alpha.exp())
        self.optimizer_log_alpha.zero_grad()
        alpha_loss.backward()
        self.optimizer_log_alpha.step()

        # soft update target Q-value network
        self.soft_update(self.critic1, self.target_critic1)
        self.soft_update(self.critic2, self.target_critic2)


def train_off_policy_agent(env, agent, num_episodes, replay_buffer, minimal_size, batch_size, render, seed_number):
    return_list = []
    for i in range(10):
        with tqdm(total=int(num_episodes/10), desc='Iteration %d'%(i+1)) as pbar:
            for i_episode in range(int(num_episodes/10)):
                observation, _ = env.reset(seed=seed_number)
                done = False
                episode_return = 0

                while not done:
                    if render:
                        env.render()
                    action = agent.take_action(observation)
                    observation_, reward, terminated, truncated, _ = env.step(action)
                    done = terminated or truncated
                    replay_buffer.add(observation, action, reward, observation_, done)
                    # swap states
                    observation = observation_
                    episode_return += reward
                    if replay_buffer.size() > minimal_size:
                        b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size)
                        transition_dict = {
                            'states': b_s,
                            'actions': b_a,
                            'rewards': b_r,
                            'next_states': b_ns,
                            'dones': b_d
                        }
                        agent.update(transition_dict)
                return_list.append(episode_return)
                if(i_episode+1) % 10 == 0:
                    pbar.set_postfix({
                        'episode': '%d'%(num_episodes/10 * i + i_episode + 1),
                        'return': "%.3f"%(np.mean(return_list[-10:]))
                    })
                pbar.update(1)
    env.close()
    return return_list

def moving_average(a, window_size):
    cumulative_sum = np.cumsum(np.insert(a, 0, 0)) 
    middle = (cumulative_sum[window_size:] - cumulative_sum[:-window_size]) / window_size
    r = np.arange(1, window_size-1, 2)
    begin = np.cumsum(a[:window_size-1])[::2] / r
    end = (np.cumsum(a[:-window_size:-1])[::2] / r)[::-1]
    return np.concatenate((begin, middle, end))

def plot_curve(return_list, mv_return, algorithm_name, env_name):
    episodes_list = list(range(len(return_list)))
    plt.plot(episodes_list, return_list, c='gray', alpha=0.6)
    plt.plot(episodes_list, mv_return)
    plt.xlabel('Episodes')
    plt.ylabel('Returns')
    plt.title('{} on {}'.format(algorithm_name, env_name))
    plt.show()



if __name__ == "__main__":

    # reproducible
    seed_number = 0
    random.seed(seed_number)
    np.random.seed(seed_number)
    torch.manual_seed(seed_number)

    num_episodes = 150     # episodes length
    hidden_dim = 128        # hidden layers dimension
    gamma = 0.98            # discounted rate
    actor_lr = 1e-4         # lr of actor
    critic_lr = 1e-3        # lr of critic
    alpha_lr = 1e-4
    tau = 0.005             # soft update parameter
    buffer_size = 10000
    minimal_size = 1000
    batch_size = 64

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    env_name = 'Pendulum-v1'

    render = False
    if render:
        env = gym.make(id=env_name, render_mode='human')
    else:
        env = gym.make(id=env_name)

    state_dim = env.observation_space.shape[0]
    action_dim = env.action_space.shape[0]  
    action_bound = env.action_space.high[0]
    # entropy初始化为动作空间维度的负数
    target_entropy = - env.action_space.shape[0]

    replaybuffer = ReplayBuffer(buffer_size)
    agent = SAC_Continuous(state_dim, hidden_dim, action_dim, action_bound, actor_lr, critic_lr, alpha_lr, target_entropy, tau, gamma, device)
    return_list = train_off_policy_agent(env, agent, num_episodes, replaybuffer, minimal_size, batch_size, render, seed_number)

    mv_return = moving_average(return_list, 9)
    plot_curve(return_list, mv_return, 'SAC', env_name)

所获得的回报曲线如下图

Hands on RL 之 Off-policy Maximum Entropy Actor-Critic (SAC)_第3张图片

2.2 SAC处理离散动作空间

采用gaymnasium中的CartPole-v1离散动作空间的环境。

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categorical

from tqdm import tqdm
import collections
import random
import numpy as np
import matplotlib.pyplot as plt
import gym

# replay buffer
class ReplayBuffer():
    def __init__(self, capacity):
        self.buffer = collections.deque(maxlen=capacity)
    
    def add(self, s, r, a, s_, d):
        self.buffer.append((s,r,a,s_,d))
    
    def sample(self, batch_size):
        transitions = random.sample(self.buffer, batch_size)
        states, rewards, actions, next_states, dones = zip(*transitions)
        return np.array(states), rewards, actions, np.array(next_states), dones
    
    def size(self):
        return len(self.buffer)

# Actor
class PolicyNet_Discrete(nn.Module):
    """动作空间服从离散的概率分布,输出每个动作的概率值"""
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(PolicyNet_Discrete, self).__init__()
        self.fc1 = nn.Sequential(
            nn.Linear(in_features=state_dim, out_features=hidden_dim),
            nn.ReLU()
        )
        self.fc2 = nn.Sequential(
            nn.Linear(in_features=hidden_dim, out_features=action_dim),
            nn.Softmax(dim=1)
        )

    def forward(self, s):
        x = self.fc1(s)
        return self.fc2(x)


# Critic
class QValueNet_Discrete(nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(QValueNet_Discrete, self).__init__()
        self.fc1 = nn.Sequential(
            nn.Linear(in_features=state_dim, out_features=hidden_dim),
            nn.ReLU()
        )
        self.fc2 = nn.Linear(in_features=hidden_dim, out_features=action_dim)
    
    def forward(self, s):
        x = self.fc1(s)
        return self.fc2(x)

# maximize entropy deep reinforcement learning SAC
class SAC_Continuous():
    def __init__(self, state_dim, hidden_dim, action_dim,
                    actor_lr, critic_lr, alpha_lr, target_entropy, tau, gamma,
                    device):
        # actor
        self.actor = PolicyNet_Discrete(state_dim, hidden_dim, action_dim).to(device)
        # two critics
        self.critic1 = QValueNet_Discrete(state_dim, hidden_dim, action_dim).to(device)
        self.critic2 = QValueNet_Discrete(state_dim, hidden_dim, action_dim).to(device)
        # two target critics
        self.target_critic1 = QValueNet_Discrete(state_dim, hidden_dim, action_dim).to(device)
        self.target_critic2 = QValueNet_Discrete(state_dim, hidden_dim, action_dim).to(device)
        # initialize with same parameters
        self.target_critic1.load_state_dict(self.critic1.state_dict())
        self.target_critic2.load_state_dict(self.critic2.state_dict())
        # specify optimizers
        self.optimizer_actor = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
        self.optimizer_critic1 = torch.optim.Adam(self.critic1.parameters(), lr=critic_lr)
        self.optimizer_critic2 = torch.optim.Adam(self.critic2.parameters(), lr=critic_lr)
        # 使用alpha的log值可以使训练稳定
        self.log_alpha = torch.tensor(np.log(0.01), dtype=torch.float, requires_grad = True)
        self.optimizer_log_alpha = torch.optim.Adam([self.log_alpha], lr=alpha_lr)

        self.target_entropy = target_entropy
        self.gamma = gamma
        self.tau = tau
        self.device = device
    
    def take_action(self, state):
        state = torch.tensor(np.array([state]), dtype=torch.float).to(self.device)
        probs = self.actor(state)
        action_dist = Categorical(probs)
        action = action_dist.sample()
        return action.item()
    
    # calculate td target
    def calc_target(self, rewards, next_states, dones):
        next_probs = self.actor(next_states)
        next_log_probs = torch.log(next_probs + 1e-8)
        entropy = -torch.sum(next_probs * next_log_probs, dim=1, keepdim=True)
        q1_values = self.target_critic1(next_states)
        q2_values = self.target_critic2(next_states)
        min_qvalue = torch.sum(next_probs * torch.min(q1_values, q2_values),
                               dim=1,
                               keepdim=True)
        next_value = min_qvalue + self.log_alpha.exp() * entropy
        td_target = rewards + self.gamma * next_value * (1 - dones)
        return td_target

    # soft update method
    def soft_update(self, net, target_net):
        for param_target, param in zip(target_net.parameters(), net.parameters()):
            param_target.data.copy_(param_target.data * (1.0-self.tau) + param.data * self.tau)
        
    def update(self, transition_dict):
        states = torch.tensor(transition_dict['states'], dtype=torch.float).to(self.device)
        rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1,1).to(self.device)
        actions = torch.tensor(transition_dict['actions'], dtype=torch.int64).view(-1,1).to(self.device)
        next_states = torch.tensor(transition_dict['next_states'], dtype=torch.float).to(self.device)
        dones = torch.tensor(transition_dict['dones'], dtype=torch.float).view(-1,1).to(self.device)

        rewards = (rewards + 8.0) / 8.0     #对倒立摆环境的奖励进行重塑,方便训练

        # update two Q-value network
        td_target = self.calc_target(rewards, next_states, dones).detach()
        critic1_loss = torch.mean(F.mse_loss(td_target, self.critic1(states).gather(dim=1,index=actions)))
        critic2_loss = torch.mean(F.mse_loss(td_target, self.critic2(states).gather(dim=1,index=actions)))

        self.optimizer_critic1.zero_grad()
        critic1_loss.backward()
        self.optimizer_critic1.step()
        self.optimizer_critic2.zero_grad()
        critic2_loss.backward()
        self.optimizer_critic2.step()

        # update policy network
        probs = self.actor(states)
        log_probs = torch.log(probs + 1e-8)
        entropy = -torch.sum(probs * log_probs, dim=1, keepdim=True)
        q1_value = self.critic1(states)
        q2_value = self.critic2(states)
        min_qvalue = torch.sum(probs * torch.min(q1_value, q2_value),
                               dim=1,
                               keepdim=True)  # 直接根据概率计算期望
        actor_loss = torch.mean(-self.log_alpha.exp() * entropy - min_qvalue)
        self.optimizer_actor.zero_grad()
        actor_loss.backward()
        self.optimizer_actor.step()

        # update temperature alpha
        alpha_loss = torch.mean((entropy - self.target_entropy).detach() * self.log_alpha.exp())
        self.optimizer_log_alpha.zero_grad()
        alpha_loss.backward()
        self.optimizer_log_alpha.step()

        # soft update target Q-value network
        self.soft_update(self.critic1, self.target_critic1)
        self.soft_update(self.critic2, self.target_critic2)


def train_off_policy_agent(env, agent, num_episodes, replay_buffer, minimal_size, batch_size, render, seed_number):
    return_list = []
    for i in range(10):
        with tqdm(total=int(num_episodes/10), desc='Iteration %d'%(i+1)) as pbar:
            for i_episode in range(int(num_episodes/10)):
                observation, _ = env.reset(seed=seed_number)
                done = False
                episode_return = 0

                while not done:
                    if render:
                        env.render()
                    action = agent.take_action(observation)
                    observation_, reward, terminated, truncated, _ = env.step(action)
                    done = terminated or truncated
                    replay_buffer.add(observation, action, reward, observation_, done)
                    # swap states
                    observation = observation_
                    episode_return += reward
                    if replay_buffer.size() > minimal_size:
                        b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size)
                        transition_dict = {
                            'states': b_s,
                            'actions': b_a,
                            'rewards': b_r,
                            'next_states': b_ns,
                            'dones': b_d
                        }
                        agent.update(transition_dict)
                return_list.append(episode_return)
                if(i_episode+1) % 10 == 0:
                    pbar.set_postfix({
                        'episode': '%d'%(num_episodes/10 * i + i_episode + 1),
                        'return': "%.3f"%(np.mean(return_list[-10:]))
                    })
                pbar.update(1)
    env.close()
    return return_list

def moving_average(a, window_size):
    cumulative_sum = np.cumsum(np.insert(a, 0, 0)) 
    middle = (cumulative_sum[window_size:] - cumulative_sum[:-window_size]) / window_size
    r = np.arange(1, window_size-1, 2)
    begin = np.cumsum(a[:window_size-1])[::2] / r
    end = (np.cumsum(a[:-window_size:-1])[::2] / r)[::-1]
    return np.concatenate((begin, middle, end))

def plot_curve(return_list, mv_return, algorithm_name, env_name):
    episodes_list = list(range(len(return_list)))
    plt.plot(episodes_list, return_list, c='gray', alpha=0.6)
    plt.plot(episodes_list, mv_return)
    plt.xlabel('Episodes')
    plt.ylabel('Returns')
    plt.title('{} on {}'.format(algorithm_name, env_name))
    plt.show()



if __name__ == "__main__":

    # reproducible
    seed_number = 0
    random.seed(seed_number)
    np.random.seed(seed_number)
    torch.manual_seed(seed_number)

    num_episodes = 200    # episodes length
    hidden_dim = 128        # hidden layers dimension
    gamma = 0.98            # discounted rate
    actor_lr = 1e-3         # lr of actor
    critic_lr = 1e-2        # lr of critic
    alpha_lr = 1e-2
    tau = 0.005             # soft update parameter
    buffer_size = 10000
    minimal_size = 500
    batch_size = 64


    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    env_name = 'CartPole-v1'

    render = False
    if render:
        env = gym.make(id=env_name, render_mode='human')
    else:
        env = gym.make(id=env_name)

    state_dim = env.observation_space.shape[0]
    action_dim = env.action_space.n  

    # entropy初始化为-1
    target_entropy = -1

    replaybuffer = ReplayBuffer(buffer_size)
    agent = SAC_Continuous(state_dim, hidden_dim, action_dim, actor_lr, critic_lr, alpha_lr, target_entropy, tau, gamma, device)
    return_list = train_off_policy_agent(env, agent, num_episodes, replaybuffer, minimal_size, batch_size, render, seed_number)

    mv_return = moving_average(return_list, 9)
    plot_curve(return_list, mv_return, 'SAC', env_name)

Reference

Hands on RL

SAC(Soft Actor-Critic)阅读笔记

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor

你可能感兴趣的:(Reinforcement,Learning,pytorch,人工智能,机器学习,python)