Day49|leetcode 121. 买卖股票的最佳时机、122.买卖股票的最佳时机II

leetcode 121. 买卖股票的最佳时机

题目链接:121. 买卖股票的最佳时机 - 力扣(LeetCode)

视频链接:动态规划之 LeetCode:121.买卖股票的最佳时机1_哔哩哔哩_bilibili

 题目概述

给定一个数组 ,它的第  个元素  表示一支给定股票第 天的价格。pricesiprices[i]i

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 。0

 

示例 1:

输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
     注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

示例 2:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

思路

1.确定dp数组含义:

dp[i][0] :第i天持有股票所得最多现金。

dp[i][1] :第i天不持有股票所得最多现金。

这里的“持有”和“不持有”不代表当天买入股票或者卖出股票,可能是前一天买的!!!

2.确定递推公式:(最开始现金为0元)

第i天持有股票:

1)当天就买进股票:-prices[i]

2)前一天买进股票:dp[i - 1][0]

所以dp[i][0] = max(dp[i - 1][0], -prices[i])

第i天不持有股票:

1)当天卖出股票:prices[i] + dp[i - 1][0]

2)前一天卖出股票:dp[i - 1][1]

所以dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0])

3.数组初始化:

dp[0][0] -= prices[0]

dp[0][1] = 0

4.确定遍历顺序:

从前向后

5.打印dp数组:

Day49|leetcode 121. 买卖股票的最佳时机、122.买卖股票的最佳时机II_第1张图片

 

代码实现(动规)

class Solution {
public:
    int maxProfit(vector& prices) {
        if(prices.size() == 0) return 0;
        vector> dp(prices.size(),vector(2));
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for(int i = 1;i < prices.size();i++) {
            dp[i][0] = max(-prices[i],dp[i - 1][0]);
            dp[i][1] = max(prices[i] + dp[i - 1][0],dp[i - 1][1]);
        } 
        return dp[prices.size() - 1][1];
    }
};

代码实现(贪心)

class Solution {
public:
    int maxProfit(vector& prices) {
        int low = INT_MAX;
        int result = 0;
        for (int i = 0; i < prices.size(); i++) {
            low = min(low, prices[i]);  // 取最左最小价格
            result = max(result, prices[i] - low); // 直接取最大区间利润
        }
        return result;
    }
};

leetcode 122.买卖股票的最佳时机II

题目链接:122. 买卖股票的最佳时机 II - 力扣(LeetCode)

视频链接:动态规划,股票问题第二弹 | LeetCode:122.买卖股票的最佳时机II_哔哩哔哩_bilibili

题目概述

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润 。

示例 1:

输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。
     随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。
     总利润为 4 + 3 = 7 。

思路

本题和上一题没有多大区别,唯一区别就是本题可以多次买卖,在动规五部曲分析上也只有递归公式上有区别。

第i天持有股票:

1)当天就买进股票:dp[i - 1][1] - prices[i](这里是和上一题唯一不一样的区别,因为上道题最开始手里的钱是0元,所以是'0 - prices[i]'只不过把0给省略了,而这道题可以多次买卖股票,如果是当天买进股票的话,那么所得现金就是昨天不持有股票的所得现金 - 今天的股票价格)

2)前一天买进股票:dp[i - 1][0]

所以dp[i][0] = max(dp[i - 1][0], -prices[i])

第i天不持有股票:dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0])

代码实现(动规)

class Solution {
public:
    int maxProfit(vector& prices) {
        int len = prices.size();
        vector> dp(len, vector(2, 0));
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
        }
        return dp[len - 1][1];
    }
};

代码实现(贪心)

class Solution {
public:
    int maxProfit(vector& prices) {
        int result = 0;
        for(int i = 1;i < prices.size();i++) {
            result += max(prices[i] - prices[i - 1],0);
        }
        return result;

    }
};

你可能感兴趣的:(leetcode,算法,动态规划,c++,数据结构)