在自己准备写一些简单的verilog教程之前,参考了许多资料----Asic-World网站的这套verilog教程即是其一。这套教程写得极好,奈何没有中文,在下只好斗胆翻译过来(加了自己的理解)分享给大家。
这是网站原文:Verilog Tutorial
这是系列导航:Verilog教程系列文章导航
通过指定特定的仿真时间来达到延时的目的,一般语法是这样的:
#< time > < statement >;
比如2个仿真时间单位后给复位信号赋值1;5个仿真时间单位后在给复位信号赋值0:
#2 reset = 1; //2个时间单位后赋值为1
#5 reset = 0; //5个时间单位后赋值为0
下面是一个完整的例子,用来模拟一个复位,并通过 $monitor 来监控各个寄存器的值:
module clk_gen ();
reg clk, reset;
initial begin
$monitor ("TIME = %g RESET = %b CLOCK = %b", $time, reset, clk); //监控各个寄存器的值
clk = 0;
reset = 0;
#2 reset = 1; //2个单位后复位赋值为1
#5 reset = 0; //5个单位后复位赋值为0
#10 $finish;
end
always #1 clk = ! clk; //每一个时间单位翻转一次时钟,即生成时钟信号,周期为2个时间单位
endmodule
这是窗口的仿真结果:
TIME = 0 RESET = 0 CLOCK = 0
TIME = 1 RESET = 0 CLOCK = 1
TIME = 2 RESET = 1 CLOCK = 0
TIME = 3 RESET = 1 CLOCK = 1
TIME = 4 RESET = 1 CLOCK = 0
TIME = 5 RESET = 1 CLOCK = 1
TIME = 6 RESET = 1 CLOCK = 0
TIME = 7 RESET = 0 CLOCK = 1
TIME = 8 RESET = 0 CLOCK = 0
TIME = 9 RESET = 0 CLOCK = 1
TIME = 10 RESET = 0 CLOCK = 0
TIME = 11 RESET = 0 CLOCK = 1
TIME = 12 RESET = 0 CLOCK = 0
TIME = 13 RESET = 0 CLOCK = 1
TIME = 14 RESET = 0 CLOCK = 0
TIME = 15 RESET = 0 CLOCK = 1
TIME = 16 RESET = 0 CLOCK = 0
这是仿真结果的波形图:
通过指定特定事件的边沿变化来控制时间(语句)的执行。一般语法是这样的:
@ (< posedge >|< negedge > signal) < statement >;
通过时钟信号的 上升沿/下降沿 来控制某个事件的执行就是很经典的边沿敏感型事件控制语句。比如在enable信号的上升沿后的5个时钟单位后触发trigger信号为1:
always @ (posedge enable)begin
trigger = 0;
repeat (5) begin //重复5次
@ (posedge clk) ; //在上升沿被触发
end
trigger = 1; //触发其值为1
end
这个代码可以拓展一下,并加上相应的测试脚本:
module edge_wait_example();
reg enable, clk, trigger;
//在每个enable上升沿的5个时钟后把trigger赋值为1
always @ (posedge enable)
begin
trigger = 0;
repeat (5) begin
@ (posedge clk) ;
end
trigger = 1;
end
initial begin
$monitor ("TIME : %g CLK : %b ENABLE : %b TRIGGER : %b",
$time, clk,enable,trigger);
clk = 0;
enable = 0;
//通过延时语句分别对enable赋值
#5 enable = 1;
#1 enable = 0;
#10 enable = 1;
#1 enable = 0;
#10 $finish;
end
always #1 clk = ~clk;
endmodule
这是仿真结果:
TIME : 0 CLK : 0 ENABLE : 0 TRIGGER : x
TIME : 1 CLK : 1 ENABLE : 0 TRIGGER : x
TIME : 2 CLK : 0 ENABLE : 0 TRIGGER : x
TIME : 3 CLK : 1 ENABLE : 0 TRIGGER : x
TIME : 4 CLK : 0 ENABLE : 0 TRIGGER : x
TIME : 5 CLK : 1 ENABLE : 1 TRIGGER : 0
TIME : 6 CLK : 0 ENABLE : 0 TRIGGER : 0
TIME : 7 CLK : 1 ENABLE : 0 TRIGGER : 0
TIME : 8 CLK : 0 ENABLE : 0 TRIGGER : 0
TIME : 9 CLK : 1 ENABLE : 0 TRIGGER : 0
TIME : 10 CLK : 0 ENABLE : 0 TRIGGER : 0
TIME : 11 CLK : 1 ENABLE : 0 TRIGGER : 0
TIME : 12 CLK : 0 ENABLE : 0 TRIGGER : 0
TIME : 13 CLK : 1 ENABLE : 0 TRIGGER : 0
TIME : 14 CLK : 0 ENABLE : 0 TRIGGER : 0
TIME : 15 CLK : 1 ENABLE : 0 TRIGGER : 1
TIME : 16 CLK : 0 ENABLE : 1 TRIGGER : 0
TIME : 17 CLK : 1 ENABLE : 0 TRIGGER : 0
TIME : 18 CLK : 0 ENABLE : 0 TRIGGER : 0
TIME : 19 CLK : 1 ENABLE : 0 TRIGGER : 0
TIME : 20 CLK : 0 ENABLE : 0 TRIGGER : 0
TIME : 21 CLK : 1 ENABLE : 0 TRIGGER : 0
TIME : 22 CLK : 0 ENABLE : 0 TRIGGER : 0
TIME : 23 CLK : 1 ENABLE : 0 TRIGGER : 0
TIME : 24 CLK : 0 ENABLE : 0 TRIGGER : 0
TIME : 25 CLK : 1 ENABLE : 0 TRIGGER : 1
TIME : 26 CLK : 0 ENABLE : 0 TRIGGER : 1
当前条件为真时才执行接下来的语句,有点类似if语句。它的一般语法是这样的:
wait (< expression >) < statement >;
比如当data_ready为真时,才把data_bus的值赋给data:
wait (data_ready == 1) data = data_bus;
这个代码可以拓展一下,并加上相应的测试脚本:
module wait_example();
reg mem_read, data_ready;
reg [7:0] data_bus, data;
always @ (mem_read or data_bus or data_ready) begin
data = 0;
while (mem_read == 1'b1) begin
wait (data_ready == 1) #1 data = data_bus;
end
end
// Testbench Code here
initial begin
$monitor ("TIME = %g READ = %b READY = %b DATA = %b",
$time, mem_read, data_ready, data);
data_bus = 0;
mem_read = 0;
data_ready = 0;
#10 data_bus = 8'hDE;
#10 mem_read = 1;
#20 data_ready = 1;
#1 mem_read = 1;
#1 data_ready = 0;
#10 data_bus = 8'hAD;
#10 mem_read = 1;
#20 data_ready = 1;
#1 mem_read = 1;
#1 data_ready = 0;
#10 $finish;
end
endmodule
这是仿真结果:
TIME = 0 READ = 0 READY = 0 DATA = 00000000
TIME = 20 READ = 1 READY = 0 DATA = 00000000
TIME = 40 READ = 1 READY = 1 DATA = 00000000
TIME = 41 READ = 1 READY = 1 DATA = 11011110
TIME = 42 READ = 1 READY = 0 DATA = 11011110
TIME = 82 READ = 1 READY = 1 DATA = 11011110
TIME = 83 READ = 1 READY = 1 DATA = 10101101
TIME = 84 READ = 1 READY = 0 DATA = 10101101
这是相对于 赋值间延迟语句(Inter-Assignment Timing Controls) 的概念,赋值间延迟语句就是我们平常最常用的延迟语句,也就是这种:
#10 rega = regb;
这种情况下,赋值语句需要等待一定时间,然后将计算结果(右侧值)赋值给目标信号(左侧值)。
而赋值内延迟语句的用法则是这样的:
rega = #10 regb;
它是先计算出右侧值,延时完成后再将结果赋给左侧。看看下面的例子:
1 module intra_assign();
2
3 reg a, b;
4
5 initial begin
6 $monitor("TIME = %g A = %b B = %b",$time, a , b);
7 a = 1;
8 b = 0;
9 a = #10 0;
10 b = a;
11 #20 $display("TIME = %g A = %b B = %b",$time, a , b);
12 $finish;
13 end
14
15 endmodule
这是仿真结果:
TIME = 0 A = 1 B = 0
TIME = 10 A = 0 B = 0
TIME = 30 A = 0 B = 0
组合逻辑就是无论右侧的结果何时发生了变化,左侧的值都会同样立即发生改变。
module tri_buf_using_assign();
reg data_in, enable;
wire pad;
assign pad = (enable) ? data_in : 1'bz;
initial begin
$monitor ("TIME = %g ENABLE = %b DATA : %b PAD %b",
$time, enable, data_in, pad);
#1 enable = 0;
#1 data_in = 1;
#1 enable = 1;
#1 data_in = 0;
#1 enable = 0;
#1 $finish;
end
endmodule
这个三态缓冲器也是经典的控制I2C、1-Wire等总线的一种方法。当enable为1时,就往总线上输出数据;当enable为0时,此时总线为高组态,就可以从总线上读取数据了。
仿真结果:
TIME = 0 ENABLE = x DATA : x PAD x
TIME = 1 ENABLE = 0 DATA : x PAD z
TIME = 2 ENABLE = 0 DATA : 1 PAD z
TIME = 3 ENABLE = 1 DATA : 1 PAD 1
TIME = 4 ENABLE = 1 DATA : 0 PAD 0
TIME = 5 ENABLE = 0 DATA : 0 PAD z
同样的,这样还可以实现多路选择器:
module mux_using_assign();
reg data_in_0, data_in_1;
wire data_out;
reg sel;
assign data_out = (sel) ? data_in_1 : data_in_0;
// Testbench code here
initial begin
$monitor("TIME = %g SEL = %b DATA0 = %b DATA1 = %b OUT = %b",
$time,sel,data_in_0,data_in_1,data_out);
data_in_0 = 0;
data_in_1 = 0;
sel = 0;
#10 sel = 1;
#10 $finish;
end
// Toggel data_in_0 at #1
always #1 data_in_0 = ~data_in_0;
// Toggel data_in_1 at #2
always #2 data_in_1 = ~data_in_1;
endmodule
仿真结果很简单直观,看看就好:
TIME = 0 SEL = 0 DATA0 = 0 DATA1 = 0 OUT = 0
TIME = 1 SEL = 0 DATA0 = 1 DATA1 = 0 OUT = 1
TIME = 2 SEL = 0 DATA0 = 0 DATA1 = 1 OUT = 0
TIME = 3 SEL = 0 DATA0 = 1 DATA1 = 1 OUT = 1
TIME = 4 SEL = 0 DATA0 = 0 DATA1 = 0 OUT = 0
TIME = 5 SEL = 0 DATA0 = 1 DATA1 = 0 OUT = 1
TIME = 6 SEL = 0 DATA0 = 0 DATA1 = 1 OUT = 0
TIME = 7 SEL = 0 DATA0 = 1 DATA1 = 1 OUT = 1
TIME = 8 SEL = 0 DATA0 = 0 DATA1 = 0 OUT = 0
TIME = 9 SEL = 0 DATA0 = 1 DATA1 = 0 OUT = 1
TIME = 10 SEL = 1 DATA0 = 0 DATA1 = 1 OUT = 1
TIME = 11 SEL = 1 DATA0 = 1 DATA1 = 1 OUT = 1
TIME = 12 SEL = 1 DATA0 = 0 DATA1 = 0 OUT = 0
TIME = 13 SEL = 1 DATA0 = 1 DATA1 = 0 OUT = 0
TIME = 14 SEL = 1 DATA0 = 0 DATA1 = 1 OUT = 1
TIME = 15 SEL = 1 DATA0 = 1 DATA1 = 1 OUT = 1
TIME = 16 SEL = 1 DATA0 = 0 DATA1 = 0 OUT = 0
TIME = 17 SEL = 1 DATA0 = 1 DATA1 = 0 OUT = 0
TIME = 18 SEL = 1 DATA0 = 0 DATA1 = 1 OUT = 1
TIME = 19 SEL = 1 DATA0 = 1 DATA1 = 1 OUT = 1