Java虚拟机(JVM)

运行时数据区(Runtime Data Area)
Java 虚拟机运行时数据区
区域 说明
程序计数器 每条线程都需要有一个程序计数器,计数器记录的是正在执行的指令地址,如果正在执行的是Natvie 方法,这个计数器值为空(Undefined)
java虚拟机栈 Java 方法执行的内存模型,每个方法执行的时候,都会创建一个栈帧(Stack Frame)用于保存局部变量表,操作数栈,动态链接,方法出口信息等。一个方法调用的过程就是一个栈帧从虚拟机栈入栈到出栈的过程
本地方法栈 与虚拟机栈发挥的作用非常相似,Java 虚拟机栈为虚拟机执行 Java 方法(也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。
Java堆 此内存区域唯一的目的就是存放对象实例,几乎所有的对象都在这分配内存
方法区 属于共享内存区域,存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。

用一张图来介绍每个区域存储的内容。


Java 虚拟机运行时数据区
垃圾回收GC

谁需要GC?

堆:重点!
方法区:(只需要知道这里 也有垃圾回收 即可)
程序计数器、虚拟机栈、本地方法栈 : 不需要 。线程私有的,随线程消亡而消亡,不需要过多考虑垃圾回收问题。

对象存活判断

在进行内存回收之前要做的事情就是判断那些对象是‘死’的,哪些是‘活’的。

  • 引用计数
    每个对象有一个引用计数属性,新增一个引用时计数加1,引用释放时计数减1,计数为0时可以回收。此方法简单,无法解决对象相互循环引用的问题。
  • 可达性分析
    从 GC Roots 开始向下搜索,搜索所走过的路径称为引用链。当一个对象到 GC Roots 没有任何引用链相连时,则证明此对象是不可用的,不可达对象。

可作为 GC Roots 的对象:
- 虚拟机栈中引用的对象。
- 方法区中类静态属性实体引用的对象。
- 方法区中常量引用的对象。
- 本地方法栈中 JNI 引用的对象。

再谈引用

无论是通过引用计数算法判断对象的引用数量,还是通过可达性分析算法判断对象的引用链是否可达,判断对象是否存活都与引用有关,那么就让我们再次来谈一谈引用。

强引用

类似于 Object obj = new Object(); 创建的,只要强引用在就不回收。

软引用

SoftReference 类实现软引用。在系统要发生内存溢出异常之前,将会把这些对象列进回收范围之中进行二次回收。

弱引用

WeakReference 类实现弱引用。对象只能生存到下一次垃圾收集之前。在垃圾收集器工作时,无论内存是否足够都会回收掉只被弱引用关联的对象。

虚引用

PhantomReference 类实现虚引用。无法通过虚引用获取一个对象的实例,为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。

垃圾收集算法

  • 标记 -清除算法
    “标记-清除”(Mark-Sweep)算法,如它的名字一样,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象。之所以说它是最基础的收集算法,是因为后续的收集算法都是基于这种思路并对其缺点进行改进而得到的。

它的主要缺点有两个:一个是效率问题,标记和清除过程的效率都不高;另外一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致,当程序在以后的运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

  • 复制算法
    “复制”(Copying)的收集算法,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。
    这样使得每次都是对其中的一块进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为原来的一半,持续复制长生存期的对象则导致效率降低。

  • 标记-整理算法
    复制收集算法在对象存活率较高时就要执行较多的复制操作,效率将会变低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。
    根据老年代的特点,有人提出了另外一种“标记-整理”(Mark-Compact)算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。

  • 分代收集算法
    GC 分代的基本假设:绝大部分对象的生命周期都非常短暂,存活时间短。
    “分代收集”(Generational Collection)算法,把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记-清理”或“标记-整理”算法来进行回收。

垃圾收集器

收集算法是内存回收的理论,而垃圾回收器是内存回收的实践。

可参考文章:JVM-垃圾收集器

内存分配与回收策略

Java 堆主要分为2个区域-年轻代与老年代,其中年轻代又分 Eden 区和 Survivor 区,其中 Survivor 区又分 From 和 To 2个区。如下图所示:


Java 堆的内存模型
  • Eden 区
    大多数情况下,对象会在新生代 Eden 区中进行分配,当 Eden 区没有足够空间进行分配时,虚拟机会发起一次 Minor GC,Minor GC 相比 Major GC 更频繁,回收速度也更快。 通过 Minor GC 之后,Eden 会被清空,Eden 区中绝大部分对象会被回收,而那些无需回收的存活对象,将会进到 Survivor 的 From 区(若 From 区不够,则直接进入 Old 区)。

  • Survivor 区
    Survivor 区相当于是 Eden 区和 Old 区的一个缓冲,类似于我们交通灯中的黄灯。Survivor 又分为2个区,一个是 From 区,一个是 To 区。每次执行 Minor GC,会将 Eden 区和 From 存活的对象放到 Survivor 的 To 区(如果 To 区不够,则直接进入 Old 区)。Survivor 的存在意义就是减少被送到老年代的对象,进而减少 Major GC 的发生。Survivor 的预筛选保证,只有经历16次 Minor GC 还能在新生代中存活的对象,才会被送到老年代。

  • Old 区
    老年代占据着2/3的堆内存空间,只有在 Major GC 的时候才会进行清理,每次 GC 都会触发“Stop-The-World”。内存越大,STW 的时间也越长,所以内存也不仅仅是越大就越好。由于复制算法在对象存活率较高的老年代会进行很多次的复制操作,效率很低,所以老年代这里采用的是标记——整理算法。

参考文章:Java虚拟机(JVM)你只要看这一篇就够了!

你可能感兴趣的:(Java虚拟机(JVM))