时间复杂度和空间复杂度

1.算法效率

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间空间两个维度来衡量的,即时间复杂度空间复杂度

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

2.大O的渐进表示法

大O符号:是用于描述函数渐进行为的数学符号。

推导大O阶方法

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

另外有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最坏情况:任意输入规模的最大运行次数(上界)
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x

  • 最好情况:1次找到
  • 最坏情况:N次找到
  • 平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

3.时间复杂度

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个 分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

请计算一下Func1中++count语句总共执行了多少次?

void Func1(int N) {
    int count = 0;
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < N; ++j) {
            ++count;
        }
    }

    for (int k = 0; k < 2 * N; ++k) {
        ++count;
    }
    int M = 10;
    while (M--) {
        ++count;
    }
    printf("%d\n", count);
}

Func1 执行的基本操作次数 :F(N) = N²+2*N+10

  • N=10 F(N)=130
  • N=100 F(N)=10210
  • N=1000 F(N)=1002010

根据大O的渐进表示法,在修改后的运行次数函数中,只保留最高阶项,所以时间复杂度为O(N²)。

实例1:

void Func2(int N) {
    int count = 0;
    //2*N
    for (int k = 0; k < 2 * N; ++k) { 
        ++count;
    }
    int M = 10;
    //循环10次
    while (M--) {
        ++count;
    }
    printf("%d\n", count);
}

基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)

实例2:

void Func3(int N, int M) {
    int count = 0;
    //M次
    for (int k = 0; k < M; ++k) {
        ++count;
    }
    //N次
    for (int k = 0; k < N; ++k) {
        ++count;
    }
    printf("%d\n", count);
}

基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)

实例3:

void Func4(int N) {
    int count = 0;
    //100次
    for (int k = 0; k < 100; ++k) {
        ++count;
    }
    printf("%d\n", count);
}

基本操作执行了100次,通过推导大O阶方法,时间复杂度为 O(1)

实例4:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int *a, int n) {
    for (size_t end = n; end > 0; --end) {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i) {
            if (a[i - 1] > a[i]) {
                Swap(&a[i - 1], &a[i]);
                exchange = 1;
            }
        }
        if (exchange == 0)
            break;
    }
}

基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最 坏,时间复杂度为 O(N^2)

实例5:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int *a, int n, int x) {
    int begin = 0;
    int end = n - 1;
    // [begin, end]:begin和end是左闭右闭区间,因此有=号
    while (begin <= end) {
        int mid = begin + ((end - begin) >> 1);
        if (a[mid] < x)
            begin = mid + 1;
        else if (a[mid] > x)
            end = mid - 1;
        else
            return mid;
    }
    return -1;
}

计算二分查找函数的时间复杂度,我们需要对代码进行分析:我们用二分查找法查找数据时,查找一次后可以筛去一半的数据,经过一次次的筛选,最后会使得待查数据只剩一个,那么我们查找的次数就是while循环执行的次数。
因为数据个数为N,一次查找筛去一半的数据,即还剩N/2个数据,经过一次次的筛选,数据最后剩下1个,那么查找的次数可以理解为N除以若干个2,最后得1,那么while循环执行的次数就是N除以2的次数,我们只需计算N除以了多少次2最终等于1即可。
N/2/2/2/2… =1 我们假设N除以了x个2,最终等于1,那么N=2的x次方。

最后,两边同时取2的对数,得while循环执行的次数,即x = logN 。所以,用大O的渐进表示法表示二分查找函数的时间复杂度为:O(logN) 。

实例6:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N) {
    if (0 == N)
        return 1;

    return Fac(N - 1) * N;
}

基本操作递归了N次,时间复杂度为O(N)。

实例7:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N) {
    if (N < 3)
        return 1;

    return Fib(N - 1) + Fib(N - 2);
}

我们知道,使用递归法求斐波那契数,当我们要求某一个斐波那契数时,需要知道他的前两个斐波那契数,然后相加得出。那么当我们要知道第N个斐波那契数时,递归的次数如下图:

img

因为右下角的递归函数会提前结束,所以图中三角形必定有一块是没有数据的,但是当N趋于无穷时,那缺省的一小块便可以忽略不计,这时总共调用斐波那契函数的次数为:

img

这是一个等比数列的求和,最后得出结果为:2N - 1 。
保留最高阶项后,用大O的渐进表示法表示斐波那契函数的时间复杂度为:O(2N) 。

注:递归算法的时间复杂度 = 递归的次数 * 每次递归函数中的次数。

4.空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。 空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定

实例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int *a, int n) {
    assert(a);
    for (size_t end = n; end > 0; --end) {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i) {
            if (a[i - 1] > a[i]) {
                Swap(&a[i - 1], &a[i]);
                exchange = 1;
            }
        }
        if (exchange == 0)
            break;
    }
}

使用了常数个额外空间,所以空间复杂度为 O(1)

实例2:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long *Fibonacci(size_t n) {
    if (n == 0)
        return NULL;

    long long *fibArray = (long long *) malloc((n + 1) * sizeof(long long));
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n; ++i) {
        fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
    }
    return fibArray;
}

动态开辟了N个空间,空间复杂度为 O(N)

实例3:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N) {
    if (N == 0)
        return 1;

    return Fac(N - 1) * N;
}

递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

5.常见复杂度对比

时间复杂度和空间复杂度_第1张图片
时间复杂度和空间复杂度_第2张图片

你可能感兴趣的:(数据结构,算法,数据结构,c++,c语言)