这个Colab的后半部分内容掌握的不是很好,内容上有点断层,后面有时间回看一下再补充
pip install -q git+https://github.com/snap-stanford/deepsnap.git
pip install -U -q PyDrive
import torch
import torch_geometric
DeepSNAP库可以用于复杂的图形操作,如特征计算、预训练、子图提取等,尤其可以很好地处理异构图
from pylab import *
import networkx as nx
from networkx.algorithms.community import greedy_modularity_communities
import matplotlib.pyplot as plt
import copy
G = nx.karate_club_graph()
community_map = {}
for node in G.nodes(data=True): #node[0]是节点标号,node[1]是相关数据
if node[1]["club"] == "Mr. Hi":
community_map[node[0]] = 0
else:
community_map[node[0]] = 1
# 对应颜色
node_color = []
color_map = {0: 0, 1: 1}
node_color = [color_map[community_map[node]] for node in G.nodes()]
# 画图
pos = nx.spring_layout(G)
plt.figure(figsize=(7, 7))
nx.draw(G, pos=pos, cmap=plt.get_cmap('coolwarm'), node_color=node_color)
show()
# 注意图的node时,如果标明data=True则读取数据,否则只读取编号
for node in G.nodes(data=True):
print(node)
print(node[0])
print(node[1])
break
for node in G.nodes():
print(node)
break
使用nx.set_node_attributes,为节点的属性赋值
'''
对于node_type,给“Mr.Hi”俱乐部中的节点分配节点类型n0,给俱乐部“Officer”中的节点分配节点类型n1
对于node_label,给“Mr.Hi”俱乐部中的节点分配node_label_0,给俱乐部“Officer”中的节点分配node_label_1。
为每个节点分配Tensor特征向量[1,1,1,1]
'''
import torch
def assign_node_types(G, community_map):
NodeType={} # 节点编号:属性值
for (key,value) in community_map.items():
if value==0:
NodeType[k]='n0'
else:
NodeType[k]='n1'
nx.set_node_attributes(G,NodeType,'node_type')
def assign_node_labels(G, community_map):
nx.set_node_attributes(G,community_map,'node_label')
def assign_node_features(G):
feature_vector=[1, 1, 1, 1, 1]
nx.set_node_attributes(G,feature_vector,'node_feature')
assign_node_types(G, community_map)
assign_node_labels(G, community_map)
assign_node_features(G)
使用nx.set_edge_attributes
# 分配edge type
'''
“Mr.Hi”俱乐部内的边:e0
“Officer”俱乐部内的边缘:e1
俱乐部之间的边:e2
'''
def assign_edge_types(G, community_map):
edge2attr_map={}
for edge in G.edges():
if G.nodes[edge[0]]['club']=='Mr. Hi' and G.nodes[edge[1]]['club']=='Mr. Hi':
edge2attr_map[edge]='e0'
elif G.nodes[edge[0]]['club']=='Officer' and G.nodes[edge[1]]['club']=='Officer':
edge2attr_map[edge]='e1'
else:
edge2attr_map[edge]='e2'
nx.set_edge_attributes(G,edge2attr_map,'edge_type')
#########################################
assign_edge_types(G, community_map)
edge_color = {}
for edge in G.edges():
n1, n2 = edge
edge_color[edge] = community_map[n1] if community_map[n1] == community_map[n2] else 2
if community_map[n1] == community_map[n2] and community_map[n1] == 0:
edge_color[edge] = 'blue'
elif community_map[n1] == community_map[n2] and community_map[n1] == 1:
edge_color[edge] = 'red'
else:
edge_color[edge] = 'green'
G_orig = copy.deepcopy(G)
nx.classes.function.set_edge_attributes(G, edge_color, name='color')
colors = nx.get_edge_attributes(G,'color').values()
labels = nx.get_node_attributes(G, 'node_type')
plt.figure(figsize=(8, 8))
nx.draw(G, pos=pos, cmap=plt.get_cmap('coolwarm'), node_color=node_color, edge_color=colors, labels=labels, font_color='white')
show()
from deepsnap.hetero_graph import HeteroGraph
hete = HeteroGraph(G_orig)
def get_nodes_per_type(hete):
num_nodes_n0=len(hete.node_type['n0'])
num_nodes_n1=len(hete.node_type['n1'])
return num_nodes_n0, num_nodes_n1
num_nodes_n0, num_nodes_n1 = get_nodes_per_type(hete)
print("Node type n0 has {} nodes".format(num_nodes_n0))
print("Node type n1 has {} nodes".format(num_nodes_n1))
def get_num_message_edges(hete):
message_type_edges = []
for message_type,num_edge in hete.edge_type.items():
message_type_edges.append((message_type,len(num_edge)))
return message_type_edges
message_type_edges = get_num_message_edges(hete)
for (message_type, num_edges) in message_type_edges:
print("Message type {} has {} edges".format(message_type, num_edges))
from deepsnap.dataset import GraphDataset
dataset = GraphDataset([hete], task='node')
# Splitting the dataset
dataset_train, dataset_val, dataset_test = dataset.split(transductive=True, split_ratio=[0.4, 0.3, 0.3])
datasets = {'train': dataset_train, 'val': dataset_val, 'test': dataset_test}
def compute_dataset_split_counts(datasets):
data_set_splits = {}
for ds_name,ds in datasets.items():
data_set_splits[ds_name]=ds[0].node_label_index['n0'].shape[0]+ds[0].node_label_index['n1'].shape[0]
return data_set_splits
data_set_splits = compute_dataset_split_counts(datasets)
for dataset_name, num_nodes in data_set_splits.items():
print("{} dataset has {} nodes".format(dataset_name, num_nodes))
titles = ['Train', 'Validation', 'Test']
for i, dataset in enumerate([dataset_train, dataset_val, dataset_test]):
n0 = hete._convert_to_graph_index(dataset[0].node_label_index['n0'], 'n0').tolist()
n1 = hete._convert_to_graph_index(dataset[0].node_label_index['n1'], 'n1').tolist()
plt.figure(figsize=(7, 7))
plt.title(titles[i])
nx.draw(G_orig, pos=pos, node_color="grey", edge_color=colors, labels=labels, font_color='white')
nx.draw_networkx_nodes(G_orig.subgraph(n0), pos=pos, node_color="blue")
nx.draw_networkx_nodes(G_orig.subgraph(n1), pos=pos, node_color="red")
show()
将消息类型视为(src,relation,dst),其中消息从src传递到dst,更新节点类型b依赖于不同的消息类型relation
消息传递依赖于不同的消息类型,每个消息传递层针对一种消息类型执行消息传递和聚合,计算给定消息类型的dst节点的嵌入
import copy
import torch
import deepsnap
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch_geometric.nn as pyg_nn
from sklearn.metrics import f1_score
from deepsnap.hetero_gnn import forward_op
from deepsnap.hetero_graph import HeteroGraph
from torch_sparse import SparseTensor, matmul
class HeteroGNNConv(pyg_nn.MessagePassing):
def __init__(self, in_channels_src, in_channels_dst, out_channels):
super(HeteroGNNConv, self).__init__(aggr="mean")
self.in_channels_src = in_channels_src
self.in_channels_dst = in_channels_dst
self.out_channels = out_channels
self.lin_dst=nn.Linear(in_channels_dst,out_channels) #concat左
self.lin_src=nn.Linear(in_channels_src,out_channels) #concat右
self.lin_update=nn.Linear(out_channels*2,out_channels) #()[]
def forward(
self,
node_feature_src,
node_feature_dst,
edge_index,
size=None,
res_n_id=None,
):
return self.propagate(edge_index,size=size,
node_feature_src=node_feature_src,node_feature_dst=node_feature_dst,res_n_id=res_n_id)
def message_and_aggregate(self, edge_index, node_feature_src):
out = matmul(edge_index,node_feature_src,reduce=self.aggr)
return out
def update(self, aggr_out, node_feature_dst, res_n_id):
aggr_out = self.lin_src(aggr_out)
node_feature_dst = self.lin_dst(node_feature_dst)
concat_features = torch.cat((node_feature_dst, aggr_out),dim=-1)
aggr_out = self.lin_update(concat_features)
return aggr_out
class HeteroGNNWrapperConv(deepsnap.hetero_gnn.HeteroConv):
def __init__(self, convs, args, aggr="mean"):
super(HeteroGNNWrapperConv, self).__init__(convs, None)
self.aggr = aggr
# Map the index and message type
self.mapping = {}
# A numpy array that stores the final attention probability
self.alpha = None
self.attn_proj = None
if self.aggr == "attn":
self.attn_proj = nn.Sequential(
nn.Linear(args['hidden_size'], args['attn_size']), #Wh+b
nn.Tanh(),
nn.Linear(args['attn_size'], 1, bias=False), # q_semantic_attention
)
def reset_parameters(self):
super(HeteroConvWrapper, self).reset_parameters()
if self.aggr == "attn":
for layer in self.attn_proj.children():
layer.reset_parameters()
def forward(self, node_features, edge_indices):
message_type_emb = {}
for message_key, message_type in edge_indices.items():
src_type, edge_type, dst_type = message_key
node_feature_src = node_features[src_type]
node_feature_dst = node_features[dst_type]
edge_index = edge_indices[message_key]
message_type_emb[message_key] = (
self.convs[message_key](
node_feature_src,
node_feature_dst,
edge_index,
)
)
node_emb = {dst: [] for _, _, dst in message_type_emb.keys()}
mapping = {}
for (src, edge_type, dst), item in message_type_emb.items():
mapping[len(node_emb[dst])] = (src, edge_type, dst)
node_emb[dst].append(item)
self.mapping = mapping
for node_type, embs in node_emb.items():
if len(embs) == 1:
node_emb[node_type] = embs[0]
else:
node_emb[node_type] = self.aggregate(embs)
return node_emb
def aggregate(self, xs):
if self.aggr == "mean":
out = torch.mean(torch.stack(xs), dim=0)
return out
elif self.aggr == "attn":
N = xs[0].shape[0] # Number of nodes for that node type
M = len(xs) # Number of message types for that node type
x = torch.cat(xs, dim=0).view(M, N, -1) # M * N * D
z = self.attn_proj(x).view(M, N) # M * N * 1
z = z.mean(1) # M * 1
alpha = torch.softmax(z, dim=0) # M * 1
# Store the attention result to self.alpha as np array
self.alpha = alpha.view(-1).data.cpu().numpy()
alpha = alpha.view(M, 1, 1)
x = x * alpha
return x.sum(dim=0)
def generate_convs(hetero_graph, conv, hidden_size, first_layer=False):
convs = {}
for message_type in hetero_graph.message_types:
if first_layer is True:
src_type = message_type[0]
dst_type = message_type[2]
src_size = hetero_graph.num_node_features(src_type)
dst_size = hetero_graph.num_node_features(dst_type)
convs[message_type] = conv(src_size,dst_size, hidden_size)
else:
convs[message_type] = conv(hidden_size, hidden_size, hidden_size)
return convs
class HeteroGNN(torch.nn.Module):
def __init__(self, hetero_graph, args, aggr="mean"):
super(HeteroGNN, self).__init__()
self.aggr = aggr
self.hidden_size = args['hidden_size']
self.convs1 = None
self.convs2 = None
self.bns1 = nn.ModuleDict()
self.bns2 = nn.ModuleDict()
self.relus1 = nn.ModuleDict()
self.relus2 = nn.ModuleDict()
self.post_mps = nn.ModuleDict()
convs1 = generate_convs(hetero_graph, HeteroGNNConv, self.hidden_size, first_layer=True)
convs2 = generate_convs(hetero_graph, HeteroGNNConv, self.hidden_size)
self.convs1 = HeteroGNNWrapperConv(convs1, args, aggr=self.aggr)
self.convs2 = HeteroGNNWrapperConv(convs2, args, aggr=self.aggr)
for node_type in hetero_graph.node_types:
self.bns1[node_type] = torch.nn.BatchNorm1d(self.hidden_size, eps=1)
self.bns2[node_type] = torch.nn.BatchNorm1d(self.hidden_size, eps=1)
self.post_mps[node_type] = nn.Linear(self.hidden_size, hetero_graph.num_node_labels(node_type))
self.relus1[node_type] = nn.LeakyReLU()
self.relus2[node_type] = nn.LeakyReLU()
def forward(self, node_feature, edge_index):
x = node_feature
x = self.convs1(x, edge_index)
x = forward_op(x, self.bns1)
x = forward_op(x, self.relus1)
x = self.convs2(x, edge_index)
x = forward_op(x, self.bns2)
x = forward_op(x, self.relus2)
x = forward_op(x, self.post_mps)
return x
def loss(self, preds, y, indices):
loss = 0
loss_func = F.cross_entropy
for node_type in preds:
idx = indices[node_type]
loss += loss_func(preds[node_type][idx], y[node_type][idx])
return loss
print("Device: {}".format(args['device']))
# Load the data
data = torch.load("acm.pkl")
# Message types
message_type_1 = ("paper", "author", "paper")
message_type_2 = ("paper", "subject", "paper")
# Dictionary of edge indices
edge_index = {}
edge_index[message_type_1] = data['pap']
edge_index[message_type_2] = data['psp']
# Dictionary of node features
node_feature = {}
node_feature["paper"] = data['feature']
# Dictionary of node labels
node_label = {}
node_label["paper"] = data['label']
# Load the train, validation and test indices
train_idx = {"paper": data['train_idx'].to(args['device'])}
val_idx = {"paper": data['val_idx'].to(args['device'])}
test_idx = {"paper": data['test_idx'].to(args['device'])}
# Construct a deepsnap tensor backend HeteroGraph
hetero_graph = HeteroGraph(
node_feature=node_feature,
node_label=node_label,
edge_index=edge_index,
directed=True
)
print(f"ACM heterogeneous graph: {hetero_graph.num_nodes()} nodes, {hetero_graph.num_edges()} edges")
# Node feature and node label to device
for key in hetero_graph.node_feature:
hetero_graph.node_feature[key] = hetero_graph.node_feature[key].to(args['device'])
for key in hetero_graph.node_label:
hetero_graph.node_label[key] = hetero_graph.node_label[key].to(args['device'])
# Edge_index to sparse tensor and to device
for key in hetero_graph.edge_index:
edge_index = hetero_graph.edge_index[key]
adj = SparseTensor(row=edge_index[0], col=edge_index[1], sparse_sizes=(hetero_graph.num_nodes('paper'), hetero_graph.num_nodes('paper')))
hetero_graph.edge_index[key] = adj.t().to(args['device'])
print(hetero_graph.edge_index[message_type_1])
print(hetero_graph.edge_index[message_type_2])
args = {
'device': torch.device('cuda' if torch.cuda.is_available() else 'cpu'),
'hidden_size': 64,
'epochs': 100,
'weight_decay': 1e-5,
'lr': 0.003,
'attn_size': 32,
}
def train(model, optimizer, hetero_graph, train_idx):
model.train()
optimizer.zero_grad()
preds = model(hetero_graph.node_feature, hetero_graph.edge_index)
loss = model.loss(preds, hetero_graph.node_label, train_idx)
loss.backward()
optimizer.step()
return loss.item()
def test(model, graph, indices, best_model=None, best_val=0):
model.eval()
accs = []
for index in indices:
preds = model(graph.node_feature, graph.edge_index)
num_node_types = 0
micro = 0
macro = 0
for node_type in preds:
idx = index[node_type]
pred = preds[node_type][idx]
pred = pred.max(1)[1]
label_np = graph.node_label[node_type][idx].cpu().numpy()
pred_np = pred.cpu().numpy()
micro = f1_score(label_np, pred_np, average='micro')
macro = f1_score(label_np, pred_np, average='macro')
num_node_types += 1
micro /= num_node_types
macro /= num_node_types
accs.append((micro, macro))
if accs[1][0] > best_val:
best_val = accs[1][0]
best_model = copy.deepcopy(model)
return accs, best_model, best_val
# Training the Mean Aggregation
best_model = None
best_val = 0
model = HeteroGNN(hetero_graph, args, aggr="mean").to(args['device'])
optimizer = torch.optim.Adam(model.parameters(), lr=args['lr'], weight_decay=args['weight_decay'])
for epoch in range(args['epochs']):
loss = train(model, optimizer, hetero_graph, train_idx)
accs, best_model, best_val = test(model, hetero_graph, [train_idx, val_idx, test_idx], best_model, best_val)
print(
f"Epoch {epoch + 1}: loss {round(loss, 5)}, "
f"train micro {round(accs[0][0] * 100, 2)}%, train macro {round(accs[0][1] * 100, 2)}%, "
f"valid micro {round(accs[1][0] * 100, 2)}%, valid macro {round(accs[1][1] * 100, 2)}%, "
f"test micro {round(accs[2][0] * 100, 2)}%, test macro {round(accs[2][1] * 100, 2)}%"
)
best_accs, _, _ = test(best_model, hetero_graph, [train_idx, val_idx, test_idx])
print(
f"Best model: "
f"train micro {round(best_accs[0][0] * 100, 2)}%, train macro {round(best_accs[0][1] * 100, 2)}%, "
f"valid micro {round(best_accs[1][0] * 100, 2)}%, valid macro {round(best_accs[1][1] * 100, 2)}%, "
f"test micro {round(best_accs[2][0] * 100, 2)}%, test macro {round(best_accs[2][1] * 100, 2)}%"
)
# Training the Attention Aggregation
best_model = None
best_val = 0
output_size = hetero_graph.num_node_labels('paper')
model = HeteroGNN(hetero_graph, args, aggr="attn").to(args['device'])
optimizer = torch.optim.Adam(model.parameters(), lr=args['lr'], weight_decay=args['weight_decay'])
for epoch in range(args['epochs']):
loss = train(model, optimizer, hetero_graph, train_idx)
accs, best_model, best_val = test(model, hetero_graph, [train_idx, val_idx, test_idx], best_model, best_val)
print(
f"Epoch {epoch + 1}: loss {round(loss, 5)}, "
f"train micro {round(accs[0][0] * 100, 2)}%, train macro {round(accs[0][1] * 100, 2)}%, "
f"valid micro {round(accs[1][0] * 100, 2)}%, valid macro {round(accs[1][1] * 100, 2)}%, "
f"test micro {round(accs[2][0] * 100, 2)}%, test macro {round(accs[2][1] * 100, 2)}%"
)
best_accs, _, _ = test(best_model, hetero_graph, [train_idx, val_idx, test_idx])
print(
f"Best model: "
f"train micro {round(best_accs[0][0] * 100, 2)}%, train macro {round(best_accs[0][1] * 100, 2)}%, "
f"valid micro {round(best_accs[1][0] * 100, 2)}%, valid macro {round(best_accs[1][1] * 100, 2)}%, "
f"test micro {round(best_accs[2][0] * 100, 2)}%, test macro {round(best_accs[2][1] * 100, 2)}%"
)
# Attention for each Message Type
if model.convs1.alpha is not None and model.convs2.alpha is not None:
for idx, message_type in model.convs1.mapping.items():
print(f"Layer 1 has attention {model.convs1.alpha[idx]} on message type {message_type}")
for idx, message_type in model.convs2.mapping.items():
print(f"Layer 2 has attention {model.convs2.alpha[idx]} on message type {message_type}")