Java面试总结汇总,整理了包括Java基础知识,集合容器,并发编程,JVM,常用开源框架Spring,MyBatis,数据库,中间件等,包含了Java工程师在面试中需要用到或者可能用到的绝大部分知识。
欢迎大家阅读,本人见识有限,写的博客难免有错误或者疏忽的地方,还望各位大佬指点,在此表示感激不尽。若有问题需要解答也可以留言,我会及时回复。
用于修饰类、属性和方法;
被final修饰的类不可以被继承
被final修饰的方法不可以被重写
被final修饰的变量不可以被改变,被final修饰不可变的是变量的引用,而不是引用指向的内容,引用指向的内容是可以改变的
1).final可以修饰类、变量、方法,修饰类表示该类不能被继承、修饰方法表示该方法不能被重写、修饰变量表
示该变量是一个常量不能被重新赋值。
2).finally一般作用在try-catch代码块中,在处理异常的时候,通常我们将一定要执行的代码方法finally代码块
中,表示不管是否出现异常,该代码块都会执行,一般用来存放一些关闭资源的代码。
3).finalize是一个方法,属于Object类的一个方法,而Object类是所有类的父类,该方法一般由垃圾回收器来调
用,当我们调用System.gc() 方法的时候,由垃圾回收器调用finalize(),回收垃圾,一个对象是否可回收的最后判断。
super: 它引用当前对象的直接父类中的成员(用来访问直接父类中被隐藏的父类中成员数据或函数,基类与派生类中有相同成员定义时如:super.变量名 super.成员函数据名(实参)
this:它代表当前对象名(在程序中易产生二义性之处,应使用this来指明当前对象;如果函数的形参与类中的成员数据同名,这时需用this来指明成员变量名)
super()和this()类似,区别是,super()在子类中调用父类的构造方法,this()在本类内调用本类的其它构造方法。
super()和this()均需放在构造方法内第一行。
尽管可以用this调用一个构造器,但却不能调用两个。
this和super不能同时出现在一个构造函数里面,因为this必然会调用其它的构造函数,其它的构造函数必然也会有super语句的存在,所以在同一个构造函数里面有相同的语句,就失去了语句的意义,编译器也不会通过。
this()和super()都指的是对象,所以,均不可以在static环境中使用。包括:static变量,static方法,static语句块。
从本质上讲,this是一个指向本对象的指针, 然而super是一个Java关键字。
抽象:抽象是将一类对象的共同特征总结出来构造类的过程,包括数据抽象和行为抽象两方面。抽象只关注对象有哪些属性和行为,并不关注这些行为的细节是什么。
封装
封装把一个对象的属性私有化,同时提供一些可以被外界访问的属性的方法,如果属性不想被外界访问,我们大可不必提供方法给外界访问。但是如果一个类没有提供给外界访问的方法,那么这个类也没有什么意义了。
继承
继承是使用已存在的类的定义作为基础建立新类的技术,新类的定义可以增加新的数据或新的功能,也可以用父类的功能,但不能选择性地继承父类。通过使用继承我们能够非常方便地复用以前的代码。
多态
所谓多态就是指程序中定义的引用变量所指向的具体类型和通过该引用变量发出的方法调用在编程时并不确定,而是在程序运行期间才确定,即一个引用变量到底会指向哪个类的实例对象,该引用变量发出的方法调用到底是哪个类中实现的方法,必须在由程序运行期间才能决定。
在Java中有两种形式可以实现多态:继承(多个子类对同一方法的重写)和接口(实现接口并覆盖接口中同一方法)。
其中Java 面向对象编程三大特性:封装 继承 多态
Java实现多态有三个必要条件:继承、重写、向上转型。
继承:在多态中必须存在有继承关系的子类和父类。
重写:子类对父类中某些方法进行重新定义,在调用这些方法时就会调用子类的方法。
向上转型:在多态中需要将子类的引用赋给父类对象,只有这样该引用才能够具备技能调用父类的方法和子类的方法。
只有满足了上述三个条件,我们才能够在同一个继承结构中使用统一的逻辑实现代码处理不同的对象,从而达到执行不同的行为。
对于Java而言,它多态的实现机制遵循一个原则:当超类对象引用变量引用子类对象时,被引用对象的类型而不是引用变量的类型决定了调用谁的成员方法,但是这个被调用的方法必须是在超类中定义过的,也就是说被子类覆盖的方法。
JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性;这种动态获取的信息以及动态调用对象的方法的功能称为java语言的反射机制。
静态编译和动态编译
**静态编译:**在编译时确定类型,绑定对象
**动态编译:**运行时确定类型,绑定对象
反射机制优缺点
优点: 运行期类型的判断,动态加载类,提高代码灵活度。
缺点: 性能瓶颈:反射相当于一系列解释操作,通知 JVM 要做的事情,性能比直接的java代码要慢很多。
①我们在使用JDBC连接数据库时使用Class.forName()通过反射加载数据库的驱动程序;②Spring框架也用到很多反射机制,最经典的就是xml的配置模式。Spring 通过 XML 配置模式装载 Bean 的过程:1) 将程序内所有 XML 或 Properties 配置文件加载入内存中; 2)Java类里面解析xml或properties里面的内容,得到对应实体类的字节码字符串以及相关的属性信息; 3)使用反射机制,根据这个字符串获得某个类的Class实例; 4)动态配置实例的属性
1.通过new对象实现反射机制 2.通过路径实现反射机制 3.通过类名实现反射机制
public class Get {
//获取反射机制三种方式
public static void main(String[] args) throws ClassNotFoundException {
//方式一(通过建立对象)
Student stu = new Student();
Class classobj1 = stu.getClass();
System.out.println(classobj1.getName());
//方式二(所在通过路径-相对路径)
Class classobj2 = Class.forName("fanshe.Student");
System.out.println(classobj2.getName());
//方式三(通过类名)
Class classobj3 = Student.class;
System.out.println(classobj3.getName());
}
}
字符串常量池位于堆内存中,专门用来存储字符串常量,可以提高内存的使用率,避免开辟多块空间存储相同的字符串,在创建字符串时 JVM 会首先检查字符串常量池,如果该字符串已经存在池中,则返回它的引用,如果不存在,则实例化一个字符串放到池中,并返回其引用。
可变性
String类中使用字符数组保存字符串,private final char value[],所以string对象是不可变的。StringBuilder与StringBuffer都继承自AbstractStringBuilder类,在AbstractStringBuilder中也是使用字符数组保存字符串,char[] value,这两种对象都是可变的。
线程安全性
String中的对象是不可变的,也就可以理解为常量,线程安全。AbstractStringBuilder是StringBuilder与StringBuffer的公共父类,定义了一些字符串的基本操作,如expandCapacity、append、insert、indexOf等公共方法。StringBuffer对方法加了同步锁或者对调用的方法加了同步锁,所以是线程安全的。StringBuilder并没有对方法进行加同步锁,所以是非线程安全的。
性能
每次对String 类型进行改变的时候,都会生成一个新的String对象,然后将指针指向新的String 对象。StringBuffer每次都会对StringBuffer对象本身进行操作,而不是生成新的对象并改变对象引用。相同情况下使用StirngBuilder 相比使用StringBuffer 仅能获得10%~15% 左右的性能提升,但却要冒多线程不安全的风险。
对于三者使用的总结
如果要操作少量的数据用 = String
单线程操作字符串缓冲区 下操作大量数据 = StringBuilder
多线程操作字符串缓冲区 下操作大量数据 = StringBuffer
对于对象引用类型:==比较的是对象的内存地址。
对于基本数据类型:==比较的是值。
如果整型字面量的值在-128到127之间,那么自动装箱时不会new新的Integer对象,而是直接引用常量池中的Integer对象,超过范围 a1==b1的结果是false。
自动装箱与拆箱
装箱:将基本类型用它们对应的引用类型包装起来;
拆箱:将包装类型转换为基本数据类型;
int 和 Integer 有什么区别
Java 是一个近乎纯洁的面向对象编程语言,但是为了编程的方便还是引入了基本数据类型,但是为了能够将这些基本数据类型当成对象操作,Java 为每一个基本数据类型都引入了对应的包装类型(wrapper class),int 的包装类就是 Integer,从 Java 5 开始引入了自动装箱/拆箱机制,使得二者可以相互转换。
Java 为每个原始类型提供了包装类型:
原始类型: boolean,char,byte,short,int,long,float,double
包装类型:Boolean,Character,Byte,Short,Integer,Long,Float,Double
描述动态代理的几种实现方式?分别说出相应的优缺点
代理可以分为 “静态代理” 和 “动态代理”,动态代理又分为 “JDK动态代理” 和 “CGLIB动态代理” 实现。
静态代理:代理对象和实际对象都继承了同一个接口,在代理对象中指向的是实际对象的实例,这样对外暴露的是代理对象而真正调用的是 Real Object
优点:可以很好的保护实际对象的业务逻辑对外暴露,从而提高安全性。
缺点:不同的接口要有不同的代理类实现,会很冗余
JDK 动态代理:为了解决静态代理中,生成大量的代理类造成的冗余;JDK 动态代理只需要实现 InvocationHandler 接口,重写 invoke 方法便可以完成代理的实现,jdk的代理是利用反射生成代理类 Proxyxx.class 代理类字节码,并生成对象 jdk动态代理之所以只能代理接口是因为代理类本身已经extends了Proxy,而java是不允许多重继承的,但是允许实现多个接口。
优点:解决了静态代理中冗余的代理实现类问题。
缺点:JDK 动态代理是基于接口设计实现的,如果没有接口,会抛异常。
由于 JDK 动态代理限制了只能基于接口设计,而对于没有接口的情况,JDK方式解决不了;CGLib 采用了非常底层的字节码技术,其原理是通过字节码技术为一个类创建子类,并在子类中采用方法拦截的技术拦截所有父类方法的调用,顺势织入横切逻辑,来完成动态代理的实现。实现方式实现 MethodInterceptor 接口,重写 intercept 方法,通过 Enhancer 类的回调方法来实现。但是CGLib在创建代理对象时所花费的时间却比JDK多得多,所以对于单例的对象,因为无需频繁创建对象,用CGLib合适,反之,使用JDK方式要更为合适一些。 同时,由于CGLib由于是采用动态创建子类的方法,对于final方法,无法进行代理。
优点:没有接口也能实现动态代理,而且采用字节码增强技术,性能也不错。
缺点:技术实现相对难理解些。
一个类从加载到使用到卸载一共经过了5个步骤:加载 -> 连接 -> 初始化
其中连接分为验证,准备,解析三个阶段
1,加载
那么什么时候会将.class文件加载到jvm中?
就是在你使用这个类的时候。
验证,准备,解析
2,验证
验证是对class文件进行校验,判断它是否符合指定的规范,不然你把.class文件丢给JVM,结果JVM根本不认识就很离谱。
3,准备
类变量(成员变量),静态变量分配内存空间,并且设置默认值,数值类型就是0,布尔类型就是false,其他引用类型就是null。
4,解析
把符号引用替换为直接引用。
这个我是这么理解的,符号引用就是 int num=0,这个num(变量名)就是符号引用,那么jvm会将这个num解析成指向内存中这个变量的指针,这个指针就是直接引用;
这里只是拿类变量打个比方,他还会将方法
5,初始化
初始化就是将之前分配了默认值的变量,设置变量值。
类加载是通过加载器来实现的,那么有哪几种加载器呢?
(1)启动类加载器:Bootstrap ClassLoader,加载jdk中lib目录下的核心类;
(2)类扩展加载器:Extension ClassLoader,加载jdk中lib/ext目录的类;
(3)应用程序加载器:Application ClassLoader,加载自己写的class类;
(4)自定义加载器:自己实现,根据自己的需求自定义加载类;
(5)双亲委派机制
jvm的类加载器是有亲子结构的,会先从上到下查找需要加载的类,如果在上面找到了,那么会用父加载器来完成加载,如果父类没找到会去子类加载器接着找,直到最后,如果都没有就会报错:ClassNotFoundException
这就是所谓的双亲委派模型:先找父亲去加载,不行的话再由儿子来加载。
这样的话,可以避免多层级的加载器结构重复加载某些类。
如果密码是存储在 Java String 对象中的,则直到对它进行垃圾收集或进程终止之前,密码会一直驻留在内存中。即使进行了垃圾收集,它仍会存在于空闲内存堆中,直到重用该内存空间为止。密码 String 在内存中驻留得越久,遭到窃听的危险性就越大。
更糟的是,如果实际内存减少,则操作系统会将这个密码 String 换页调度到磁盘的交换空间,因此容易遭受磁盘块窃听攻击。
为了将这种泄密的可能性降至最低(但不是消除),您应该将密码存储在 char 数组中,并在使用后对其置零。(String 是不可变的,所以无法对其置零。
当容器启动时,会读取在webapps目录下所有的web应用中的web.xml文件,然后对xml文件进行解析,并读取servlet注册信息。
然后,将每个应用中注册的servlet类都进行加载,并通过反射的方式实例化。(有时候也是在第一次请求时实例化)
在servlet注册时加上1如果为正数,则在一开始就实例化,如果不写或为负数,则第一次请求实例化。
Tomacat是由Apache推出的Servlet容器,可实现JavaWeb程序的装载,是配置JSP和JAVA系统必备的一款环境。
Tomcat不仅仅是一个Servlet容器,它也具有传统的Web服务器的功能:处理Html页面。但是与Apache相比,在处理静态Html上的能力略逊一筹。
第一步,定义注解——相当于定义标记;
第二步,配置注解——把标记打在需要用到的程序代码中;
第三步,解析注解——在编译期或运行时检测到标记,并进行特殊操作。
注解类型的声明部分:
注解在Java中,与类、接口、枚举类似,因此其声明语法基本一致,只是所使用的关键字有所不同@interface。在底层实现上,所有定义的注解都会自动继承java.lang.annotation.Annotation接口。
public @interface CherryAnnotation {
public String name();
int age() default 18;
int[] array();
}
常用的元注解:
public enum ElementType {
/** 类,接口(包括注解类型)或枚举的声明 */
TYPE,
/** 属性的声明 */
FIELD,
/** 方法的声明 */
METHOD,
/** 方法形式参数声明 */
PARAMETER,
/** 构造方法的声明 */
CONSTRUCTOR,
/** 局部变量声明 */
LOCAL_VARIABLE,
/** 注解类型声明 */
ANNOTATION_TYPE,
/** 包的声明 */
PACKAGE
}
1.两阶段提交/XA
XA是由X/Open组织提出的分布式事务的规范,XA规范主要定义了(全局)事务管理器™和(局部)资源管理器(RM)之间的接口。本地的数据库如mysql在XA中扮演的是RM角色。
XA一共分为两阶段:
第一阶段(prepare):即所有的参与者RM准备执行事务并锁住需要的资源。参与者ready时,向TM报告已准备就绪。
第二阶段 (commit/rollback):当事务管理者™确认所有参与者(RM)都ready后,向所有参与者发送commit命令。
目前主流的数据库基本都支持XA事务,包括mysql、oracle、sqlserver、postgre
XA 事务由一个或多个资源管理器(RM)、一个事务管理器(TM)和一个应用程序(ApplicationProgram)组成。
XA事务的特点是:简单易理解,开发较容易。对资源进行了长时间的锁定,并发度低。
2.SAGA
Saga其核心思想是将长事务拆分为多个本地短事务,由Saga事务协调器协调,如果正常结束那就正常完成,如果某个步骤失败,则根据相反顺序一次调用补偿操作。
SAGA事务的特点:
转账作为例子,通常会在Try里面冻结金额,但不扣款,Confirm里面扣款,Cancel里面解冻金额.
TCC特点如下:
5.事务消息
该事务消息本质上是把本地消息表放到RocketMQ上,解决生产端的消息发送与本地事务执行的原子性问题。
事务消息发送及提交:
事务消息特点如下:
6.最大努力通知
可靠消息一致性,发起通知方需要保证将消息发出去,并且将消息发到接收通知方,消息的可靠性关键由发起通知方来保证。
最大努力通知,发起通知方尽最大的努力将业务处理结果通知为接收通知方,但是可能消息接收不到,此时需要接收通知方主动调用发起通知方的接口查询业务处理结果,通知的可靠性关键在接收通知方。
Map接口和Collection接口是所有集合框架的父接口:
Map是一个键值对集合,存储键、值和之间的映射。 Key无序,唯一;value 不要求有序,允许重复。Map没有继承于Collection接口,从Map集合中检索元素时,只要给出键对象,就会返回对应的值对象。
Map 的常用实现类:HashMap、TreeMap、HashTable、LinkedHashMap、ConcurrentHashMap
Collection
Map
可以使用 Collections. unmodifiableCollection(Collection c) 方法来创建一个只读集合,这样改变集合的任何操作都会抛出 Java. lang. UnsupportedOperationException 异常。
ArrayList的add,modCount是记录ArrayList被修改次数的,此add方法的参数就是一个被加元素E e。
public boolean add(E e) {
modCount++;
add(e, elementData, size);
return true;
}
然后是另一个add方法,所传的值是被加元素、当前数组和当前数组的元素个数。它判断当前数组是不是满的,判断元素个数是否等于当前容量。如果当前空间是满的,就需要扩容了,grow函数就是扩容函数了,扩容后再将被加元素加到数组中。
private void add(E e, Object[] elementData, int s) {
// 判断元素个数是否等于当前容量
if (s == elementData.length)
elementData = grow();
elementData[s] = e;
size = s + 1;
}
ArrayList的特点:
1.ArrayList的底层数据结构是数组,所以查找遍历快,增删慢。
2.ArrayList可随着元素的增长而自动扩容,正常扩容的话,每次扩容到原来的1.5倍。
3.ArrayList的线程是不安全的。
ArrayList的扩容:
扩容可分为两种情况:
第一种情况,当ArrayList的容量为0时,此时添加元素的话,需要扩容,三种构造方法创建的ArrayList在扩容时略有不同:
1.无参构造,创建ArrayList后容量为0,添加第一个元素后,容量变为10,此后若需要扩容,则正常扩容。
2.传容量构造,当参数为0时,创建ArrayList后容量为0,添加第一个元素后,容量为1,此时ArrayList是满的,下次添加元素时需正常扩容。
3.传列表构造,当列表为空时,创建ArrayList后容量为0,添加第一个元素后,容量为1,此时ArrayList是满的,下次添加元素时需正常扩容。
第二种情况,当ArrayList的容量大于0,并且ArrayList是满的时,此时添加元素的话,进行正常扩容,每次扩容到原来的1.5倍。
这两个类都实现了 List 接口(List 接口继承了 Collection 接口),他们都是有序集合
Vector类的所有方法都是同步的。可以由两个线程安全地访问一个Vector对象、但是一个线程访问Vector的话代码要在同步操作上耗费大量的时间。
Arraylist不是同步的,所以在不需要保证线程安全时时建议使用Arraylist。
ArrayList 不是线程安全的,如果遇到多线程场景,可以通过 Collections 的 synchronizedList 方法将其转换成线程安全的容器后再使用。例如像下面这样:
List<String> synchronizedList = Collections.synchronizedList(list);
synchronizedList.add("aaa");
synchronizedList.add("bbb");
List , Set 都是继承自Collection 接口
List 特点:一个有序(元素存入集合的顺序和取出的顺序一致)容器,元素可以重复,可以插入多个null元素,元素都有索引。常用的实现类有 ArrayList、LinkedList 和 Vector。
Set 特点:一个无序(存入和取出顺序有可能不一致)容器,不可以存储重复元素,只允许存入一个null元素,必须保证元素唯一性。Set 接口常用实现类是 HashSet、LinkedHashSet 以及 TreeSet。
另外 List 支持for循环,也就是通过下标来遍历,也可以用迭代器,但是set只能用迭代,因为他无序,无法用下标来取得想要的值。
Set和List对比
Set:检索元素效率低下,删除和插入效率高,插入和删除不会引起元素位置改变。
List:和数组类似,List可以动态增长,查找元素效率高,插入删除元素效率低,因为会引起其他元素位置改变
HashMap 基于 Hash 算法实现的
需要注意Jdk 1.8中对HashMap的实现做了优化,当链表中的节点数据超过八个之后,该链表会转为红黑树来提高查询效率,从原来的O(n)到O(logn)
JDK1.8之前采用的是拉链法。拉链法:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。
JDK1.8之后
相比于之前的版本,jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。
比较:扩容时候又扩容因子:0.75,数组长度为12,默认16.
①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容;
②.每次扩展的时候,都是扩展2倍;扩容因子0.75.
③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍的位置。
在putVal()中,我们看到在这个函数里面使用到了2次resize()方法,resize()方法表示的在进行第一次初始化时会对其进行扩容,或者当该数组的实际大小大于其临界值值(第一次为12),这个时候在扩容的同时也会伴随的桶上面的元素进行重新分发,这也是JDK1.8版本的一个优化的地方,
在1.7中,扩容之后需要重新去计算其Hash值,根据Hash值对其进行分发,但在1.8版本中,则是根据在同一个桶的位置中进行判断(e.hash & oldCap)是否
为0,重新进行hash分配后,该元素的位置要么停留在原始位置,要么移动到原始位置+增加的数组大小这个位置上。(移动到原偏移量两倍的位置)
对于在Map中插入、删除和定位元素这类操作,HashMap是最好的选择。然而,假如你需要对一个有序的key集合进行遍历,TreeMap是更好的选择。基于你的collection的大小,也许向HashMap中添加元素会更快,将map换为TreeMap进行有序key的遍历。
ConcurrentHashMap 和 Hashtable 的区别主要体现在实现线程安全的方式上不同。
JDK1.7
首先将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。
在JDK1.7中,ConcurrentHashMap采用Segment + HashEntry的方式进行实现,结构如下:
一个 ConcurrentHashMap 里包含一个 Segment 数组。Segment 的结构和HashMap类似,是一种数组和链表结构,一个 Segment 包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素,每个 Segment 守护着一个HashEntry数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment的锁。
JDK1.8
在JDK1.8中,放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,synchronized只锁定当前链表或红黑二叉树的首节点,这样只要hash不冲突,就不会产生并发,效率又提升N倍。
附加源码,有需要的可以看看
插入元素过程(建议去看看源码):
如果相应位置的Node还没有初始化,则调用CAS插入相应的数据;
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
如果相应位置的Node不为空,且当前该节点不处于移动状态,则对该节点加synchronized锁,如果该节点的hash不小于0,则遍历链表更新节点或插入新节点;
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key, value, null);
break;
}
}
}
Java异常是Java提供的一种识别及响应错误的一致性机制。
Java异常机制可以使程序中异常处理代码和正常业务代码分离,保证程序代码更加优雅,并提高程序健壮性。在有效使用异常的情况下,异常能清晰的回答what, where, why这3个问题:异常类型回答了“什么”被抛出,异常堆栈跟踪回答了“在哪”抛出,异常信息回答了“为什么”会抛出。
Java异常架构
Throwable 包含两个子类:Error(错误)和 Exception(异常),它们通常用于指示发生了异常情况。
Throwable 包含了其线程创建时线程执行堆栈的快照,它提供了 printStackTrace() 等接口用于获取堆栈跟踪数据等信息。
特点:此类错误一般表示代码运行时 JVM 出现问题。通常有 Virtual MachineError(虚拟机运行错误)、NoClassDefFoundError(类定义错误)等。比如 OutOfMemoryError:内存不足错误;StackOverflowError:栈溢出错误。此类错误发生时,JVM 将终止线程。
这些错误是不受检异常,非代码性错误。因此,当此类错误发生时,应用程序不应该去处理此类错误。按照Java惯例,我们是不应该实现任何新的Error子类的!
Exception(异常)
程序本身可以捕获并且可以处理的异常。Exception 这种异常又分为两类:运行时异常和编译时异常。
运行时异常
定义:RuntimeException 类及其子类,表示 JVM 在运行期间可能出现的异常。
特点:Java 编译器不会检查它。也就是说,当程序中可能出现这类异常时,倘若既"没有通过throws声明抛出它",也"没有用try-catch语句捕获它",还是会编译通过。比如NullPointerException空指针异常、ArrayIndexOutBoundException数组下标越界异常、ClassCastException类型转换异常、ArithmeticExecption算术异常。此类异常属于不受检异常,一般是由程序逻辑错误引起的,在程序中可以选择捕获处理,也可以不处理。虽然 Java 编译器不会检查运行时异常,但是我们也可以通过 throws 进行声明抛出,也可以通过 try-catch 对它进行捕获处理。如果产生运行时异常,则需要通过修改代码来进行避免。例如,若会发生除数为零的情况,则需要通过代码避免该情况的发生!
RuntimeException 异常会由 Java 虚拟机自动抛出并自动捕获(就算我们没写异常捕获语句运行时也会抛出错误!!),此类异常的出现绝大数情况是代码本身有问题应该从逻辑上去解决并改进代码。
编译时异常
定义: Exception 中除 RuntimeException 及其子类之外的异常。
特点: Java 编译器会检查它。如果程序中出现此类异常,比如 ClassNotFoundException(没有找到指定的类异常),IOException(IO流异常),要么通过throws进行声明抛出,要么通过try-catch进行捕获处理,否则不能通过编译。在程序中,通常不会自定义该类异常,而是直接使用系统提供的异常类。该异常我们必须手动在代码里添加捕获语句来处理该异常。
受检异常
编译器要求必须处理的异常。正确的程序在运行过程中,经常容易出现的、符合预期的异常情况。一旦发生此类异常,就必须采用某种方式进行处理。除 RuntimeException 及其子类外,其他的 Exception 异常都属于受检异常。编译器会检查此类异常,也就是说当编译器检查到应用中的某处可能会此类异常时,将会提示你处理本异常——要么使用try-catch捕获,要么使用方法签名中用 throws 关键字抛出,否则编译不通过。
非受检异常
编译器不会进行检查并且不要求必须处理的异常,也就说当程序中出现此类异常时,即使我们没有try-catch捕获它,也没有使用throws抛出该异常,编译也会正常通过。该类异常包括运行时异常(RuntimeException极其子类)和错误(Error)。
Error 类型的错误通常为虚拟机相关错误,如系统崩溃,内存不足,堆栈溢出等,编译器不会对这类错误进行检测,JAVA 应用程序也不应对这类错误进行捕获,一旦这类错误发生,通常应用程序会被终止,仅靠应用程序本身无法恢复;
Exception 类的错误是可以在应用程序中进行捕获并处理的,通常遇到这种错误,应对其进行处理,使应用程序可以继续正常运行。
运行时异常包括 RuntimeException 类及其子类,表示 JVM 在运行期间可能出现的异常。 Java 编译器不会检查运行时异常。
受检异常是Exception 中除 RuntimeException 及其子类之外的异常。 Java 编译器会检查受检异常。
RuntimeException异常和受检异常之间的区别:是否强制要求调用者必须处理此异常,如果强制要求调用者必须进行处理,那么就使用受检异常,否则就选择非受检异常(RuntimeException)。一般来讲,如果没有特殊的要求,我们建议使用RuntimeException异常。
在一个方法中如果发生异常,这个方法会创建一个异常对象,并转交给 JVM,该异常对象包含异常名称,异常描述以及异常发生时应用程序的状态。创建异常对象并转交给 JVM 的过程称为抛出异常。可能有一系列的方法调用,最终才进入抛出异常的方法,这一系列方法调用的有序列表叫做调用栈。
JVM 会顺着调用栈去查找看是否有可以处理异常的代码,如果有,则调用异常处理代码。当 JVM 发现可以处理异常的代码时,会把发生的异常传递给它。如果 JVM 没有找到可以处理该异常的代码块,JVM 就会将该异常转交给默认的异常处理器(默认处理器为 JVM 的一部分),默认异常处理器打印出异常信息并终止应用程序。
java 中的异常处理除了包括捕获异常和处理异常之外,还包括声明异常和拋出异常,可以通过 throws 关键字在方法上声明该方法要拋出的异常,或者在方法内部通过 throw 拋出异常对象。
throws 关键字和 throw 关键字在使用上的几点区别如下:
NoClassDefFoundError 是一个 Error 类型的异常,是由 JVM 引起的,不应该尝试捕获这个异常。
引起该异常的原因是 JVM 或 ClassLoader 尝试加载某类时在内存中找不到该类的定义,该动作发生在运行期间,即编译时该类存在,但是在运行时却找不到了,可能是变异后被删除了等原因导致;
ClassNotFoundException 是一个受查异常,需要显式地使用 try-catch 对其进行捕获和处理,或在方法签名中用 throws 关键字进行声明。当使用 Class.forName, ClassLoader.loadClass 或 ClassLoader.findSystemClass 动态加载类到内存的时候,通过传入的类路径参数没有找到该类,就会抛出该异常;另一种抛出该异常的可能原因是某个类已经由一个类加载器加载至内存中,另一个加载器又尝试去加载它。
答:catch 可以省略
原因
更为严格的说法其实是:try只适合处理运行时异常,try+catch适合处理运行时异常+普通异常。也就是说,如果你只用try去处理普通异常却不加以catch处理,编译是通不过的,因为编译器硬性规定,普通异常如果选择捕获,则必须用catch显示声明以便进一步处理。而运行时异常在编译时没有如此规定,所以catch可以省略,你加上catch编译器也觉得无可厚非。
理论上,编译器看任何代码都不顺眼,都觉得可能有潜在的问题,所以你即使对所有代码加上try,代码在运行期时也只不过是在正常运行的基础上加一层皮。但是你一旦对一段代码加上try,就等于显示地承诺编译器,对这段代码可能抛出的异常进行捕获而非向上抛出处理。如果是普通异常,编译器要求必须用catch捕获以便进一步处理;如果运行时异常,捕获然后丢弃并且+finally扫尾处理,或者加上catch捕获以便进一步处理。
至于加上finally,则是在不管有没捕获异常,都要进行的“扫尾”处理。
ClassCastException(类转换异常)
IndexOutOfBoundsException(数组越界)
NullPointerException(空指针)
ArrayStoreException(数据存储异常,操作数组时类型不一致)
还有IO操作的BufferOverflowException异常
java.lang.IllegalAccessError:违法访问错误。当一个应用试图访问、修改某个类的域(Field)或者调用其方法,但是又违反域或方法的可见性声明,则抛出该异常。
java.lang.InstantiationError:实例化错误。当一个应用试图通过Java的new操作符构造一个抽象类或者接口时抛出该异常.
java.lang.OutOfMemoryError:内存不足错误。当可用内存不足以让Java虚拟机分配给一个对象时抛出该错误。
java.lang.StackOverflowError:堆栈溢出错误。当一个应用递归调用的层次太深而导致堆栈溢出或者陷入死循环时抛出该错误。
java.lang.ClassCastException:类造型异常。假设有类A和B(A不是B的父类或子类),O是A的实例,那么当强制将O构造为类B的实例时抛出该异常。该异常经常被称为强制类型转换异常。
java.lang.ClassNotFoundException:找不到类异常。当应用试图根据字符串形式的类名构造类,而在遍历CLASSPAH之后找不到对应名称的class文件时,抛出该异常。
java.lang.ArithmeticException:算术条件异常。譬如:整数除零等。
java.lang.ArrayIndexOutOfBoundsException:数组索引越界异常。当对数组的索引值为负数或大于等于数组大小时抛出。
java.lang.IndexOutOfBoundsException:索引越界异常。当访问某个序列的索引值小于0或大于等于序列大小时,抛出该异常。
java.lang.InstantiationException:实例化异常。当试图通过newInstance()方法创建某个类的实例,而该类是一个抽象类或接口时,抛出该异常。
java.lang.NoSuchFieldException:属性不存在异常。当访问某个类的不存在的属性时抛出该异常。
java.lang.NoSuchMethodException:方法不存在异常。当访问某个类的不存在的方法时抛出该异常。
java.lang.NullPointerException:空指针异常。当应用试图在要求使用对象的地方使用了null时,抛出该异常。譬如:调用null对象的实例方法、访问null对象的属性、计算null对象的长度、使用throw语句抛出null等等。
java.lang.NumberFormatException:数字格式异常。当试图将一个String转换为指定的数字类型,而该字符串确不满足数字类型要求的格式时,抛出该异常。
java.lang.StringIndexOutOfBoundsException:字符串索引越界异常。当使用索引值访问某个字符串中的字符,而该索引值小于0或大于等于序列大小时,抛出该异常。
如果在 catch 子句中使用 Throwable ,它不仅会捕获所有异常,也将捕获所有的错误。JVM 抛出错误,指出不应该由应用程序处理的严重问题。 典型的例子是 OutOfMemoryError 或者 StackOverflowError 。两者都是由应用程序控制之外的情况引起的,无法处理。
所以,最好不要捕获 Throwable ,除非你确定自己处于一种特殊的情况下能够处理错误。
7. 不要忽略异常。
8. 不要记录并抛出异常,会多输出日志。
try {
new Long("xyz");
} catch (NumberFormatException e) {
log.error(e);
throw e;
}
public void wrapException(String input) throws MyBusinessException {
try {
// do something
} catch (NumberFormatException e) {
throw new MyBusinessException("A message that describes the error.", e);
}
}
并发编程三要素(线程的安全性问题体现在):
原子性:原子,即一个不可再被分割的颗粒。原子性指的是一个或多个操作要么全部执行成功要么全部执行失败。
可见性:一个线程对共享变量的修改,另一个线程能够立刻看到。(synchronized,volatile)
有序性:程序执行的顺序按照代码的先后顺序执行。(处理器可能会对指令进行重排序)
出现线程安全问题的原因:
解决办法:
windows上面用任务管理器看,linux下可以用 top 这个工具看。
找出cpu耗用厉害的进程pid, 终端执行top命令,然后按下shift+p 查找出cpu利用最厉害的pid号
根据上面第一步拿到的pid号,top -H -p pid 。然后按下shift+p,查找出cpu利用率最厉害的线程号,比如top -H -p 1328
将获取到的线程号转换成16进制,去百度转换一下就行
使用jstack工具将进程信息打印输出,jstack pid号 > /tmp/t.dat,比如jstack 31365 > /tmp/t.dat
编辑/tmp/t.dat文件,查找线程号对应的信息
死锁是指两个或两个以上的进程(线程)在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程(线程)称为死锁进程(线程)。
多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。
继承 Thread 类
实现 Runnable 接口
public class RunnableTest {
public static void main(String[] args) {
MyRunnable myRunnable = new MyRunnable();
Thread thread = new Thread(myRunnable);
thread.start();
System.out.println(Thread.currentThread().getName() + " main()方法执行完成");
}
}
实现 Callable 接口
8. 创建实现Callable接口的类myCallable
9. 以myCallable为参数创建FutureTask对象
10. 将FutureTask作为参数创建Thread对象
11. 调用线程对象的start()方法
public class CallableTest {
public static void main(String[] args) {
FutureTask<Integer> futureTask = new FutureTask<Integer>(new MyCallable());
Thread thread = new Thread(futureTask);
thread.start();
try {
Thread.sleep(1000);
System.out.println("返回结果 " + futureTask.get());
} catch (ExecutionException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " main()方法执行完成");
}
}
使用 Executors 工具类创建线程池
Executors提供了一系列工厂方法用于创先线程池,返回的线程池都实现了ExecutorService接口。
主要有newFixedThreadPool,newCachedThreadPool,newSingleThreadExecutor,newScheduledThreadPool.
public class SingleThreadExecutorTest {
public static void main(String[] args) {
ExecutorService executorService = Executors.newSingleThreadExecutor();
MyRunnable runnableTest = new MyRunnable();
for (int i = 0; i < 5; i++) {
executorService.execute(runnableTest);
}
System.out.println("线程任务开始执行");
executorService.shutdown();
}
}
相同点
都是接口
都可以编写多线程程序
都采用Thread.start()启动线程
主要区别
注:Callalbe接口支持返回执行结果,需要调用FutureTask.get()得到,此方法会阻塞主进程的继续往下执行,如果不调用不会阻塞。
阻塞的情况分三种:
(一). 等待阻塞:运行状态中的线程执行 wait()方法,JVM会把该线程放入等待队列(waitting queue)中,使本线程进入到等待阻塞状态;
(二). 同步阻塞:线程在获取 synchronized 同步锁失败(因为锁被其它线程所占用),,则JVM会把该线程放入锁池(lock pool)中,线程会进入同步阻塞状态;
(三). 其他阻塞: 通过调用线程的 sleep()或 join()或发出了 I/O 请求时,线程会进入到阻塞状态。当 sleep()状态超时、join()等待线程终止或者超时、或者 I/O 处理完毕时,线程重新转入就绪状态。
计算机通常只有一个 CPU,在任意时刻只能执行一条机器指令,每个线程只有获得CPU 的使用权才能执行指令。所谓多线程的并发运行,其实是指从宏观上看,各个线程轮流获得 CPU 的使用权,分别执行各自的任务。在运行池中,会有多个处于就绪状态的线程在等待 CPU,JAVA 虚拟机的一项任务就是负责线程的调度,线程调度是指按照特定机制为多个线程分配 CPU 的使用权。
有两种调度模型:分时调度模型和抢占式调度模型。
分时调度模型是指让所有的线程轮流获得 cpu 的使用权,并且平均分配每个线程占用的 CPU 的时间片这个也比较好理解。
Java虚拟机采用抢占式调度模型,是指优先让可运行池中优先级高的线程占用CPU,如果可运行池中的线程优先级相同,那么就随机选择一个线程,使其占用CPU。处于运行状态的线程会一直运行,直至它不得不放弃 CPU。
线程调度器选择优先级最高的线程运行,但是,如果发生以下情况,就会终止线程的运行:
(1)线程体中调用了 yield 方法让出了对 cpu 的占用权利
(2)线程体中调用了 sleep 方法使线程进入睡眠状态
(3)线程由于 IO 操作受到阻塞
(4)另外一个更高优先级线程出现
(5)在支持时间片的系统中,该线程的时间片用完
线程调度器是一个操作系统服务,它负责为 Runnable 状态的线程分配 CPU 时间。一旦我们创建一个线程并启动它,它的执行便依赖于线程调度器的实现。
时间分片是指将可用的 CPU 时间分配给可用的 Runnable 线程的过程。分配 CPU 时间可以基于线程优先级或者线程等待的时间。
线程调度并不受到 Java 虚拟机控制,所以由应用程序来控制它是更好的选择(也就是说不要让你的程序依赖于线程的优先级)。
(1) wait():使一个线程处于等待(阻塞)状态,并且释放所持有的对象的锁;
(2)sleep():使一个正在运行的线程处于睡眠状态,是一个静态方法,调用此方法要处理 InterruptedException 异常,不释放锁。
(3)notify():唤醒一个处于等待状态的线程,当然在调用此方法的时候,并不能确切的唤醒某一个等待状态的线程,而是由 JVM 确定唤醒哪个线程,而且与优先级无关;
(4)notityAll():唤醒所有处于等待状态的线程,该方法并不是将对象的锁给所有线程,而是让它们竞争,只有获得锁的线程才能进入就绪状态;
两者都可以暂停线程的执行
Java中,任何对象都可以作为锁,并且 wait(),notify()等方法用于等待对象的锁或者唤醒线程,在 Java 的线程中并没有可供任何对象使用的锁,所以任意对象调用方法一定定义在Object类中。
wait(), notify()和 notifyAll()这些方法在同步代码块中调用
有的人会说,既然是线程放弃对象锁,那也可以把wait()定义在Thread类里面啊,新定义的线程继承于Thread类,也不需要重新定义wait()方法的实现。然而,这样做有一个非常大的问题,一个线程完全可以持有很多锁,你一个线程放弃锁的时候,到底要放弃哪个锁?当然了,这种设计并不是不能实现,只是管理起来更加复杂。
综上所述,wait()、notify()和notifyAll()方法要定义在Object类中。
当一个线程需要调用对象的 wait()方法的时候,这个线程必须拥有该对象的锁,接着它就会释放这个对象锁并进入等待状态直到其他线程调用这个对象上的 notify()方法。
同样的,当一个线程需要调用对象的 notify()方法时,它会释放这个对象的锁,以便其他在等待的线程就可以得到这个对象锁。由于所有的这些方法都需要线程持有对象的锁,这样就只能通过同步来实现,所以他们只能在同步方法或者同步块中被调用。
使当前线程从执行状态(运行状态)变为可执行态(就绪状态)。
当前线程到了就绪状态,那么接下来哪个线程会从就绪状态变成执行状态呢?可能是当前线程,也可能是其他线程,看系统的分配了。
(1) sleep()方法给其他线程运行机会时不考虑线程的优先级,因此会给低优先级的线程以运行的机会;yield()方法只会给相同优先级或更高优先级的线程以运行的机会;
(2) 线程执行 sleep()方法后转入阻塞(blocked)状态,而执行 yield()方法后转入就绪(ready)状态;
(3)sleep()方法声明抛出 InterruptedException,而 yield()方法没有声明任何异常;
(4)sleep()方法比 yield()方法(跟操作系统 CPU 调度相关)具有更好的可移植性,通常不建议使用yield()方法来控制并发线程的执行。
在java中有以下3种方法可以终止正在运行的线程:
interrupt:用于中断线程。调用该方法的线程的状态为将被置为”中断”状态。
注意:线程中断仅仅是置线程的中断状态位,不会停止线程。需要用户自己去监视线程的状态为并做处理。支持线程中断的方法(也就是线程中断后会抛出interruptedException 的方法)就是在监视线程的中断状态,一旦线程的中断状态被置为“中断状态”,就会抛出中断异常。
interrupted:是静态方法,查看当前中断信号是true还是false并且清除中断信号。如果一个线程被中断了,第一次调用 interrupted 则返回 true,第二次和后面的就返回 false 了。
isInterrupted:查看当前中断信号是true还是false
首先 ,wait()、notify() 方法是针对对象的,调用任意对象的 wait()方法都将导致线程阻塞,阻塞的同时也将释放该对象的锁,相应地,调用任意对象的 notify()方法则将随机解除该对象阻塞的线程,但它需要重新获取该对象的锁,直到获取成功才能往下执行;
其次,wait、notify 方法必须在 synchronized 块或方法中被调用,并且要保证同步块或方法的锁对象与调用 wait、notify 方法的对象是同一个,如此一来在调用 wait 之前当前线程就已经成功获取某对象的锁,执行 wait 阻塞后当前线程就将之前获取的对象锁释放。
如果线程调用了对象的 wait()方法,那么线程便会处于该对象的等待池中,等待池中的线程不会去竞争该对象的锁。
notifyAll() 会唤醒所有的线程,notify() 只会唤醒一个线程。
notifyAll() 调用后,会将全部线程由等待池移到锁池,然后参与锁的竞争,竞争成功则继续执行,如果不成功则留在锁池等待锁被释放后再次参与竞争。而 notify()只会唤醒一个线程,具体唤醒哪一个线程由虚拟机控制。
在两个线程间共享变量即可实现共享。
Java 里面进行多线程通信的主要方式就是共享内存的方式,共享内存主要的关注点有两个:可见性和有序性原子性。Java 内存模型(JMM)解决了可见性和有序性的问题,而锁解决了原子性的问题。
方法一:
public class MyData {
private int j=0;
public synchronized void add(){
j++;
System.out.println("线程"+Thread.currentThread().getName()+"j 为:"+j);
}
public synchronized void dec(){
j--;
System.out.println("线程"+Thread.currentThread().getName()+"j 为:"+j);
}
public int getData(){
return j;
}
}
public class TestThread {
public static void main(String[] args) {
final MyData data = new MyData();
for(int i=0;i<2;i++){
new Thread(new Runnable(){
public void run() {
data.add();
}
}).start();
new Thread(new Runnable(){
public void run() {
data.dec();
}
}).start();
}
}
}
可以通过中断 和 共享变量的方式实现线程间的通讯和协作。
Java中线程通信协作的最常见的两种方式:
一.syncrhoized加锁的线程的Object类的wait()/notify()/notifyAll()
二.ReentrantLock类加锁的线程的Condition类的await()/signal()/signalAll()
线程间直接的数据交换:
三.通过管道进行线程间通信:1)字节流;2)字符流
当一个线程对共享的数据进行操作时,应使之成为一个”原子操作“,即在没有完成相关操作之前,不允许其他线程打断它,否则,就会破坏数据的完整性,必然会得到错误的处理结果,这就是线程的同步。
线程互斥是指对于共享的进程系统资源,在各单个线程访问时的排它性。当有若干个线程都要使用某一共享资源时,任何时刻最多只允许一个线程去使用,其它要使用该资源的线程必须等待,直到占用资源者释放该资源。线程互斥可以看成是一种特殊的线程同步。
实现线程同步的方法
(1)如果使用的是无界队列 LinkedBlockingQueue,也就是无界队列的话,没关系,继续添加任务到阻塞队列中等待执行,因为 LinkedBlockingQueue 可以近乎认为是一个无穷大的队列,可以无限存放任务
(2)如果使用的是有界队列比如 ArrayBlockingQueue,任务首先会被添加到ArrayBlockingQueue 中,ArrayBlockingQueue 满了,会根据maximumPoolSize 的值增加线程数量,如果增加了线程数量还是处理不过来,ArrayBlockingQueue 继续满,那么则会使用拒绝策略RejectedExecutionHandler 处理满了的任务,默认是 AbortPolicy
方法一:使用原子类、java原子类的实现都在java.util.concurrent.atomic包下,基本是通过自旋+原子CAS操作实现的,不会出现安全问题。AtomicInteger、AtomicReference、AtomicInteger、AtomicIntegerArray、AtomicIntegerFieldUpdaterImpl、针对累加这种特殊的业务场景,JUC提供了专门的LongAdder累加器,它比AtomicLong原子类性能更高,在高并发的情况下,多线程同时执行add()函数,AtomicLong会因为大量线程而不断自旋导致性能下降,但是LongAdder却能保持高性能。详细见:https://juejin.cn/post/7201009854524375095![在这里插入图片描述](https://img-blog.csdnimg.cn/8cb10ca596d94c95a9b733275c5543cf.png其底层原理比较复杂,涉及到数据分片,哈希优化,去伪共享,非精确求和等各种优化手段。方法二:加锁:自动锁 synchronized,手动锁 Lock。
AtomicInteger:自旋 + CAS操作来实现一个线程安全的累加器。原理:
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
private volatile int value;
static {
try {
valueOffset = unsafe.objectFieldOffset(Accumulator.class.getDeclaredField("value"));
} catch (Exception ex) {
throw new Error(ex);
}
}
public void increment_cas(){
boolean success = false;
while(!success){
int oldValue = value;
int newValue = oldValue + 1;
success = unsafe.compareAndSwapInt(this, valueOffset, oldValue, newValue);
}
}
线程类的构造方法、静态块是被 new这个线程类所在的线程所调用的,而 run 方法里面的代码才是被线程自身所调用的。
如果说上面的说法让你感到困惑,那么我举个例子,假设 Thread2 中 new 了Thread1,main 函数中 new 了 Thread2,那么:
(1)Thread2 的构造方法、静态块是 main 线程调用的,Thread2 的 run()方法是Thread2 自己调用的
(2)Thread1 的构造方法、静态块是 Thread2 调用的,Thread1 的 run()方法是Thread1 自己调用的
在 Java 中,synchronized 关键字是用来控制线程同步的,就是在多线程的环境下,控制 synchronized 代码段不被多个线程同时执行。synchronized 可以修饰类、方法、变量。
另外,在 Java 早期版本中,synchronized属于重量级锁,效率低下,因为监视器锁(monitor)是依赖于底层的操作系统的 Mutex Lock 来实现的,Java 的线程是映射到操作系统的原生线程之上的。如果要挂起或者唤醒一个线程,都需要操作系统帮忙完成,而操作系统实现线程之间的切换时需要从用户态转换到内核态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高,这也是为什么早期的 synchronized 效率低的原因。庆幸的是在 Java 6 之后 Java 官方对从 JVM 层面对synchronized 较大优化,所以现在的 synchronized 锁效率也优化得很不错了。JDK1.6对锁的实现引入了大量的优化,如自旋锁、适应性自旋锁、锁消除、锁粗化、偏向锁、轻量级锁等技术来减少锁操作的开销。
synchronized是Java中的一个关键字,要通过javap命令,查看相应的字节码文件。synchronized关键字毕竟是jvm底层实现的,会设计用户态和内核态的切换,cpu会消耗更多的时间在线程调度上。
可以看出在执行同步代码块之前之后都有一个monitor字样,其中前面的是monitorenter,后面的是离开monitorexit,不难想象一个线程也执行同步代码块,首先要获取锁,而获取锁的过程就是monitorenter ,在执行完代码块之后,要释放锁,释放锁就是执行monitorexit指令。
为什么会有两个monitorexit呢?
这个主要是防止在同步代码块中线程因异常退出,而锁没有得到释放,这必然会造成死锁(等待的线程永远获取不到锁)。因此最后一个monitorexit是保证在异常情况下,锁也可以得到释放,避免死锁。
仅有ACC_SYNCHRONIZED这么一个标志,该标记表明线程进入该方法时,需要monitorenter,退出该方法时需要monitorexit。
synchronized可重入的原理
重入锁是指一个线程获取到该锁之后,该线程可以继续获得该锁。底层原理维护一个计数器,当线程获取该锁时,计数器加一,再次获得该锁时继续加一,释放锁时,计数器减一,当计数器值为0时,表明该锁未被任何线程所持有,其它线程可以竞争获取锁。
什么是自旋?
JDK版本高于1.6的时候,synchronized已经被做了CAS的优化,
很多 synchronized 里面的代码只是一些很简单的代码,执行时间非常快,此时等待的线程都加锁可能是一种不太值得的操作,因为线程阻塞涉及到用户态和内核态切换的问题。既然 synchronized 里面的代码执行得非常快,不妨让等待锁的线程不要被阻塞,而是在 synchronized 的边界做忙循环,这就是自旋。如果做了多次循环发现还没有获得锁,再阻塞,这样可能是一种更好的策略。
lock实现原理则是依赖于硬件,现代处理器都支持CAS指令,所谓CAS指令简单的来说Compare And Set,CPU循环执行指令直到得到所期望的结果,换句话来说就是当变量真实值不等于当前线程调用时的值的时候(说明其他线程已经将这个值改变),就不会赋予变量新的值。这样就保证了变量在多线程环境下的安全性。
在锁对象的对象头里面有一个 threadid 字段,在第一次访问的时候 threadid 为空,jvm 让其持有偏向锁,并将 threadid 设置为其线程 id,再次进入的时候会先判断 threadid 是否与其线程 id 一致,如果一致则可以直接使用此对象,如果不一致,则升级偏向锁为轻量级锁,通过自旋循环一定次数来获取锁,执行一定次数之后,如果还没有正常获取到要使用的对象,此时就会把锁从轻量级升级为重量级锁,此过程就构成了 synchronized 锁的升级。
锁的升级的目的:锁升级是为了减低了锁带来的性能消耗。在 Java 6 之后优化 synchronized 的实现方式,使用了偏向锁升级为轻量级锁再升级到重量级锁的方式,从而减低了锁带来的性能消耗。
(1)synchronized 是悲观锁,属于抢占式,会引起其他线程阻塞。
(2)volatile 提供多线程共享变量可见性和禁止指令重排序优化。
(3)CAS 是基于冲突检测的乐观锁(非阻塞)
synchronized 是java关键字,ReentrantLock 是类,这是二者的本质区别。既然 ReentrantLock 是类,那么它就提供了比synchronized 更多更灵活的特性,可以被继承、可以有方法、可以有各种各样的类变量
synchronized 早期的实现比较低效,对比 ReentrantLock,大多数场景性能都相差较大,但是在 Java 6 中对 synchronized 进行了非常多的改进。
相同点:两者都是可重入锁
两者都是可重入锁。“可重入锁”概念是:同一个线程每次获取锁,是可重复获取的,再次获取锁的计数器都自增1,所以要等到锁的计数器下降为0时才能释放锁。
主要区别如下:
Java中每一个对象都可以作为锁,这是synchronized实现同步的基础:
对于可见性,Java 提供了 volatile 关键字来保证可见性和禁止指令重排。 volatile 提供 happens-before 的保证,禁止指令重排,确保一个线程的修改能对其他线程是可见的。当一个共享变量被 volatile 修饰时,它会保证修改的值会立即被更新到主存,当有其他线程需要读取时,它会去内存中读取新值。
从实践角度而言,volatile 的一个重要作用就是和 CAS 结合,保证了原子性,详细的可以参见 java.util.concurrent.atomic 包下的类,比如 AtomicInteger。
volatile 常用于多线程环境下的单次操作(单次读或者单次写)。
只需要给instance的声明加上volatile关键字即可volatile关键字的一个作用是禁止指令重排,把instance声明为volatile之后,对它的写操作就会有一个内存屏障(什么是内存屏障?),这样,在它的赋值完成之前,就不用会调用读操作。注意:volatile阻止的不是singleton = newSingleton()这句话内部[1-2-3]的指令重排,而是保证了在一个写操作([1-2-3])完成之前,不会调用读操作(if (instance == null))。
关键字volatile的主要作用是使变量在多个线程间可见,但无法保证原子性,对于多个线程访问同一个实例变量需要加锁进行同步。
虽然volatile只能保证可见性不能保证原子性,但用volatile修饰long和double可以保证其操作原子性。
所以从Oracle Java Spec里面可以看到:
对于64位的long和double,如果没有被volatile修饰,那么对其操作可以不是原子的。在操作的时候,可以分成两步,每次对32位操作。
如果使用volatile修饰long和double,那么其读写都是原子操作
对于64位的引用地址的读写,都是原子操作
在实现JVM时,可以自由选择是否把读写long和double作为原子操作
推荐JVM实现为原子操作
Lock 接口比同步方法和同步块提供了更具扩展性的锁操作。他们允许更灵活的结构,可以具有完全不同的性质,并且可以支持多个相关类的条件对象。
它的优势有:
(1)可以使锁更公平,支持非公平锁(默认)和公平锁。synchronized 只支持非公平锁。
(2)可以使线程在等待锁的时候响应中断,lockInterruptibly
(3)可以让线程尝试获取锁,并在无法获取锁的时候立即返回或者等待一段时间,tryLock
(4)可以在不同的范围,以不同的顺序获取和释放锁。
整体上来说 Lock 是 synchronized 的扩展版,Lock 提供了无条件的、可轮询的(tryLock 方法)、定时的(tryLock 带参方法)、可中断的(lockInterruptibly)、可多条件队列的(newCondition 方法)锁操作。非公平锁的每个请求都会尝试获取锁,获取不到才放入队列。
悲观锁:总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。再比如 Java 里面的同步原语 synchronized 关键字的实现也是悲观锁。
乐观锁:顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库提供的类似于 write_condition 机制,其实都是提供的乐观锁。在 Java中 java.util.concurrent.atomic 包下面的原子变量类就是使用了乐观锁的一种实现方式 CAS 实现的。
乐观锁的实现方式:
1、使用版本标识来确定读到的数据与提交时的数据是否一致。提交后修改版本标识,不一致时可以采取丢弃和再次尝试的策略。
2、java 中的 Compare and Swap 即 CAS ,当多个线程尝试使用 CAS 同时更新同一个变量时,只有其中一个线程能更新变量的值,而其它线程都失败,失败的线程并不会被挂起,而是被告知这次竞争中失败,并可以再次尝试。 CAS 操作中包含三个操作数 —— 需要读写的内存位置(V)、进行比较的预期原值(A)和拟写入的新值(B)。如果内存位置 V 的值与预期原值 A 相匹配,那么处理器会自动将该位置值更新为新值 B。否则处理器不做任何操作。
CAS 是 compare and swap 的缩写,即我们所说的比较交换。
cas 是一种基于锁的操作,而且是乐观锁。在 java 中锁分为乐观锁和悲观锁。悲观锁是将资源锁住,等一个之前获得锁的线程释放锁之后,下一个线程才可以访问。而乐观锁采取了一种宽泛的态度,通过某种方式不加锁来处理资源,比如通过给记录加 version 来获取数据,性能较悲观锁有很大的提高。
CAS 操作包含三个操作数 —— 内存位置(V)、预期原值(A)和新值(B)。如果内存地址里面的值和 A 的值是一样的,那么就将内存里面的值更新成 B。CAS是通过无限循环来获取数据的,若果在第一轮循环中,a 线程获取地址里面的值被b 线程修改了,那么 a 线程需要自旋,到下次循环才有可能机会执行。
java.util.concurrent.atomic 包下的类大多是使用 CAS 操作来实现的(AtomicInteger,AtomicBoolean,AtomicLong)。
1、ABA 问题:
比如说一个线程 one 从内存位置 V 中取出 A,这时候另一个线程 two 也从内存中取出 A,并且 two 进行了一些操作变成了 B,然后 two 又将 V 位置的数据变成 A,这时候线程 one 进行 CAS 操作发现内存中仍然是 A,然后 one 操作成功。尽管线程 one 的 CAS 操作成功,但可能存在潜藏的问题。从 Java1.5 开始 JDK 的 atomic包里提供了一个类 AtomicStampedReference 来解决 ABA 问题。
2、循环时间长开销大:
对于资源竞争严重(线程冲突严重)的情况,CAS 自旋的概率会比较大,从而浪费更多的 CPU 资源,效率低于 synchronized。
3、只能保证一个共享变量的原子操作:
当对一个共享变量执行操作时,我们可以使用循环 CAS 的方式来保证原子操作,但是对多个共享变量操作时,循环 CAS 就无法保证操作的原子性,这个时候就可以用锁。
当线程 A 持有独占锁a,并尝试去获取独占锁 b 的同时,线程 B 持有独占锁 b,并尝试获取独占锁 a 的情况下,就会发生 AB 两个线程由于互相持有对方需要的锁,而发生的阻塞现象,我们称为死锁。
产生死锁的必要条件:
1、互斥条件:所谓互斥就是进程在某一时间内独占资源。
2、请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
3、不剥夺条件:进程已获得资源,在末使用完之前,不能强行剥夺。
4、循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
防止死锁可以采用以下的方法:
死锁:是指两个或两个以上的进程(或线程)在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。
活锁:任务或者执行者没有被阻塞,由于某些条件没有满足,导致一直重复尝试,失败,尝试,失败。
活锁和死锁的区别在于,处于活锁的实体是在不断的改变状态,这就是所谓的“活”, 而处于死锁的实体表现为等待;活锁有可能自行解开,死锁则不能。
饥饿:一个或者多个线程因为种种原因无法获得所需要的资源,导致一直无法执行的状态。
Java 中导致饥饿的原因:
1、高优先级线程吞噬所有的低优先级线程的 CPU 时间。
2、线程被永久堵塞在一个等待进入同步块的状态,因为其他线程总是能在它之前持续地对该同步块进行访问。
3、线程在等待一个本身也处于永久等待完成的对象(比如调用这个对象的 wait 方法),因为其他线程总是被持续地获得唤醒。
AQS的全称为(AbstractQueuedSynchronizer),这个类在java.util.concurrent.locks包下面。
AQS是一个用来构建锁和同步器的框架,使用AQS能简单且高效地构造出应用广泛的大量的同步器,比如ReentrantLock,Semaphore,ReentrantReadWriteLock,SynchronousQueue,FutureTask等等皆是基于AQS的。当然,我们自己也能利用AQS非常轻松容易地构造出符合我们自己需求的同步器。
原理分析:
AQS核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制AQS是用CLH队列锁实现的,即将暂时获取不到锁的线程加入到队列中。
CLH(Craig,Landin,and Hagersten)队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS是将每条请求共享资源的线程封装成一个CLH锁队列的一个结点(Node)来实现锁的分配。
AQS使用一个int成员变量来表示同步状态,通过内置的FIFO队列来完成获取资源线程的排队工作。AQS使用CAS对该同步状态进行原子操作实现对其值的修改。
private volatile int state;//共享变量,使用volatile修饰保证线程可见性
//返回同步状态的当前值
protected final int getState() {
return state;
}
// 设置同步状态的值
protected final void setState(int newState) {
state = newState;
}
//原子地(CAS操作)将同步状态值设置为给定值update如果当前同步状态的值等于expect(期望值)
protected final boolean compareAndSetState(int expect, int update) {
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}
AQS 对资源的共享方式
AQS定义两种资源共享方式
不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源 state 的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了。
同步器的设计是基于模板方法模式的,如果需要自定义同步器一般的方式是这样(模板方法模式很经典的一个应用):
这和我们以往通过实现接口的方式有很大区别,这是模板方法模式很经典的一个运用。
AQS使用了模板方法模式,自定义同步器时需要重写下面几个AQS提供的模板方法。
isHeldExclusively()//该线程是否正在独占资源。只有用到condition才需要去实现它。
tryAcquire(int)//独占方式。尝试获取资源,成功则返回true,失败则返回false。
tryRelease(int)//独占方式。尝试释放资源,成功则返回true,失败则返回false。
tryAcquireShared(int)//共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
tryReleaseShared(int)//共享方式。尝试释放资源,成功则返回true,失败则返回false。
以ReentrantLock为例,state初始化为0,表示未锁定状态。A线程lock()时,会调用tryAcquire()独占该锁并将state+1。此后,其他线程再tryAcquire()时就会失败,直到A线程unlock()到state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A线程自己是可以重复获取此锁的(state会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证state是能回到零态的。
再以CountDownLatch以例,任务分为N个子线程去执行,state也初始化为N(注意N要与线程个数一致)。这N个子线程是并行执行的,每个子线程执行完后countDown()一次,state会CAS(Compare and Swap)减1。等到所有子线程都执行完后(即state=0),会unpark()主调用线程,然后主调用线程就会从await()函数返回,继续后余动作。
一般来说,自定义同步器要么是独占方法,要么是共享方式,他们也只需实现tryAcquire-tryRelease、tryAcquireShared-tryReleaseShared中的一种即可。但AQS也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock。
ReadWriteLock 是一个读写锁接口,读写锁是用来提升并发程序性能的锁分离技术,ReentrantReadWriteLock 是 ReadWriteLock 接口的一个具体实现,实现了读写的分离,读锁是共享的,写锁是独占的,读和读之间不会互斥,读和写、写和读、写和写之间才会互斥,提升了读写的性能。
而读写锁有以下三个重要的特性:
(1)公平选择性:支持非公平(默认)和公平的锁获取方式,吞吐量还是非公平优于公平。
(2)重进入:读锁和写锁都支持线程重进入。
(3)锁降级:遵循获取写锁、获取读锁再释放写锁的次序,写锁能够降级成为读锁。
ConcurrentHashMap是Java中的一个线程安全且高效的HashMap实现。
JDK 1.6版本关键要素:
ConcurrentHashMap 把实际 map 划分成若干部分来实现它的可扩展性和线程安全。这种划分是使用并发度获得的,它是 ConcurrentHashMap 类构造函数的一个可选参数,默认值为 16,这样在多线程情况下就能避免争用。
在 JDK8 后,它摒弃了 Segment(锁段)的概念,而是启用了一种全新的方式实现,利用 CAS 算法。降低锁的粒度,变为node,锁只锁node数据节点,在hash不冲突的情况下,大大提升效率。
SynchronizedMap 一次锁住整张表来保证线程安全,所以每次只能有一个线程来访为 map。
ConcurrentHashMap 使用分段锁来保证在多线程下的性能。
ConcurrentHashMap 中则是一次锁住一个桶。ConcurrentHashMap 默认将hash 表分为 16 个桶,诸如 get,put,remove 等常用操作只锁当前需要用到的桶。
这样,原来只能一个线程进入,现在却能同时有 16 个写线程执行,并发性能的提升是显而易见的。
另外 ConcurrentHashMap 使用了一种不同的迭代方式。在这种迭代方式中,当iterator 被创建后集合再发生改变就不再是抛出ConcurrentModificationException,取而代之的是在改变时 new 新的数据从而不影响原有的数据,iterator 完成后再将头指针替换为新的数据 ,这样 iterator线程可以使用原来老的数据,而写线程也可以并发的完成改变。
CopyOnWriteArrayList 是一个并发容器。有很多人称它是线程安全的,我认为这句话不严谨,缺少一个前提条件,那就是非复合场景下操作它是线程安全的。
CopyOnWriteArrayList(免锁容器)的好处之一是当多个迭代器同时遍历和修改这个列表时,不会抛出 ConcurrentModificationException。在CopyOnWriteArrayList 中,写入将导致创建整个底层数组的副本,而源数组将保留在原地,使得复制的数组在被修改时,读取操作可以安全地执行。
通过源码分析,我们看出它的优缺点比较明显,所以使用场景也就比较明显。就是合适读多写少的场景。
CopyOnWriteArrayList 的缺点
1.由于写操作的时候,需要拷贝数组,会消耗内存,如果原数组的内容比较多的情况下,可能导致 young gc 或者 full gc。
2.不能用于实时读的场景,像拷贝数组、新增元素都需要时间,所以调用一个 set 操作后,读取到数据可能还是旧的,虽然CopyOnWriteArrayList 能做到最终一致性,但是还是没法满足实时性要求。
3.由于实际使用中可能没法保证 CopyOnWriteArrayList 到底要放置多少数据,万一数据稍微有点多,每次 add/set 都要重新复制数组,这个代价实在太高昂了。在高性能的互联网应用中,这种操作分分钟引起故障。
CopyOnWriteArrayList 的设计思想
ThreadLocal 是一个本地线程副本变量工具类,在每个线程中都创建了一个 ThreadLocalMap 对象,简单说 ThreadLocal 就是一种以空间换时间的做法,每个线程可以访问自己内部 ThreadLocalMap 对象内的 value。通过这种方式,避免资源在多线程间共享。
原理:线程局部变量是局限于线程内部的变量,属于线程自身所有,不在多个线程间共享。Java提供ThreadLocal类来支持线程局部变量,是一种实现线程安全的方式。但是在管理环境下(如 web 服务器)使用线程局部变量的时候要特别小心,在这种情况下,工作线程的生命周期比任何应用变量的生命周期都要长。任何线程局部变量一旦在工作完成后没有释放,Java 应用就存在内存泄露的风险。
经典的使用场景是为每个线程分配一个 JDBC 连接 Connection。这样就可以保证每个线程的都在各自的 Connection 上进行数据库的操作,不会出现 A 线程关了 B线程正在使用的 Connection; 还有 Session 管理 等问题。
ThreadLocalMap 中使用的 key 为 ThreadLocal 的弱引用,而 value 是强引用。所以,如果 ThreadLocal 没有被外部强引用的情况下,在垃圾回收的时候,key 会被清理掉,而 value 不会被清理掉。这样一来,ThreadLocalMap 中就会出现key为null的Entry。假如我们不做任何措施的话,value 永远无法被GC 回收,这个时候就可能会产生内存泄露。ThreadLocalMap实现中已经考虑了这种情况,在调用 set()、get()、remove() 方法的时候,会清理掉 key 为 null 的记录。使用完 ThreadLocal方法后 最好手动调用remove()方法。
ThreadLocal内存泄漏解决方案?
除了通过方法形参传入之外,还可以通过InheritableThreadLocal在子线程创建的时候从父线程中同步数据。
既然InheritableThreadLocal与ThreadLocal并没有多大区别,那它是怎么实现的父线程向子线程传递数据呢?其实就是把对Thread对象中的threadLocals变量的操作替换成了对inheritableThreadLocals变量的操作,就这么一点区别。
if (parent.inheritableThreadLocals != null) {
this.inheritableThreadLocals =
ThreadLocal.createInheritedMap(parent.inheritableThreadLocals);
}
就将父线程的Map中的数据传递到了子线程的Map中,并且由于子线程中的inheritableThreadLocals是一个新的对象,与父线程之间互不影响。
阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。
这两个附加的操作是:在队列为空时,获取元素的线程会等待队列变为非空。当队列满时,存储元素的线程会等待队列可用。
阻塞队列常用于生产者和消费者的场景,生产者是往队列里添加元素的线程,消费者是从队列里拿元素的线程。阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素。
DK7 提供了 7 个阻塞队列。分别是:
ArrayBlockingQueue :一个由数组结构组成的有界阻塞队列。
LinkedBlockingQueue :一个由链表结构组成的有界阻塞队列。
LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。
LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。
PriorityBlockingQueue :一个支持优先级排序的无界阻塞队列。
DelayQueue:一个使用优先级队列实现的无界阻塞队列。
SynchronousQueue:一个不存储元素的阻塞队列。
Java 5 之前实现同步存取时,可以使用普通的一个集合,然后在使用线程的协作和线程同步可以实现生产者,消费者模式,主要的技术就是用好,wait,notify,notifyAll,sychronized 这些关键字。而在 java 5 之后,可以使用阻塞队列来实现,此方式大大简少了代码量,使得多线程编程更加容易,安全方面也有保障。
BlockingQueue 接口是 Queue 的子接口,它的主要用途并不是作为容器,而是作为线程同步的的工具,因此他具有一个很明显的特性,当生产者线程试图向 BlockingQueue 放入元素时,如果队列已满,则线程被阻塞,当消费者线程试图从中取出一个元素时,如果队列为空,则该线程会被阻塞,正是因为它所具有这个特性,所以在程序中多个线程交替向 BlockingQueue 中放入元素,取出元素,它可以很好的控制线程之间的通信。
阻塞队列使用最经典的场景就是 socket 客户端数据的读取和解析,读取数据的线程不断将数据放入队列,然后解析线程不断从队列取数据解析。
阻塞队列最核心的功能是,能够可阻塞式的插入和删除队列元素。
当前队列为空时,会阻塞消费数据的线程,直至队列非空时,通知被阻塞的线程;当队列满时,会阻塞插入数据的线程,直至队列未满时,通知插入数据的线程(生产者线程)。那么,多线程中消息通知机制最常用的是lock的condition机制。
/** The queued items */
final Object[] items;
/** items index for next take, poll, peek or remove */
int takeIndex;
/** items index for next put, offer, or add */
int putIndex;
/** Number of elements in the queue */
int count;
/*
* Concurrency control uses the classic two-condition algorithm
* found in any textbook.
*/
/** Main lock guarding all access */
final ReentrantLock lock;
/** Condition for waiting takes */
private final Condition notEmpty;
/** Condition for waiting puts */
private final Condition notFull;
从源码中可以看出ArrayBlockingQueue内部是采用数组进行数据存储的(属性items),为了保证线程安全,采用的是ReentrantLock lock,为了保证可阻塞式的插入删除数据利用的是Condition,当获取数据的消费者线程被阻塞时会将该线程放置到notEmpty等待队列中,当插入数据的生产者线程被阻塞时,会将该线程放置到notFull等待队列中。而notEmpty和notFull等中要属性在构造方法中进行创建:
public ArrayBlockingQueue(int capacity, boolean fair) {
if (capacity <= 0) throw new IllegalArgumentException();
this.items = new Object[capacity];
lock = new ReentrantLock(fair);
notEmpty = lock.newCondition();
notFull = lock.newCondition();
}
put(E e)方法源码如下:
public void put(E e) throws InterruptedException {
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
//如果当前队列已满,将线程移入到notFull等待队列中
while (count == items.length)
notFull.await();
//满足插入数据的要求,直接进行入队操作
enqueue(e);
} finally {
lock.unlock();
}
}
该方法的逻辑很简单,当队列已满时(count == items.length)将线程移入到notFull等待队列中,如果当前满足插入数据的条件,就可以直接调用enqueue(e)插入数据元素。enqueue方法源码为:
private void enqueue(E x) {
// assert lock.getHoldCount() == 1;
// assert items[putIndex] == null;
final Object[] items = this.items;
//插入数据
items[putIndex] = x;
if (++putIndex == items.length)
putIndex = 0;
count++;
//通知消费者线程,当前队列中有数据可供消费
notEmpty.signal();
}
先完成插入数据,即往数组中添加数据(items[putIndex] = x),然后通知被阻塞的消费者线程,当前队列中有数据可供消费(notEmpty.signal())。
take方法也主要做了两步:1. 如果当前队列为空的话,则将获取数据的消费者线程移入到等待队列中;2. 若队列不为空则获取数据,即完成出队操作dequeue。dequeue方法源码为:
private E dequeue() {
// assert lock.getHoldCount() == 1;
// assert items[takeIndex] != null;
final Object[] items = this.items;
@SuppressWarnings("unchecked")
//获取数据
E x = (E) items[takeIndex];
items[takeIndex] = null;
if (++takeIndex == items.length)
takeIndex = 0;
count--;
if (itrs != null)
itrs.elementDequeued();
//通知被阻塞的生产者线程
notFull.signal();
return x;
}
LinkedBlockingQueue实现原理
LinkedBlockingQueue是用链表实现的有界阻塞队列,当构造对象时为指定队列大小时,队列默认大小为Integer.MAX_VALUE。从它的构造方法可以看出:
/** Current number of elements */
private final AtomicInteger count = new AtomicInteger();
// Head of linked list. Invariant: head.item == null
transient Node<E> head;
//Tail of linked list. Invariant: last.next == null
private transient Node<E> last;
/** Lock held by take, poll, etc */
private final ReentrantLock takeLock = new ReentrantLock();
/** Lock held by put, offer, etc */
private final ReentrantLock putLock = new ReentrantLock();
/** Wait queue for waiting takes */
private final Condition notEmpty = takeLock.newCondition();
/** Wait queue for waiting puts */
private final Condition notFull = putLock.newCondition();
LinkedBlockingQueue在插入数据和删除数据时分别是由两个不同的lock(takeLock和putLock)来控制线程安全的,因此,也由这两个lock生成了两个对应的condition(notEmpty和notFull)来实现可阻塞的插入和删除数据。并且,采用了链表的数据结构来实现队列。
ArrayBlockingQueue与LinkedBlockingQueue的比较
线程池顾名思义就是事先创建若干个可执行的线程放入一个池(容器)中,需要的时候从池中获取线程不用自行创建,使用完毕不需要销毁线程而是放回池中,从而减少创建和销毁线程对象的开销。
Java 5+中的 Executor 接口定义一个执行线程的工具。它的子类型即线程池接口是 ExecutorService。要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,因此在工具类 Executors 面提供了一些静态工厂方法,生成一些常用的线程池。如下:
(1)newSingleThreadExecutor:创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。
(2)newFixedThreadPool:创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。如果希望在服务器上使用线程池,建议使用 newFixedThreadPool方法来创建线程池,这样能获得更好的性能。
(3) newCachedThreadPool:创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,那么就会回收部分空闲(60 秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说 JVM)能够创建的最大线程大小。
(4)newScheduledThreadPool:创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。
接收参数:execute()只能执行 Runnable 类型的任务。submit()可以执行 Runnable 和 Callable 类型的任务。
返回值:submit()方法可以返回持有计算结果的 Future 对象,而execute()没有
异常处理:submit()方便Exception处理
《阿里巴巴Java开发手册》中强制线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险。
Executors 各个方法的弊端:
newFixedThreadPool 和 newSingleThreadExecutor:
主要问题是堆积的请求处理队列可能会耗费非常大的内存,甚至 OOM。
newCachedThreadPool 和 newScheduledThreadPool:
主要问题是线程数最大数是 Integer.MAX_VALUE,可能会创建数量非常多的线程,甚至 OOM。
ThreadPoolExecutor() 是最原始的线程池创建,也是阿里巴巴 Java 开发手册中明确规范的创建线程池的方式。
hreadPoolExecutor 3 个最重要的参数:
ThreadPoolExecutor其他常见参数:
在 Java 中可以通过锁和循环 CAS 的方式来实现原子操作。 CAS 操作——Compare & Set,或是 Compare & Swap,现在几乎所有的 CPU 指令都支持 CAS 的原子操作。
java.util.concurrent 这个包里面提供了一组原子类。其基本的特性就是在多线程环境下,当有多个线程同时执行这些类的实例包含的方法时,具有排他性,即当某个线程进入方法,执行其中的指令时,不会被其他线程打断,而别的线程就像自旋锁一样,一直等到该方法执行完成,才由 JVM 从等待队列中选择另一个线程进入,这只是一种逻辑上的理解。
原子类:AtomicBoolean,AtomicInteger,AtomicLong,AtomicReference
原子数组:AtomicIntegerArray,AtomicLongArray,AtomicReferenceArray
原子属性更新器:AtomicLongFieldUpdater,AtomicIntegerFieldUpdater,AtomicReferenceFieldUpdater
解决 ABA 问题的原子类:AtomicMarkableReference(通过引入一个 boolean来反映中间有没有变过),AtomicStampedReference(通过引入一个 int 来累加来反映中间有没有变过)
Atomic包中的类基本的特性就是在多线程环境下,当有多个线程同时对单个(包括基本类型及引用类型)变量进行操作时,具有排他性,即当多个线程同时对该变量的值进行更新时,仅有一个线程能成功,而未成功的线程可以向自旋锁一样,继续尝试,一直等到执行成功。
// setup to use Unsafe.compareAndSwapInt for updates(更新操作时提供“比较并替换”的作用)
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
static {
try {
valueOffset = unsafe.objectFieldOffset(AtomicInteger.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}
private volatile int value;
AtomicInteger 类主要利用 CAS (compare and swap) + volatile 和 native方法Unsafe来保证原子操作,从而避免 synchronized 的高开销,执行效率大为提升。
CAS的原理是拿期望的值和原本的一个值作比较,如果相同则更新成新的值。UnSafe 类的 objectFieldOffset() 方法是一个本地方法,这个方法是用来拿到“原来的值”的内存地址,返回值是 valueOffset。另外 value 是一个volatile变量,在内存中可见,因此 JVM 可以保证任何时刻任何线程总能拿到该变量的最新值。
并发工具
CountDownLatch与CyclicBarrier都是用于控制并发的工具类,都可以理解成维护的就是一个计数器,但是这两者还是各有不同侧重点的:
Semaphore 有什么作用
Semaphore 就是一个信号量,它的作用是限制某段代码块的并发数。Semaphore有一个构造函数,可以传入一个 int 型整数 n,表示某段代码最多只有 n 个线程可以访问,如果超出了 n,那么请等待,等到某个线程执行完毕这段代码块,下一个线程再进入。由此可以看出如果 Semaphore 构造函数中传入的 int 型整数 n=1,相当于变成了一个 synchronized 了。
Semaphore(信号量)-允许多个线程同时访问: synchronized 和 ReentrantLock 都是一次只允许一个线程访问某个资源,Semaphore(信号量)可以指定多个线程同时访问某个资源。
什么是线程间交换数据的工具Exchanger
Exchanger是一个用于线程间协作的工具类,用于两个线程间交换数据。它提供了一个交换的同步点,在这个同步点两个线程能够交换数据。交换数据是通过exchange方法来实现的,如果一个线程先执行exchange方法,那么它会同步等待另一个线程也执行exchange方法,这个时候两个线程就都达到了同步点,两个线程就可以交换数据。
常用的并发工具类有哪些?
一般多线程执行的任务类型可以分为 CPU 密集型和 I/O 密集型,根据不同的任务类型,我们计算线程数的方法也不一样。
CPU 密集型
这种任务消耗的主要是 CPU 资源,可以将线程数设置为 N(CPU 核心数)+1,比 CPU 核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。
一旦任务暂停,CPU 就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用 CPU 的空闲时间。
4 核 intel i5 CPU 机器上,4~6 个线程数是最合适的。
I/O 密集型任务
这种任务应用起来,系统会用大部分的时间来处理 I/O 交互,而线程在处理 I/O 的时间段内不会占用 CPU 来处理,这时就可以将 CPU 交出给其它线程使用。因此在 I/O 密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是 2N。
JVM包含两个子系统和两个组件,两个子系统为Class loader(类装载)、Execution engine(执行引擎);两个组件为Runtime data area(运行时数据区)、Native Interface(本地接口)。
作用 :
备注:常量池:字符串常量池、class常量池、运行时常量池(会把符号引用替换为直接引用)。
对于GC来说,当程序员创建对象时,GC就开始监控这个对象的地址、大小以及使用情况。
通常,GC采用有向图的方式记录和管理堆(heap)中的所有对象。通过这种方式确定哪些对象是"可达的",哪些对象是"不可达的"。当GC确定一些对象为"不可达"时,GC就有责任回收这些内存空间。
可以。程序员可以手动执行System.gc(),通知GC运行,但是Java语言规范并不保证GC一定会执行。
垃圾收集器在做垃圾回收的时候,首先需要判定的就是哪些内存是需要被回收的,哪些对象是「存活」的,是不可以被回收的;哪些对象已经「死掉」了,需要被回收。
一般有两种方法来判断:
垃圾回收不会发生在永久代,如果永久代满了或者是超过了临界值,会触发完全垃圾回收(Full GC)。如果你仔细查看垃圾收集器的输出信息,就会发现永久代也是被回收的。这就是为什么正确的永久代大小对避免Full GC是非常重要的原因。请参考下Java8:已经移除了永久代,从永久代到元数据区
分代回收器有两个分区:老生代和新生代,新生代默认的空间占比总空间的 1/3,老生代的默认占比是 2/3。
新生代使用的是复制算法,新生代里有 3 个分区:Eden、To Survivor、From Survivor,它们的默认占比是 8:1:1,它的执行流程如下:
每次在 From Survivor 到 To Survivor 移动时都存活的对象,年龄就 +1,当年龄到达 15(默认配置是 15)时,升级为老生代。大对象也会直接进入老生代。
老生代当空间占用到达某个值之后就会触发全局垃圾收回,一般使用标记整理的执行算法。以上这些循环往复就构成了整个分代垃圾回收的整体执行流程。
这里我们提到 Minor GC,如果你仔细观察过 GC 日常,通常我们还能从日志中发现 Major GC/Full GC。
Minor GC 是指发生在新生代的 GC,因为 Java 对象大多都是朝生夕死,所有 Minor GC 非常频繁,一般回收速度也非常快;
Major GC/Full GC 是指发生在老年代的 GC,出现了 Major GC 通常会伴随至少一次 Minor GC。Major GC 的速度通常会比 Minor GC 慢 10 倍以上。
双亲委派模型:如果一个类加载器收到了类加载的请求,它首先不会自己去加载这个类,而是把这个请求委派给父类加载器去完成,每一层的类加载器都是如此,这样所有的加载请求都会被传送到顶层的启动类加载器中,只有当父加载无法完成加载请求(它的搜索范围中没找到所需的类)时,子加载器才会尝试去加载类。避免类的重复加载。
当一个类收到了类加载请求时,不会自己先去加载这个类,而是将其委派给父类,由父类去加载,如果此时父类不能加载,反馈给子类,由子类去完成类的加载。
JDK 自带了很多监控工具,都位于 JDK 的 bin 目录下,其中最常用的是 jconsole 和 jvisualvm 这两款视图监控工具。
jconsole:用于对 JVM 中的内存、线程和类等进行监控;
jvisualvm:JDK 自带的全能分析工具,可以分析:内存快照、线程快照、程序死锁、监控内存的变化、gc 变化等。
常用的 JVM 调优的参数都有哪些?
-Xms2g:初始化推大小为 2g;
-Xmx2g:堆最大内存为 2g;
-XX:NewRatio=4:设置年轻的和老年代的内存比例为 1:4;
-XX:SurvivorRatio=8:设置新生代 Eden 和 Survivor 比例为 8:2;
–XX:+UseParNewGC:指定使用 ParNew + Serial Old 垃圾回收器组合;
-XX:+UseParallelOldGC:指定使用 ParNew + ParNew Old 垃圾回收器组合;
-XX:+UseConcMarkSweepGC:指定使用 CMS + Serial Old 垃圾回收器组合;
-XX:+PrintGC:开启打印 gc 信息;
-XX:+PrintGCDetails:打印 gc 详细信息。
目前YoungGC一分钟超过60次,则会触发报警,建议控制在20次/分钟以内。
Young GC过于频繁,说明JVM内存分配压力大,可能是Young区比较小或者代码加载到内存的数据过多。
可能的原因:
代码原因导致的数据加载过多,常见于:
常见的cpu飙升原因:
针对这些问题,需要具体情况具体分析,采取相应的优化措施,例如修改代码逻辑、优化算法、降低 IO 操作频率、减少线程创建和销毁、增加 JVM 内存等等。
Redis是高性能非关系型(NoSQL)的键值对数据库。
Redis 可以存储键和五种不同类型的值之间的映射。键的类型只能为字符串,值支持五种数据类型:字符串、列表、集合、散列表、有序集合。
Redis 的数据是存在内存中的,所以读写速度非常快,因此 redis 被广泛应用于缓存方向,每秒可以处理超过 10万次读写操作,是已知性能最快的Key-Value DB。另外,Redis 也经常用来做分布式锁。除此之外,Redis 支持事务 、持久化、LUA脚本、LRU驱动事件、多种集群方案。
Redis有哪些优缺点
优点
缺点
总结一
总结二:
通过上面的数据类型的特性,基本就能想到合适的应用场景了。
string——适合最简单的k-v存储,类似于memcached的存储结构,短信验证码,配置信息等,就用这种类型来存储。
hash——一般key为ID或者唯一标示,value对应的就是详情了。如商品详情,个人信息详情,新闻详情等。
list——因为list是有序的,比较适合存储一些有序且数据相对固定的数据。如省市区表、字典表等。因为list是有序的,适合根据写入的时间来排序,如:最新的***,消息队列等。
set——可以简单的理解为ID-List的模式,如微博中一个人有哪些好友,set最牛的地方在于,可以对两个set提供交集、并集、差集操作。例如:查找两个人共同的好友等。
Sorted Set——是set的增强版本,增加了一个score参数,自动会根据score的值进行排序。比较适合类似于top 10等不根据插入的时间来排序的数据。
如上所述,虽然Redis不像关系数据库那么复杂的数据结构,但是,也能适合很多场景,比一般的缓存数据结构要多。了解每种数据结构适合的业务场景,不仅有利于提升开发效率,也能有效利用Redis的性能。
持久化就是把内存的数据写到磁盘中去,防止服务宕机了内存数据丢失。
Redis 的持久化机制是什么?各自的优缺点?
Redis 提供两种持久化机制 RDB(默认) 和 AOF 机制:
RDB:持久化
RDB是Redis默认的持久化方式。按照一定的时间将内存的数据以快照的形式保存到硬盘中,对应产生的数据文件为dump.rdb。通过配置文件中的save参数来定义快照的周期。
RDB优点:
1、只有一个文件 dump.rdb,方便持久化。
2、容灾性好,一个文件可以保存到安全的磁盘。
3、性能最大化,fork 子进程来完成写操作,让主进程继续处理命令,所以是 IO 最大化。使用单独子进程来进行持久化,主进程不会进行任何 IO 操作,保证了 redis 的高性能
4.相对于数据集大时,比 AOF 的启动效率更高。
RDB缺点:
1、数据安全性低。RDB 是间隔一段时间进行持久化,如果持久化之间 redis 发生故障,会发生数据丢失。所以这种方式更适合数据要求不严谨的时候)
2、AOF(Append-only file)持久化方式: 是指所有的命令行记录以 redis 命令请 求协议的格式完全持久化存储)保存为 aof 文件。
AOF:持久化
AOF持久化(即Append Only File持久化),则是将Redis执行的每次写命令记录到单独的日志文件中,当重启Redis会重新将持久化的日志中文件恢复数据。
当两种方式同时开启时,数据恢复Redis会优先选择AOF恢复。
AOF优点:
1、数据安全,aof 持久化可以配置 appendfsync 属性,有 always,每进行一次 命令操作就记录到 aof 文件中一次。
2、通过 append 模式写文件,即使中途服务器宕机,可以通过 redis-check-aof 工具解决数据一致性问题。
3、AOF 机制的 重写rewrite 模式。就是对命令的合并,类似的最终db的终态命令。重写的条件:
如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。
如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化.必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。
我们都知道,Redis是key-value数据库,我们可以设置Redis中缓存的key的过期时间。Redis的过期策略就是指当Redis中缓存的key过期了,Redis如何处理。
过期策略通常有以下三种:
Redis中同时使用了惰性过期和定期过期两种过期策略。
redis内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。
Redis的内存淘汰策略是指在Redis的用于缓存的内存不足时,怎么处理需要新写入且需要申请额外空间的数据。
全局的键空间选择性移除
Redis基于Reactor模式的文件事件处理器(file event handler)。
它的组成结构为4部分:多个套接字、IO多路复用程序、文件事件分派器、事件处理器。
因为文件事件分派器队列的消费是单线程的,所以Redis才叫单线程模型。
虽然文件事件处理器以单线程方式运行, 但通过使用 I/O 多路复用程序来监听多个套接字, 文件事件处理器既实现了高性能的网络通信模型, 又可以很好地与 redis 服务器中其他同样以单线程方式运行的模块进行对接, 这保持了 Redis 内部单线程设计的简单性。
Redis 事务的本质是通过MULTI、EXEC、WATCH等一组命令的集合。事务支持一次执行多个命令,一个事务中所有命令都会被序列化。在事务执行过程,会按照顺序串行化执行队列中的命令,其他客户端提交的命令请求不会插入到事务执行命令序列中。
总结说:redis事务就是一次性、顺序性、排他性的执行一个队列中的一系列命令。
Redis事务功能是通过MULTI、EXEC、DISCARD和WATCH 四个原语实现的
Redis会将一个事务中的所有命令序列化,然后按顺序执行。
Redis中,单条命令是原子性执行的,但事务不保证原子性,且没有回滚。事务中任意命令执行失败,其余的命令仍会被执行。
redis Sharding(hash算法)、redis-proxy(代理)、Redis 主从架构
sentinel,中文名是哨兵。哨兵是 redis 集群机构中非常重要的一个组件,主要有以下功能:
哨兵用于实现 redis 集群的高可用,本身也是分布式的,作为一个哨兵集群去运行,互相协同工作。
Redis Cluster是一种服务端分片技术,3.0版本开始正式提供。Redis Cluster并没有使用一致性hash,而是采用hash slot(槽)的概念,一共分成16384个槽。将请求发送到任意节点,接收到请求的节点会将查询请求发送到正确的节点上执行。
方案说明
在 redis cluster 架构下,每个 redis 要放开两个端口号,比如一个是 6379,另外一个就是 加1w 的端口号,比如 16379。
16379 端口号是用来进行节点间通信的,也就是 cluster bus 的东西,cluster bus 的通信,用来进行故障检测、配置更新、故障转移授权。cluster bus 用了另外一种二进制的协议,gossip 协议,用于节点间进行高效的数据交换,占用更少的网络带宽和处理时间
单机的 redis,能够承载的 QPS 大概就在上万到几万不等。对于缓存来说,一般都是用来支撑读高并发的。因此架构做成主从(master-slave)架构,一主多从,主负责写,并且将数据复制到其它的 slave 节点,从节点负责读。所有的读请求全部走从节点。这样也可以很轻松实现水平扩容,支撑读高并发。
redis replication -> 主从架构 -> 读写分离 -> 水平扩容支撑读高并发。
redis replication 的核心机制
注意,如果采用了主从架构,那么建议必须开启 master node 的持久化。
为了使在部分节点失败或者大部分节点无法通信的情况下集群仍然可用,所以集群使用了主从复制模型。Redis集群没有使用一致性hash,而是引入了哈希槽的概念,Redis集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽,集群的每个节点负责一部分hash槽。每个节点都会有N-1个复制品。
redis为单进程单线程模式,采用队列模式将并发访问变成串行访问,可以使用SETNX命令实现分布式锁。
使用SETNX命令获取锁,若返回0(key已存在,锁已存在)则获取失败,反之获取成功。
为了防止获取锁后程序出现异常,导致其他线程/进程调用SETNX命令总是返回0而进入死锁状态,需要为该key设置一个“合理”的过期时间。
释放锁,使用DEL命令将锁数据删除。
方案一:SETNX + EXPIRE
方案二:SETNX + value值是(系统时间+过期时间)
方案七:多机实现的分布式锁Redlock+Redisson
红锁?
采用用主节点过半机制,即获取锁或者释放锁成功的标志为:在过半的节点上操作成功。主要是解决单机故障。
RedLock的实现步骤:如下
Redis集群没有使用一致性hash,而是引入了哈希槽的概念,Redis集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽,集群的每个节点负责一部分hash槽。
可以在同一个服务器部署多个Redis的实例,并把他们当作不同的服务器来使用,在某些时候,无论如何一个服务器是不够的, 所以,如果你想使用多个CPU,你可以考虑一下分片(shard)。
分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。
所谓 Redis 的并发竞争 Key 的问题也就是多个系统同时对一个 key 进行操作,但是最后执行的顺序和我们期望的顺序不同,这样也就导致了结果的不同!
推荐一种方案:分布式锁(zookeeper 和 redis 都可以实现分布式锁)。(如果不存在 Redis 的并发竞争 Key 问题,不要使用分布式锁,这样会影响性能)
基于zookeeper临时有序节点可以实现的分布式锁。大致思想为:每个客户端对某个方法加锁时,在zookeeper上的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点。 判断是否获取锁的方式很简单,只需要判断有序节点中序号最小的一个。 当释放锁的时候,只需将这个瞬时节点删除即可。同时,其可以避免服务宕机导致的锁无法释放,而产生的死锁问题。完成业务流程后,删除对应的子节点释放锁。
在实践中,当然是从以可靠性为主。所以首推Zookeeper。
缓存雪崩是指缓存同一时间大面积的失效,所以,后面的请求都会落到数据库上,造成数据库短时间内承受大量请求而崩掉。
解决方案:
缓存穿透是指缓存和数据库中都没有的数据,导致所有的请求都落到数据库上,造成数据库短时间内承受大量请求而崩掉。
解决方案:
4. 接口层增加校验,如用户鉴权校验,id做基础校验,id<=0的直接拦截;
5. 从缓存取不到的数据,在数据库中也没有取到,这时也可以将key-value对写为key-null,缓存有效时间可以设置短点,如30秒(设置太长会导致正常情况也没法使用)。这样可以防止攻击用户反复用同一个id暴力攻击
6. 采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的 bitmap 中,一个一定不存在的数据会被这个 bitmap 拦截掉,从而避免了对底层存储系统的查询压力
缓存击穿是指缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大,造成过大压力。
解决方案:
7. 设置热点数据永远不过期。
8. 加互斥锁,互斥锁
缓存预热就是系统上线后,将相关的缓存数据直接加载到缓存系统。
解决方案:
9. 直接写个缓存刷新页面,上线时手工操作一下;
10. 数据量不大,可以在项目启动的时候自动进行加载;
11. 定时刷新缓存;
缓存中的一个Key(比如一个促销商品),在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
解决方案:
对缓存查询加锁,如果KEY不存在,就加锁,然后查DB入缓存,然后解锁;其他进程如果发现有锁就等待,然后等解锁后返回数据或者进入DB查询。
Redisson、Jedis、lettuce等等,官方推荐使用Redisson。
Redis和Redisson有什么关系?
Redisson是一个高级的分布式协调Redis客服端,能帮助用户在分布式环境中轻松实现一些Java的对象 (Bloom filter, BitSet, Set, SetMultimap, ScoredSortedSet, SortedSet, Map, ConcurrentMap, List, ListMultimap, Queue, BlockingQueue, Deque, BlockingDeque, Semaphore, Lock, ReadWriteLock, AtomicLong, CountDownLatch, Publish / Subscribe, HyperLogLog)。
Jedis与Redisson对比有什么优缺点?
Jedis是Redis的Java实现的客户端,其API提供了比较全面的Redis命令的支持;Redisson实现了分布式和可扩展的Java数据结构,和Jedis相比,功能较为简单,不支持字符串操作,不支持排序、事务、管道、分区等Redis特性。Redisson的宗旨是促进使用者对Redis的关注分离,从而让使用者能够将精力更集中地放在处理业务逻辑上。
使用keys指令可以扫出指定模式的key列表。
对方接着追问:如果这个redis正在给线上的业务提供服务,那使用keys指令会有什么问题?
这个时候你要回答redis关键的一个特性:redis的单线程的。keys指令会导致线程阻塞一段时间,线上服务会停顿,直到指令执行完毕,服务才能恢复。这个时候可以使用scan指令,scan指令可以无阻塞的提取出指定模式的key列表,但是会有一定的重复概率,在客户端做一次去重就可以了,但是整体所花费的时间会比直接用keys指令长。
使用sortedset,使用时间戳做score, 消息内容作为key,调用zadd来生产消息,消费者使用zrangbyscore获取n秒之前的数据做轮询处理。
redis4.0之前的版本使用的是单线程,也就是说只有一个 worker队列,所有的读写操作都要在这一个队列进行操作,好处是不会有线程安全问题。但如果删除一个大key耗时很长。
因此,在4.0版本引入了Lazy Free机制,将慢操作异步化了。采用非阻塞删除(对应命令UNLINK),大键的空间回收交由单独线程实现,主线程只做关系解除,可以快速返回,继续处理其他事件,避免服务器长时间阻塞。
Redis的性能瓶颈并不在CPU上,而是在内存和网络上。所以6.0发布的多线程并未将事件处理改成多线程,而是在I/O上。但是,6.0版本的多线程并非彻底的多线程,I/O线程只能同时执行读或者同时执行写操作,期间事件处理线程一直处于等待状态,并非流水线模型,有很多轮训等待开销。
总结:Redis的单线程,主要是指事件处理上,但是Redis的其他功能,如持久化、异步删除这些都是由额外的线程执行的。在Redis6.0版本的多线程并非彻底的多线程,I/O线程只能同时执行读或者同时执行写操作。默认关闭在开启多线程后,并不会存在线程并发的安全问题,因为Redis的多线程部分只是用来处理网络数据的读写和协议解析,执行命令仍然是单线程顺序执行。
Redis3.0加入了Redis的集群模式,实现了数据的分布式存储,对数据进行分片,将不同的数据存储在不同的master节点上面,从而解决了海量数据的存储问题。
Redis集群采用去中心化的思想,没有中心节点的说法,对于客户端来说,整个集群可以看成一个整体,可以连接任意一个节点进行操作,就像操作单一Redis实例一样,不需要任何代理中间件,当客户端操作的key没有分配到该node上时,Redis会返回转向指令,指向正确的node。
Redis也内置了高可用机制,支持N个master节点,每个master节点都可以挂载多个slave节点,当master节点挂掉时,集群会提升它的某个slave节点作为新的master节点。
如何请求重定向?
当需要增加节点时,只需要把其他节点的某些哈希槽挪到新节点就可以了;当需要移除节点时,只需要把移除节点上的哈希槽挪到其他节点就行了;
默认情况下,redis集群的读和写都是到master上去执行的,不支持slave节点读和写,跟Redis主从复制下读写分离不一样,因为redis集群的核心的理念,主要是使用slave做数据的热备,以及master故障时的主备切换,实现高可用的。Redis的读写分离,是为了横向任意扩展slave节点去支撑更大的读吞吐量。而redis集群架构下,本身master就是可以任意扩展的,如果想要支撑更大的读或写的吞吐量,都可以直接对master进行横向扩展。
这个重定向过程显然会增加集群的网络负担和单次请求耗时。所以大部分的客户端都是smart的。所谓 smart客户端,就是指客户端本地维护一份hashslot => node的映射表缓存,大部分情况下,直接走本地缓存就可以找到hashslot => node,不需要通过节点进行moved重定向。
Hash只要集群的数量N发生变化,之前的所有Hash映射就会全部失效。**一致性Hash通过构建环状的Hash空间代替线性Hash空间的方法解决了这个问题。**则受影响的数据仅仅是新服务器到其环空间中前一台服务器。
1)客户端让目标节点发起准备导入槽数据。使用命令:cluster setslot {slot} importing {sourceNodeId}
(2)之后让源节点准备迁出对应的槽数据。使用命令:cluster setslot {slot} migrating {targetNodeId}
(3)此时源节点准备迁移数据了,在迁移之前把要迁移的数据获取出来。通过命令 cluster getkeysinslot {slot} {count}。Count 表示迁移的 Slot 的个数。
(4)然后在源节点上执行,migrate {targetIP} {targetPort} “” 0 {timeout} keys {keys} 命令,把获取的键通过流水线批量迁移到目标节点。
(5)重复 3 和 4 两步不断将数据迁移到目标节点。
(6)完成数据迁移到目标节点以后,通过 cluster setslot {slot} node {targetNodeId} 命令通知对应的槽被分配到目标节点,并且广播这个信息给全网的其他主节点,更新自身的槽节点对应表。
方案1:Redis + MQ
三种方案的比较
通过数据库的排他锁来实现分布式锁的原理:
基于 MySQL 的 InnoDB 引擎,可以使用以下方法来实现加锁操作:
public boolean lock(){
connection.setAutoCommit(false)
while(true){
try{
result = select * from methodLock where method_name=xxx for update;
if(result==null){
return true;
}
}catch(Exception e){
}
sleep(1000);
}
return false;
}
3.我们可以认为获得排它锁的线程即可获得分布式锁,当获取到锁之后,可以执行方法的业务逻辑,执行完方法之后,再通过以下方法解锁:
public void unlock(){
connection.commit();
}
基于zookeeper临时有序节点可以实现的分布式锁。
大致思想即为:每个客户端对某个方法加锁时,在zookeeper上的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点。 判断是否获取锁的方式很简单,只需要判断有序节点中序号最小的一个。 当释放锁的时候,只需将这个瞬时节点删除即可。同时,其可以避免服务宕机导致的锁无法释放,而产生的死锁问题。
来看下Zookeeper能不能解决前面提到的问题。
Redis中的Lua脚本是一种用于扩展和定制Redis命令的机制,可以将多个命令合并到一个脚本中,并在Redis服务器端原子性地执行该脚本。通过使用Lua脚本,可以减少网络通信、降低响应时间、提高性能等。
JedisCluster配置只用指定集群中某一个节点的IP,端口信息就可以了。JedisCluster初始化时,会找配置的节点获取整个集群的信息(cluster nodes命令)。
解析集群信息,得到集群中所有master信息,然后遍历每台master,通过ip,端口构建jedis实例,然后put到一个全局nodes变量里面(Map类型) , key为ip,端口,值为Jedis实例,nodes值如下:
nodes={172.19.93.120:6380=redis.clients.jedis.JedisPool@74ad1f1f,.....}
在上面遍历master过程中,还遍历此台master负责的槽索引,然后又put到一个全局map slots里面。值为上面的Jedis实例, slots值如下:
slots={0=redis.clients.jedis.JedisPool@74ad1f1f,
1=redis.clients.jedis.JedisPool@74ad1f1f,
有了上面的slots变量,当有值set 时, 会先算出slot = getCRC16(key)&(16383-1),假如是12182 , 然后调用slots.get(12182) 得到jedis实例,然后去操作redis。
如果发现MovedDataException,说明初始化得到的槽位与节点的对应关系有问题,(节点新增或者宕机)就会重置slots。
热key的解决?
也可以做服务的业务隔离、redis缓存集群的隔离,避免影响到正常业务的同时,也会可以临时采取更好的容灾、限流措施。
一些整合的方案
目前市面上已经有了不少关于hotKey相对完整的应用级解决方案,其中京东在这方面有开源的hotkey工具,原理就是在client端做洞察,然后上报对应hotkey,server端检测到后,将对应hotkey下发到对应服务端做本地缓存,并且这个本地缓存在远程对应的key更新后,会同步更新,已经是目前较为成熟的自动探测热key、分布式一致性缓存解决方案,京东零售热key。
Redis 是使用了一个「哈希表」保存所有键值对,哈希表的最大好处就是让我们可以用 O(1) 的时间复杂度来快速查找到键值对。哈希表其实就是一个数组,数组中的元素叫做哈希桶。
Zset 对象是唯一一个同时使用了两个数据结构来实现的 Redis 对象,这两个数据结构一个是跳表,一个是哈希表。这样的好处是既能进行高效的范围查询,也能进行高效单点查询。
Watch Dog 机制其实就是一个后台定时任务线程,获取锁成功之后,会将持有锁的线程放入到一个 RedissonLock.EXPIRATION_RENEWAL_MAP里面,然后每隔 10 秒 (internalLockLeaseTime / 3) 检查一下,如果客户端 还持有锁 key(判断客户端是否还持有 key,其实就是遍历 EXPIRATION_RENEWAL_MAP 里面线程 id 然后根据线程 id 去 Redis 中查,如果存在就会延长 key 的时间),那么就会不断的延长锁 key 的生存时间。
Redis 中会有一个全局的哈希表来保存所有的键值对,哈希表中每一项存储的是 dictEntry 结构体。
dictEntry 结构体中有三个指针,在64位机器下占24个字节,jemalloc 会为它分配32字节大小的内存单元。
所以选用 String 类型来存储字符串,上面的 RedisObject 结构、SDS 结构、dictEntry 结构的都会存在一定的内存开销
Redis 中的底层数据结构,提供了压缩列表,这种是很节省内存空间的。
我们可以使用 Hash 这种数据结构,因为在一定情况下这种结构底层的用的是压缩列表,这是一种很节省内存的数据结构。
1. 如何使用 Redis 更节省内存?
在开发过程中,业务层面的优化建议如下:
Kafka高效文件存储设计特点
所谓的再平衡,指的是在kafka consumer所订阅的topic发生变化时发生的一种分区重分配机制。一般有三种情况会触发再平衡:
-consumer所订阅的topic发生了新增分区的行为,那么新增的分区就会分配给当前的consumer,此时就会触发再平衡。
Kafka提供的再平衡策略主要有三种:Round Robin,Range和Sticky,默认使用的是Range。这三种分配策略的主要区别在于:
消息存储是由ConsumeQueue和CommitLog配合完成的。一个Topic里面有多个MessageQueue,每个MessageQueue对应一个ConsumeQueue。
每个ConsumeQueue存储的是每个消息在commitlog这个文件的地址,但是消息存在于commitlog中;
CommitLog就存储文件具体的字节信息。文件大小默认1g,文件名称20位数,左边补0右边为偏移量。消息顺序写入文件,文件满了则写入下一个文件。
所以总结如下:
1、consumerQueue消息格式大小固定(20字节),写入pagecache之后被触发刷盘频率相对较低。就是因为每次写入的消息小,造成他占用的pagecache少,主要占用方一旦被清理,那么他就可以不用清理了;
2、kafka中多partition会存在随机写的可能性,partition之间刷盘的冲撞率会高,但是rocketmq中commitLog都是顺序写。
RocketMQ默认是采用pushConsumer方式消费的,从概念上来说是推送给消费者,它的本质是pull+长轮询。这样既通过长轮询达到了push的实时性,又有了pull的可控性。系统收到消息后会自动处理消息和offset(消息偏移量),如果期间有新的consumer加入会自动做负载均衡(集群模式下offset存在broker中; 广播模式下offset存在consumer里)。当然我们也可以设置为pullConsumer模式,这样灵活性会提高,但是代码却会很复杂,需要手动维护offset,消息存储和状态。
kafka性吞吐量更高主要是由于Producer端将多个小消息合并,批量发向Broker。kafka采用异步发送的机制,当发送一条消息时,消息并没有发送到broker而是缓存起来,然后直接向业务返回成功,当缓存的消息达到一定数量时再批量发送。
此时减少了网络io,从而提高了消息发送的性能,但是如果消息发送者宕机,会导致消息丢失,业务出错,所以理论上kafka利用此机制提高了io性能却降低了可靠性。
RocketMQ为何无法使用同样的方式
当broker里面的topic的partition数量过多时,kafka的性能却不如rocketMq。
kafka和rocketMq都使用文件存储,但是kafka是一个分区一个文件,当topic过多,分区的总量也会增加,kafka中存在过多的文件,当对消息刷盘时,就会出现文件竞争磁盘,出现性能的下降。一个partition(分区)一个文件,顺序读写。一个分区只能被一个消费组中的一个 消费线程进行消费,因此可以同时消费的消费端也比较少。
rocketMq所有的队列都存储在一个文件中,每个队列的存储的消息量也比较小,因此topic的增加对rocketMq的性能的影响较小。rocketMq可以存的topic比较多,可以适应比较复杂的业务。
事务消息,它实现了消息生成者本地事务与消息发送的原子性,保证了消息生成者本地事务处理成功与消息发送成功的最终一致性问题。
1、事务消息与普通消息的区别就在于消息生产环节,生产者首先预发送一条消息到MQ(这也被称为发送half消息)
2、MQ接受到消息后,先进行持久化,则存储中会新增一条状态为待发送的消息
3、然后返回ACK给消息生产者,此时MQ不会触发消息推送事件
4、生产者预发送消息成功后,执行本地事务
5、执行本地事务,执行完成后,发送执行结果给MQ
6、MQ会根据结果删除或者更新消息状态为可发送
7、如果消息状态更新为可发送,则MQ会push消息给消费者,后面消息的消费和普通消息是一样的。
现在目前较为主流的MQ,只有RocketMQ支持事务消息。据笔者了解,早年阿里对MQ增加事务消息也是因为支付宝那边因为业务上的需求而产生的。因此,如果我们希望强依赖一个MQ的事务消息来做到消息最终一致性的话,在目前的情况下,技术选型上只能去选择RocketMQ来解决。
上面我们也分析了事务消息所存在的异常情况,即MQ存储了待发送的消息,但是MQ无法感知到上游处理的最终结果。对于RocketMQ而言,它的解决方案非常的简单,就是其内部实现会有一个定时任务,去轮训状态为待发送的消息,然后给producer发送check请求,而producer必须实现一个check监听器,监听器的内容通常就是去检查与之对应的本地事务是否成功(一般就是查询DB),如果成功了,则MQ会将消息设置为可发送,否则就删除消息。
事务消息是针对生产端而言的,而消费端,消费端的一致性是通过MQ的重试机制来完成的。
解决方案:将需要顺序消费的消息发送的时候设置将某个topic发送到指定的partition(也可以根据key的hash与分区进行运算),则在partition中的消息也是有序的,消费的时候将一组同hash的key放到同一个queue中,保证同一个消费者下的同一个线程对此queue进行消费。
生产者:
Kafka 在 Producer 里面提供了消息确认机制。也就是说我们可以通过配置来决定有几个副本收到这条消息才算消息发送成功。可以在定义 Producer 时通过 acks 参数指定。
Producer 发送消息还可以选择同步(默认,通过 producer.type=sync 配置) 或者异步(producer.type=async)模式。如果设置成异步,虽然会极大的提高消息发送的性能,但是这样会增加丢失数据的风险。如果需要确保消息的可靠性,必须将 producer.type 设置为 sync。
分区:
Kafka 可以保证单个分区里的事件是有序的,分区可以在线(可用),也可以离线(不可用)。在众多的分区副本里面有一个副本是 Leader,其余的副本是 follower,所有的读写操作都是经过 Leader 进行的,同时 follower 会定期地去 leader 上复制数据。当 Leader 挂掉之后,其中一个 follower 会重新成为新的 Leader。通过分区副本,引入了数据冗余,同时也提供了 Kafka 的数据可靠性。
Kafka 的分区多副本架构是 Kafka 可靠性保证的核心,把消息写入多个副本可以使 Kafka 在发生崩溃时仍能保证消息的持久性。
leader选举:
在介绍 Leader 选举之前,让我们先来了解一下 ISR(in-sync replicas)列表。每个分区的 leader 会维护一个 ISR 列表,ISR 列表里面就是 follower 副本的 Borker 编号,只有“跟得上” Leader 的 follower 副本才能加入到 ISR 里面,这个是通过 replica.lag.time.max.ms 参数配置的。只有 ISR 里的成员才有被选为 leader 的可能。
所以当 Leader 挂掉了,而且 unclean.leader.election.enable=false 的情况下,Kafka 会从 ISR 列表中选择第一个 follower 作为新的 Leader,因为这个分区拥有最新的已经 committed 的消息。通过这个可以保证已经 committed 的消息的数据可靠性。
综上所述,为了保证数据的可靠性,我们最少需要配置一下几个参数:
producer 级别:acks=all(或者 request.required.acks=-1),同时发生模式为同步 producer.type=sync
topic 级别:设置 replication.factor>=3,并且 min.insync.replicas>=2;
broker 级别:关闭不完全的 Leader 选举,即 unclean.leader.election.enable=false;
只有 High Water Mark 以上的消息才支持 Consumer 读取,而 High Water Mark 取决于 ISR 列表里面偏移量最小的分区,对应于上图的副本2,这个很类似于木桶原理。
这样做的原因是还没有被足够多副本复制的消息被认为是“不安全”的。
当然,引入了 High Water Mark 机制,会导致 Broker 间的消息复制因为某些原因变慢,那么消息到达消费者的时间也会随之变长(因为我们会先等待消息复制完毕)。
延迟时间可以通过参数 replica.lag.time.max.ms 参数配置,它指定了副本在复制消息时可被允许的最大延迟时间。
Netty是 一个异步事件驱动的网络应用程序框架,用于快速开发可维护的高性能协议服务器和客户端。Netty是基于nio的,它封装了jdk的nio,让我们使用起来更加方法灵活。
特点/优势:
BIO是面向流的,NIO是面向缓冲区的;BIO的各种流是阻塞的。而NIO是非阻塞的;BIO的Stream是单向的,而NIO的channel是双向的。
NIO的特点:事件驱动模型、单线程处理多任务、非阻塞I/O,I/O读写不再阻塞,而是返回0、基于block的传输比基于流的传输更高效、更高级的IO函数zero-copy、IO多路复用大大提高了Java网络应用的可伸缩性和实用性。基于Reactor线程模型。
NIO的服务端建立过程:
目前支持I/O多路复用的系统调用有select,pselect,poll,epoll。与多进程和多线程技术相比,I/O多路复用技术的最大优势是系统开销小,系统不必创建进程/线程,也不必维护这些进程/线程,从而大大减小了系统的开销。
I/O多路复用就是一种通知机制,一个进程可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。但select,poll,epoll本质上都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的,而异步I/O则无需自己负责进行读写,异步I/O的实现会负责把数据从内核拷贝到用户空间
Netty通过Reactor模型基于多路复用器接收并处理用户请求,内部实现了两个线程池,boss线程池和work线程池,
Reactor模型有3个变种:单Reactor单线程,单Reactor多线程,主从Reactor多线程。
单线程模型:所有I/O操作都由一个线程完成,即多路复用、事件分发和处理都是在一个Reactor线程上完成的。既要接收客户端的连接请求,向服务端发起连接,又要发送/读取请求或应答/响应消息。一个NIO 线程同时处理成百上千的链路,性能上无法支撑,速度慢,若线程进入死循环,整个程序不可用,对于高负载、大并发的应用场景不合适。
多线程模型:有一个NIO 线程(Acceptor) 只负责监听服务端,接收客户端的TCP 连接请求;NIO 线程池负责网络IO 的操作,即消息的读取、解码、编码和发送;1 个NIO 线程可以同时处理N 条链路,但是1 个链路只对应1 个NIO 线程,这是为了防止发生并发操作问题。但在并发百万客户端连接或需要安全认证时,一个Acceptor 线程可能会存在性能不足问题。
主从多线程模型:Acceptor 线程用于绑定监听端口,接收客户端连接,将SocketChannel 从主线程池的Reactor 线程的多路复用器上移除,重新注册到Sub 线程池的线程上,用于处理I/O 的读写等操作,从而保证mainReactor只负责接入认证、握手等操作;**
Netty主要基于主从Reactors多线程模型(如下图)做了一定的修改,其中主从Reactor多线程模型有多个Reactor:MainReactor和SubReactor:
当future对象刚刚创建时,处于非完成状态,调用者可以通过返回的ChannelFuture来获取操作执行的状态,注册监听函数来执行完成后的操,常见有如下操作:
通过isDone方法来判断当前操作是否完成
通过isSuccess方法来判断已完成的当前操作是否成功
通过getCause方法来获取已完成的当前操作失败的原因
通过isCancelled方法来判断已完成的当前操作是否被取消
通过addListener方法来注册监听器,当操作已完成(isDone方法返回完成),将会通知指定的监听器;如果future对象已完成,则理解通知指定的监听器。
相比传统阻塞I/O,执行I/O操作后线程会被阻塞住, 直到操作完成;异步处理的好处是不会造成线程阻塞,线程在I/O操作期间可以执行别的程序,在高并发情形下会更稳定和更高的吞吐量。
模块组件:
每个Boss NioEventLoop循环执行的任务包含3步:
每个Worker NioEventLoop循环执行的任务包含3步:
常见的连接参数
TCP_NODELAY:尽可能发送大块数据
SO_SNDBUF:是操作系统内核的写缓冲区
SO_RECBUF:是操作系统内核的读缓冲区
SO_BACKLOG:用于构造服务端套接字ServerSocket对象,标识当服务器请求处理线程全满时,用于临时存放已完成三次握手的请求的队列(accept 全连接队列)的最大长度。若队列满则连接拒绝。
SO_TIMEOUT、SO_KEEPALIVE
一般TCP粘包/拆包解决办法
HTTP协议主要包含三部分:请求行(line),请求头(header),请求正文(body)
请求行(Line):主要包含三部分:Method ,URI ,协议/版本。 各部分之间使用空格(SP)分割。整个请求头使用CRLF分割。(比如:POST /1.0.0/_health_check HTTP/1.1 CRLF),如果读取到CRLF,则意味着请求行的信息已经读取完成。
请求头(Header): 格式为(name :value),用于客户端请求的描述信息。header之间以CRLF进行分割。最后一个header会多加一个CRLF。( 比如:Connection: keep-alive CRLF CRLF),如果连续读取两个CRLF,则意味着header的信息读取完成。
请求正文(body) :里面主要是Post提交的数据(可支持多种格式,格式在Content-Type定义,长度是在Content-Length里面定义)。
HTTP协议通常使用Content-Length来标识body的长度,在服务器端,需要先申请对应长度的buffer,然后再赋值。如果需要一边生产数据一边发送数据,就需要使用"Transfer-Encoding: chunked" 来代替Content-Length,也就是对数据进行分块传输。
第一范式:每个列都不可以再拆分。
第二范式:在第一范式的基础上,非主键列完全依赖于主键,而不能是依赖于主键的一部分。
第三范式:在第二范式的基础上,非主键列只依赖于主键,不依赖于其他非主键。
在设计数据库结构的时候,要尽量遵守三范式,如果不遵守,必须有足够的理由。比如性能。事实上我们经常会为了性能而妥协数据库的设计。
有三种模式 ,statement,row和mixed。
mysql的主从复制原理是使用binlog进行复制。
索引的数据结构和具体存储引擎的实现有关,在MySQL中使用较多的索引有Hash索引,B+树索引等,而我们经常使用的InnoDB存储引擎的默认索引实现为:B+树索引。
对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;
其余大部分场景,建议选择BTree索引。
InnoDB的索引类型目前只有两种:BTREE(B树)索引和HASH索引。
B树索引是Mysql数据库中使用最频繁的索引类型,基本所有存储引擎都支持BTree索引。通常我们说的索引不出意外指的就是(B树)索引(实际是用B+树实现的,因为在查看表索引时,mysql一律打印BTREE,所以简称为B树索引)
查询方式:
主键索引区:PI(关联保存的时数据的地址)按主键查询,
普通索引区:si(关联的id的地址,然后再到达上面的地址)。所以按主键查询,速度最快
B+tree性质:
1.)n棵子tree的节点包含n个关键字,不用来保存数据而是保存数据的索引。
2.)所有的叶子结点中包含了全部关键字的信息,及指向含这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。
3.)所有的非终端结点可以看成是索引部分,结点中仅含其子树中的最大(或最小)关键字。
4.)B+ 树中,数据对象的插入和删除仅在叶节点上进行。
5.)B+树2个头指针,一个是树的根节点,一个是最小关键码的叶节点。
2)哈希索引
简要说下,类似于数据结构中简单实现的HASH表(散列表)一样,当我们在mysql中用哈希索引时,主要就是通过Hash算法(常见的Hash算法有直接定址法、平方取中法、折叠法、除数取余法、随机数法),将数据库字段数据转换成定长的Hash值,与这条数据的行指针一并存入Hash表的对应位置;如果发生Hash碰撞(两个不同关键字的Hash值相同),则在对应Hash键下以链表形式存储。当然这只是简略模拟图。
1) 最左前缀匹配原则,组合索引非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
2)查询频繁的字段才去创建索引,更新频繁字段不适合创建索引.
3)散列度很低的列,不适合做索引列(如性别,男女未知,最多也就三种,区分度实在太低)
4)尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。
5)定义有外键的数据列一定要建立索引。
6)对于那些查询中很少涉及的列,重复值比较多的列不要建立索引。
7)对于定义为text、image和bit的数据类型的列不要建立索引。
顾名思义,就是最左优先,在创建多列索引时,要根据业务需求,where子句中使用最频繁的一列放在最左边。
在B+树的索引中,叶子节点可能存储了当前的key值,也可能存储了当前的key值以及整行的数据,这就是聚簇索引和非聚簇索引。 在InnoDB中,只有主键索引是聚簇索引,如果没有主键,则挑选一个唯一键建立聚簇索引。如果没有唯一键,则隐式的生成一个键来建立聚簇索引。
当查询使用聚簇索引时,在对应的叶子节点,可以获取到整行数据,因此不用再次进行回表查询。
澄清一个概念:innodb中,在聚簇索引之上创建的索引称之为辅助索引,辅助索引访问数据总是需要二次查找,非聚簇索引都是辅助索引,像复合索引、前缀索引、唯一索引,辅助索引叶子节点存储的不再是行的物理位置,而是主键值。
MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。
具体原因为:
MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。
当进行查询时,此时索引仅仅按照name严格有序,因此必须首先使用name字段进行等值查询,之后对于匹配到的列而言,其按照age字段严格有序,此时可以使用age字段用做索引查找,以此类推。
因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。
事务是逻辑上的一组操作,要么都执行,要么都不执行。
事物的四大特性(ACID)介绍一下?
为了达到事务的四大特性,数据库定义了4种不同的事务隔离级别,由低到高依次为Read uncommitted、Read committed、Repeatable read、Serializable,这四个级别可以逐个解决脏读、不可重复读、幻读这几类问题。
SQL 标准定义了四个隔离级别:
在关系型数据库中,可以按照锁的粒度把数据库锁分为行级锁(INNODB引擎)、表级锁(MYISAM引擎)和页级锁(BDB引擎 )。
MyISAM和InnoDB存储引擎使用的锁:
-MyISAM采用表级锁(table-level locking)。
InnoDB支持行级锁(row-level locking)和表级锁,默认为行级锁
行级锁,表级锁和页级锁对比
行级锁 行级锁是Mysql中锁定粒度最细的一种锁,表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突。其加锁粒度最小,但加锁的开销也最大。行级锁分为共享锁 和 排他锁。
特点:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。
表级锁 表级锁是MySQL中锁定粒度最大的一种锁,表示对当前操作的整张表加锁,它实现简单,资源消耗较少,被大部分MySQL引擎支持。最常使用的MYISAM与INNODB都支持表级锁定。表级锁定分为表共享读锁(共享锁)与表独占写锁(排他锁)。
特点:开销小,加锁快;不会出现死锁;锁定粒度大,发出锁冲突的概率最高,并发度最低。
页级锁 页级锁是MySQL中锁定粒度介于行级锁和表级锁中间的一种锁。表级锁速度快,但冲突多,行级冲突少,但速度慢。所以取了折衷的页级,一次锁定相邻的一组记录。
特点:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般
从锁的类别上来讲,有共享锁和排他锁。
锁的粒度取决于具体的存储引擎,InnoDB实现了行级锁,页级锁,表级锁。他们的加锁开销从大到小,并发能力也是从大到小。
InnoDB是基于索引来完成行锁,
select * from tab_with_index where id = 1 for update;
for update 可以根据条件来完成行锁锁定,并且 id 是有索引键的列,如果 id 不是索引键那么InnoDB将完成表锁,并发将无从谈起
死锁是指两个或多个事务在同一资源上相互占用,并请求锁定对方的资源,从而导致恶性循环的现象。
常见的解决死锁的方法
1、如果不同程序会并发存取多个表,尽量约定以相同的顺序访问表,可以大大降低死锁机会。
2、在同一个事务中,尽可能做到一次锁定所需要的所有资源,减少死锁产生概率;
3、对于非常容易产生死锁的业务部分,可以尝试使用升级锁定颗粒度,通过表级锁定来减少死锁产生的概率;
如果业务处理不好可以用分布式事务锁或者使用乐观锁
char的特点
varchar的特点
总之,结合性能角度(char更快)和节省磁盘空间角度(varchar更小),具体情况还需具体来设计数据库才是妥当的做法。
优化思路 :
解决超大分页,其实主要是靠缓存,可预测性的提前查到内容,缓存至redis等k-V数据库中,直接返回即可.
在阿里巴巴《Java开发手册》中,对超大分页的解决办法是类似于上面提到的第一种.
【推荐】利用延迟关联或者子查询优化超多分页场景。
说明:MySQL并不是跳过offset行,而是取offset+N行,然后返回放弃前offset行,返回N行,那当offset特别大的时候,效率就非常的低下,要么控制返回的总页数,要么对超过特定阈值的页数进行SQL改写。
正例:先快速定位需要获取的id段,然后再关联:
SELECT a.* FROM 表1 a, (select id from 表1 where 条件 LIMIT 100000,20 ) b where a.id=b.id
推荐使用自增ID,不要使用UUID。
总之,在数据量大一些的情况下,用自增主键性能会好一些。
关于主键是聚簇索引,如果没有主键,InnoDB会选择一个唯一键来作为聚簇索引,如果没有唯一键,会生成一个隐式的主键。
字段为什么要求定义为not null?
null值会占用更多的字节,且会在程序中造成很多与预期不符的情况。
优化查询过程中的数据访问
优化长难的查询语句
1.将一个大的查询分解为多个小的查询,
2.切分查询:将一个大的查询分为多个小的相同的查询。
3.分解关联查询,让缓存的效率更高。
4.执行单个查询可以减少锁的竞争。在应用层做关联更容易对数据库进行拆分。查询效率会有大幅提升。
5. 较少冗余记录的查询。
优化特定类型的查询语句
优化关联查询
优化子查询
优化LIMIT分页
LIMIT偏移量大的时候,查询效率较低
可以记录上次查询的最大ID,下次查询时直接根据该ID来查询
优化UNION查询
UNION ALL的效率高于UNION
优化WHERE子句
当 cpu 飙升到 500%时,先用操作系统命令 top 命令观察是不是 mysqld 占用导致的,如果不是,找出占用高的进程,并进行相关处理。
如果是 mysqld 造成的, show processlist,看看里面跑的 session 情况,是不是有消耗资源的 sql 在运行。找出消耗高的 sql,看看执行计划是否准确, index 是否缺失,或者实在是数据量太大造成。
一般来说,肯定要 kill 掉这些线程(同时观察 cpu 使用率是否下降),等进行相应的调整(比如说加索引、改 sql、改内存参数)之后,再重新跑这些 SQL。
也有可能是每个 sql 消耗资源并不多,但是突然之间,有大量的 session 连进来导致 cpu 飙升,这种情况就需要跟应用一起来分析为何连接数会激增,再做出相应的调整,比如说限制连接数等
基本原理流程,3个线程以及之间的关联
两个值进行运算或者比较,首先要求数据类型必须一致。如果发现两个数据类型不一致时就会发生隐式类型转换。例如,把字符串转成数字,或者相反:
转换规则:
我们在平时的开发过程中,尽量要避免隐式转换,因为一旦发生隐式转换除了会降低性能外, 还有很大可能会出现不期望的结果,就像我最开始遇到的那个问题一样。
之所以性能会降低,还有一个原因就是让本来有的索引失效。
执行计划重点关注跟索引相关的关键项,有 Id、select_type 、table、type、possible_keys、key、key_len、rows、ref、Extra 等。
select_type:查询的类型,主要用于区别普通查询,联合查询,子查询等复杂查询。
SIMPLE:简单的 SELECT 查询,查询中不包含子查询或 UNION 查询。
PRIMARY:查主查询,即最外面的查询。
SUBQUERY:子查询中的第一个 SELECT。
DERIVED:导出表的 SELECT(FROM 子句的子查询)。
UNION:UNION 中的第二个或后面的查询语句。
UNION RESULT: UNION 的结果。
type
对表访问方式,表示 MySQL 在表中找到所需行的方式,又称“访问类型”。
常用的类型有: ALL、index、range、 ref、eq_ref、const、system、NULL(从左到右,性能逐渐变好)。
ALL:Full Table Scan, MySQL 将遍历全表以找到匹配的行。
index:Full Index Scan,index 与 ALL 区别为 index 类型只遍历索引树。
range:只检索给定范围的行,使用一个索引来选择行。常见于:<、<=、>、>=、between 等。
ref:表示上述表的连接匹配条件,即哪些列或常量被用于查找索引列上的值。
eq_ref:类似 ref,区别就在使用的索引是唯一索引,对于每个索引键值,表中只有一条记录匹配。简单来说,就是多表连接中使用 primary key 或者 unique key 作为关联条件。
const:查询条件是主键或者非 NULL 的 UNIQUE 索引,因此结果只有一条,同时优化过程中查询列值会转成常量。
system:system 是 const 类型的特例,当查询的表只有一行的情况下使用 system。
NULL:不用访问表就可以直接得到结果。(例如:SELECT 1)
Extra
Distinct:一旦找到了与行相联合匹配的行就不再搜索了。
Using filesort:通常出现在 order by,当试图对一个不是索引的字段进行排序时,MySQL 就会自动对该字段进行排序,这个过程就称为“文件排序”。文件排序,性能非常慢,需要优化。
Using index:表示查询的列全在索引中,且 where 筛选条件符合索引的前导列原则,即使用了覆盖索引(Covering Index),避免了访问表的数据行,效率高。使用索引来直接获取列的数据,而不需回表。
Using temporary:表示在查询过程中产生了临时表用于保存中间结果。MySQL 在对查询结果进行排序时会使用临时表,常见于group by。group by 的实质是先排序后分组,同 order by 一样,group by 和索引息息相关。出现 Using temporary 意味着产生了临时表存储中间结果并且最后删掉了该临时表,这个过程很消耗性能。
Using Where:查询的列被索引覆盖,并且 where 筛选条件是索引列之一但不是索引的前导列,Extra 中为 Using where; Using index,意味着无法直接通过索引查找来查询到符合条件的数据。
ALL:这个连接类型对于前面的每一个记录联合进行完全扫描,这一般比较糟糕,需要优化。
MVCC就是为了实现读-写冲突不加锁,而这个读指的就是快照读,而非当前读,当前读实际上就是一种加锁的操作,是悲观锁的实现。
MVCC优点:
所谓的MVCC(Multi-Version Concurrency Control ,多版本并发控制)指的就是在使用READ COMMITTD、REPEATABLE READ这两种隔离级别的事务在执行普通SELECT操作时访问记录的版本链的过程,这样子可以使不同事务的读-写、写-读操作并发执行,从而提升系统性能。
READ COMMITTD、REPEATABLE READ这两个隔离级别的一个很大不同就是:生成ReadView的时机不同,READ COMMITTD在每一次进行普通SELECT操作前都会生成一个ReadView,而REPEATABLE READ只在第一次进行普通SELECT操作前生成一个ReadView,之后的查询操作都重复使用这个ReadView就好了,从而基本上可以避免幻读现象。
详细见:https://www.cnblogs.com/nevererror/p/16251856.html
定时任务也是一个常见的需求,Spring Boot 中对于定时任务的支持主要还是来自 Spring 框架。
在 Spring Boot 中使用定时任务主要有两种不同的方式,一个就是使用 Spring 中的 @Scheduled 注解,另一个则是使用第三方框架 Quartz。
使用 Spring 中的 @Scheduled 的方式主要通过 @Scheduled 注解来实现。
使用 Quartz ,则按照 Quartz 的方式,定义 Job 和 Trigger 即可。
Spring是一个轻量级Java开发框架,Spring最根本的使命是解决企业级应用开发的复杂性,即简化Java开发。Sping的两个核心特性,也就是依赖注入和面向切面编程AOP。
为了降低Java开发的复杂性,Spring采取了以下4种关键策略。
Spring设计目标:Spring为开发者提供一个一站式轻量级应用开发平台;
Spring设计理念:在JavaEE开发中,支持POJO和JavaBean开发方式,使应用面向接口开发,充分支持OO(面向对象)设计方法;Spring通过IoC容器实现对象耦合关系的管理,并实现依赖反转,将对象之间的依赖关系交给IoC容器,实现解耦;
Spring框架的核心:IoC容器和AOP模块。通过IoC容器管理POJO对象以及他们之间的耦合关系;通过AOP以动态非侵入的方式增强服务。
IoC让相互协作的组件保持松散的耦合,而AOP编程允许你把遍布于应用各层的功能分离出来形成可重用的功能组件。
控制反转即IoC (Inversion of Control),它把传统上由程序代码直接操控的对象的调用权交给容器,通过容器来实现对象组件的装配和管理。所谓的“控制反转”概念就是对组件对象控制权的转移,从程序代码本身转移到了外部容器。
Spring IOC 负责创建对象,管理对象(通过依赖注入(DI),装配对象,配置对象,并且管理这些对象的整个生命周期。
控制反转(IoC)有什么作用:
Spring 中的 IoC 的实现原理就是工厂模式加反射机制。
比如定义一个水果加工的工厂,有苹果、橘子。实现工厂。
控制反转IoC是一个很大的概念,可以用不同的方式来实现。其主要实现方式有两种:依赖注入和依赖查找
依赖注入:所谓依赖注入(Dependency Injection),即组件之间的依赖关系由容器在应用系统运行期来决定,也就是由容器动态地将某种依赖关系的目标对象实例注入到应用系统中的各个关联的组件之中。组件不做定位查询,只提供普通的Java方法让容器去决定依赖关系。
让容器全权负责依赖查询,受管组件只需要暴露JavaBean的setter方法或者带参数的构造器或者接口,使容器可以在初始化时组装对象的依赖关系。
有哪些不同类型的依赖注入实现方式?
依赖注入是时下最流行的IoC实现方式,依赖注入分为接口注入(Interface Injection),Setter方法注入(Setter Injection)和构造器注入(Constructor Injection)三种方式。其中接口注入由于在灵活性和易用性比较差,现在从Spring4开始已被废弃。
构造器依赖注入:构造器依赖注入通过容器触发一个类的构造器来实现的,该类有一系列参数,每个参数代表一个对其他类的依赖。
Setter方法注入:Setter方法注入是容器通过调用无参构造器或无参static工厂 方法实例化bean之后,调用该bean的setter方法,即实现了基于setter的依赖注入。
BeanFactory和ApplicationContext是Spring的两大核心接口,都可以当做Spring的容器。其中ApplicationContext是BeanFactory的子接口。
BeanFactory:是Spring里面最底层的接口,包含了各种Bean的定义,读取bean配置文档,管理bean的加载、实例化,控制bean的生命周期,维护bean之间的依赖关系。以理解为就是个 HashMap,Key 是 BeanName,Value 是 Bean 实例。通常只提供注册(put),获取(get)这两个功能。我们可以称之为 “低级容器”。
BeanFactroy采用的是延迟加载形式来注入Bean的,即只有在使用到某个Bean时(调用getBean()),才对该Bean进行加载实例化。
ApplicationContext 可以称之为 “高级容器”。它是在容器启动时,一次性创建了所有的Bean。因为他比 BeanFactory 多了更多的功能。他继承了多个接口。因此具备了更多的功能。例如资源的获取,支持多种消息(例如 JSP tag 的支持),对 BeanFactory 多了工具级别的支持等待。
① PROPAGATION_REQUIRED:如果当前没有事务,就创建一个新事务,如果当前存在事务,就加入该事务,该设置是最常用的设置。
② PROPAGATION_SUPPORTS:支持当前事务,如果当前存在事务,就加入该事务,如果当前不存在事务,就以非事务执行。
③ PROPAGATION_MANDATORY:支持当前事务,如果当前存在事务,就加入该事务,如果当前不存在事务,就抛出异常。
④ PROPAGATION_REQUIRES_NEW:创建新事务,无论当前存不存在事务,都创建新事务。
⑤ PROPAGATION_NOT_SUPPORTED:以非事务方式执行操作,如果当前存在事务,就把当前事务挂起。
⑥ PROPAGATION_NEVER:以非事务方式执行,如果当前存在事务,则抛出异常。
⑦ PROPAGATION_NESTED:如果当前存在事务,则在嵌套事务内执行。如果当前没有事务,则按REQUIRED属性执行。
A依赖B,B依赖A;或者C依赖C;或者A>B>C>A。
在sping中,一个完整的对象包含两部分:当前对象实例化和对象属性的实例化。
在Spring中,对象的实例化是通过反射实现的,而对象的属性则是在对象实例化之后通过一定的方式设置的。
首先,Spring内部维护了三个Map,也就是我们通常说的三级缓存。
AOP实现的关键在于 代理模式,AOP代理主要分为静态代理和动态代理。静态代理的代表为AspectJ;动态代理则以Spring AOP为代表。
(1)AspectJ是静态代理的增强,所谓静态代理,就是AOP框架会在编译阶段生成AOP代理类,因此也称为编译时增强,他会在编译阶段将AspectJ(切面)织入到Java字节码中,运行的时候就是增强之后的AOP对象。
(2)Spring AOP使用的动态代理,所谓的动态代理就是说AOP框架不会去修改字节码,而是每次运行时在内存中临时为方法生成一个AOP对象,这个AOP对象包含了目标对象的全部方法,并且在特定的切点做了增强处理,并回调原对象的方法。
————————————————
版权声明:本文为CSDN博主「ThinkWon」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/ThinkWon/article/details/104397516
当一个 Bean 被加载到 Spring 容器时,它就具有了生命,而 Spring 容器在保证一个 Bean 能够使用之前,会进行很多工作。Spring 容器中 Bean 的生命周期流程如图 1 所示。
Bean 生命周期的整个执行过程描述如下。
spring 为开发 Java 程序提供了全面的基础架构支持,包括依赖注入以及一些开箱即用的模块,大大缩短了程序的开发时间。
Spring JDBC 、 Spring MVC 、 Spring AOP 、 Spring TEST 、 Spring Security 、 Spring ORM。
SpringBoot 是一个轻量级的微服务器,是 Spring 框架的扩展。它消除了 复杂的xml 的配置,可以直接main 函数启动,嵌入式 web 服务器,避免了应用程序部署的复杂性。
SpringBoot对组件包进行了封装,只需要一个依赖项来启动和运行 Web 应用程序,尽可能的自动化配置Spring 功能。
启动类上面的注解是@SpringBootApplication,它也是 Spring Boot 的核心注解,主要组合包含了以下 3 个注解:
注解 @EnableAutoConfiguration, @Configuration, @ConditionalOnClass 就是自动配置的核心,
@EnableAutoConfiguration 给容器导入META-INF/spring.factories 里定义的自动配置类。
筛选有效的自动配置类。
每一个自动配置类结合对应的 xxxProperties.java 读取配置文件进行自动配置功能
跨域可以在前端通过 JSONP 来解决,但是 JSONP 只可以发送 GET 请求,无法发送其他类型的请求,不推荐。
推荐在后端通过 (CORS,Cross-origin resource sharing) 来解决跨域问题。现在可以通过实现WebMvcConfigurer接口然后重写addCorsMappings方法解决跨域问题。
@Configuration
public class CorsConfig implements WebMvcConfigurer {
@Override
public void addCorsMappings(CorsRegistry registry) {
registry.addMapping("/**")
.allowedOrigins("*")
.allowCredentials(true)
.allowedMethods("GET", "POST", "PUT", "DELETE", "OPTIONS")
.maxAge(3600);
}
}
MyBatis 是一款优秀的持久层框架,一个半 ORM(对象关系映射)框架,它支持定制化 SQL、存储过程以及高级映射。
MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集。MyBatis 可以使用简单的 XML 或注解来配置和映射原生类型、接口和 Java 的 POJO(Plain Old Java Objects,普通老式 Java 对象)为数据库中的记录。
在查询关联对象或关联集合对象时,需要手动编写sql来完成,所以,称之为半自动ORM映射工具。
1、数据库链接创建、释放频繁造成系统资源浪费从而影响系统性能,如果使用数据库连接池可解决此问题。
解决:在mybatis-config.xml中配置数据链接池,使用连接池管理数据库连接。
2、Sql语句写在代码中造成代码不易维护,实际应用sql变化的可能较大,sql变动需要改变java代码。
解决:将Sql语句配置在XXXXmapper.xml文件中与java代码分离。
3、向sql语句传参数麻烦,因为sql语句的where条件不一定,可能多也可能少,占位符需要和参数一一对应。
解决: Mybatis自动将java对象映射至sql语句。
4、对结果集解析麻烦,sql变化导致解析代码变化,且解析前需要遍历,如果能将数据库记录封装成pojo对象解析比较方便。
解决:Mybatis自动将sql执行结果映射至java对象。
优点
与传统的数据库访问技术相比,ORM有以下优点:
缺点
1、 创建SqlSessionFactory
2、 通过SqlSessionFactory创建SqlSession
3、 通过sqlsession执行数据库操作
4、 调用session.commit()提交事务
5、 调用session.close()关闭会话
1)读取 MyBatis 配置文件:mybatis-config.xml 为 MyBatis 的全局配置文件,配置了 MyBatis 的运行环境等信息,例如数据库连接信息。
2)加载映射文件。映射文件即 SQL 映射文件,该文件中配置了操作数据库的 SQL 语句,需要在 MyBatis 配置文件 mybatis-config.xml 中加载。mybatis-config.xml 文件可以加载多个映射文件,每个文件对应数据库中的一张表。
3)构造会话工厂:通过 MyBatis 的环境等配置信息构建会话工厂 SqlSessionFactory。
4)创建会话对象:由会话工厂创建 SqlSession 对象,该对象中包含了执行 SQL 语句的所有方法。
5)Executor 执行器:MyBatis 底层定义了一个 Executor 接口来操作数据库,它将根据 SqlSession 传递的参数动态地生成需要执行的 SQL 语句,同时负责查询缓存的维护。
6)MappedStatement 对象:在 Executor 接口的执行方法中有一个 MappedStatement 类型的参数,该参数是对映射信息的封装,用于存储要映射的 SQL 语句的 id、参数等信息。
7)输入参数映射:输入参数类型可以是 Map、List 等集合类型,也可以是基本数据类型和 POJO 类型。输入参数映射过程类似于 JDBC 对 preparedStatement 对象设置参数的过程。
8)输出结果映射:输出结果类型可以是 Map、 List 等集合类型,也可以是基本数据类型和 POJO 类型。输出结果映射过程类似于 JDBC 对结果集的解析过程。
Mybatis有三种基本的Executor执行器,SimpleExecutor、ReuseExecutor、BatchExecutor。
Mybatis仅支持association关联对象和collection关联集合对象的延迟加载,association指的就是一对一,collection指的就是一对多查询。在Mybatis配置文件中,可以配置是否启用延迟加载lazyLoadingEnabled=true|false。
它的原理是,使用CGLIB创建目标对象的代理对象,当调用目标方法时,进入拦截器方法,比如调用a.getB().getName(),拦截器invoke()方法发现a.getB()是null值,那么就会单独发送事先保存好的查询关联B对象的sql,把B查询上来,然后调用a.setB(b),于是a的对象b属性就有值了,接着完成a.getB().getName()方法的调用。这就是延迟加载的基本原理。
第一种:接口实现类继承 SqlSessionDaoSupport:使用此种方法需要编写mapper 接口,mapper 接口实现类、mapper.xml 文件。
第二种:使用 org.mybatis.spring.mapper.MapperFactoryBean:
第三种:使用 mapper 扫描器:
<bean class="org.mybatis.spring.mapper.MapperScannerConfigurer">
<property name="basePackage" value="mapper 接口包地址
"></property>
<property name="sqlSessionFactoryBeanName"
value="sqlSessionFactory"/>
</bean>
mapper.xml 中的 namespace 为 mapper 接口的地址;
mapper 接口中的方法名和 mapper.xml 中的定义的 statement 的 id 保持一致;
Mybatis使用RowBounds对象进行分页,它是针对ResultSet结果集执行的内存分页,而非物理分页,可以在sql内直接书写带有物理分页的参数来完成物理分页功能,也可以使用分页插件来完成物理分页。
分页插件的基本原理是使用Mybatis提供的插件接口,实现自定义插件,在插件的拦截方法内拦截待执行的sql,然后重写sql,根据dialect方言,添加对应的物理分页语句和物理分页参数。
举例:select * from student,拦截sql后重写为:select t.* from (select * from student) t limit 0, 10
Mybatis仅可以编写针对ParameterHandler、ResultSetHandler、StatementHandler、Executor这4种接口的插件,Mybatis使用JDK的动态代理,为需要拦截的接口生成代理对象以实现接口方法拦截功能,每当执行这4种接口对象的方法时,就会进入拦截方法,具体就是InvocationHandler的invoke()方法,当然,只会拦截那些你指定需要拦截的方法。
实现Mybatis的Interceptor接口并复写intercept()方法,然后在给插件编写注解,指定要拦截哪一个接口的哪些方法即可,记住,别忘了在配置文件中配置你编写的插件。
1)一级缓存: 基于 PerpetualCache 的 HashMap 本地缓存,其存储作用域为 Session,当 Session flush 或 close 之后,该 Session 中的所有 Cache 就将清空,默认打开一级缓存。
2)二级缓存与一级缓存其机制相同,默认也是采用 PerpetualCache,HashMap 存储,不同在于其存储作用域为 Mapper(Namespace),并且可自定义存储源,如 Ehcache。默认不打开二级缓存,要开启二级缓存,使用二级缓存属性类需要实现Serializable序列化接口(可用来保存对象的状态),可在它的映射文件中配置 ;
3)对于缓存数据更新机制,当某一个作用域(一级缓存 Session/二级缓存Namespaces)的进行了C/U/D 操作后,默认该作用域下所有 select 中的缓存将被 clear。
在微服务中,一个完整的项目被拆分成多个不相同的独立的服务,各个服务独立部署在不同的服务器上,各自的 session 被从物理空间上隔离开了,但是经常,我们需要在不同微服务之间共享 session 。
常见的方案就是 Spring Session + Redis 来实现 session 共享。将所有微服务的 session 统一保存在 Redis 上,当各个微服务对 session 有相关的读写操作时,都去操作 Redis 上的 session 。这样就实现了 session 共享,Spring Session 基于 Spring 中的代理过滤器实现,使得 session 的同步操作对开发人员而言是透明的,非常简便。