二分查找QWQ

折半查找法也称为二分查找法,它充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。它的基本思想是:(这里假设数组元素呈升序排列)将n个元素分成个数大致相同的两半,取a[n/2]与欲查找的x作比较,如果x=a[n/2]则找到x,算法终止;如 果xa[n/2],则我们只要在数组a的右 半部继续搜索x。

一,区间二分查找

   思路:在数组中查找某元素,找不到就输出-1,找到了就输出不小于该元素的最小位置和不大于该元素的最大位置。所以,需要写两个二分,一个需要找到>=x的第一个数,另一个需要找到<=x的最后一个数。查找不小于x的第一个位置

1,>=x

int l = 0, r = n - 1;
while (l < r) {
    int mid = l + r >> 1;
    if (a[mid] < x)  l = mid + 1;
    else    r = mid;
}

当a[mid]小于x时,令l = mid + 1,mid及其左边的位置被排除了,可能出现解的位置是mid + 1及其后面的位置;当a[mid] >= x时,说明mid及其左边可能含有值为x的元素;当查找结束时,l与r相遇,l所在元素若是x则一定是x出现最小位置,因为l左边的元素必然都小于x。查找不大于x的最后一个位置

2,<=x

int l1 = l, r1 = n;
while (l1 + 1 < r1) {
    int mid = l1 + r1 >> 1;
    if (a[mid] <= x)  l1 = mid;
    else    r1 = mid;
}

要查找不大于x的最后一个位置,当a[mid] <= x时,待查找元素只可能在mid及其后面,所以l = mid;当a[mid] > x时,待查找元素只会在mid左边,令r = mid。
为什么不令r1 = mid - 1呢?因为如果按照上一个二分的写法,循环判断条件还是l < r,当只有两个元素比如2 2时,l指向第一个元素,r指向第二个元素,mid指向第一个元素,a[mid] <= x,l = mid还是指向第一个元素,指针不移动了,陷入死循环了,此刻l + 1 == r,未能退出循环。

参考别人经验(当l=mid时需要l+1

二,一般二分查找

思路:当要查找某个数时,第一种当数组中值有比目标值小的时候就把该值下标存在l中,否则就将其下标-1存在r中。第二种和第一种类似

(这种可能会存在边界问题但比较容易理解)

1,

int l=0,r=n-1;

while(l

        int mid=(r+l)/2

        if(check(a[mid))l=mid;

        else r=mid-1;

}

2,

int l=0,r=n-1;

while(l

        int mid=(r+l)/2

        if(check(a[mid)l=mid+1;

        else r=mid;

}

二分程序虽然简单,但是如果写之前不考虑好想要查找的是什么,十有八九会是死循环或者查找错误,就算侥幸写对了也只是运气好而已。用二分去查找元素要求数组的有序性或者拥有类似于有序的性质

你可能感兴趣的:(c++)