目录链接:吴恩达Deep Learning学习笔记目录
1.Gradient Descent
2.mini-batch Gradient Descent
3.Momentum
4.Adam
5.Model with different optimization algorithms
1. Gradient Descent
import numpy as np
import matplotlib.pyplot as plt
from opt_utils import load_params_and_grads, initialize_parameters, forward_propagation, backward_propagation
from opt_utils import compute_cost, predict, predict_dec, plot_decision_boundary, load_dataset
from testCase import *
plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
def update_params_with_gd(params,grads,learning_rate):
L = len(params) // 2
for layer in range(L):
params["W"+str(layer + 1)] = params["W"+str(layer + 1)] - learning_rate * grads["dW"+str(layer + 1)]
params["b"+str(layer + 1)] = params["b"+str(layer + 1)] - learning_rate * grads["db"+str(layer + 1)]
return params
(1) (Batch) Gradient Descent
Batch Gradient Descent 相当于mini-batch 梯度下降法 batch_size为整个训练集大小m:
def model_with_batch_gd(X,Y,layer_dims,epochs,learning_rate):
params = initialize_parameters(layer_dims)
for epoch in range(epochs):
AL,caches = forward_propagation(X,params)
cost = compute_cost(AL,Y)
grads = backward_propagation(AL,caches,params)
params = update_params_with_gd(params,grads,learning_rate)
return params
(2)Stochastic Gradient Descent
需要在每一epoch中,每次输入一个样本,计算这个样本对应的loss,然后进行梯度下降,更新所有参数,循环m(样本数)次后完成一个epoch。SGD虽然计算速度快,但由于其下降时是振荡的,收敛速度并不快。
def model_with_batch_gd(X,Y,layer_dims,epochs,learning_rate):
m = X.shape[1]
params = initialize_parameters(layer_dims)
for epoch in range(epochs):
for sample in range(m):
AL,caches = forward_propagation(X[:,sample],params)
cost = compute_cost(AL,Y[:,sample])
grads = backward_propagation(AL,caches)
params = update_params_with_gd(params,grads,learning_rate)
return params
2. mini-batch Gradient Descent
实际上,我们可以采用比较折中的方法,batch size取1到m之间,兼顾Batch gradient descent 和 Stochastic gradient descent的优点,振荡较小,计算速度快。 ①Shuffle:将样本的顺序打乱,确保样本被随机的分割仅不同的mini-batch;
def random_mini_batch(X,Y,mini_batch_size = 64,seed = 0):
np.random.seed(seed)
m = X.shape[1]
mini_batches = []
permutation = list(np.random.permutation(m))#将0-m的整数随机排序
shuffled_X = X[:,permutation]
shuffled_Y = Y[:,permutation].reshape((1,m))
num_complete_mini_batches = math.floor(m / mini_batch_size)#向下取整
for i in range(num_complete_mini_batches):
mini_batch_X = shuffled_X[:,i * mini_batch_size : (i + 1) * mini_batch_size]
mini_batch_Y = shuffled_Y[:,i * mini_batch_size : (i + 1) * mini_batch_size]
mini_batch = (mini_batch_X,mini_batch_Y)
mini_batches.append(mini_batch)
#求m被mini_batch_size除后的余数即最后一个minibatch的样本数
if m % mini_batch_size != 0:
num_samples_of_end = m - mini_batch_size * num_complete_mini_batches
mini_batch_X = shuffled_X[:,mini_batch_size * num_complete_mini_batches :]
mini_batch_Y = shuffled_Y[:,mini_batch_size * num_complete_mini_batches :]
mini_batch = (mini_batch_X,mini_batch_Y)
mini_batches.append(mini_batch)
return mini_batches
3. Momentum
由于mini-batch梯度下降法仅仅采用样本集的一个子集,所以梯度的更新方向是振荡的,采用Momentum可以减小这种振荡。Momentum通过计算前面mini-batch的梯度的EWMA值来代替当前原梯度,将梯度数据进行平滑。②如何选择β?
β越大,则梯度下降越平滑,因为past gradient在参与计算EWMA值时,权值(越往前权值指数式下降)大足够起到作用的past gradient数量越多,但太大也会导致太平滑;
β的取值范围一般为0.8-0.999,0.9一般为默认值;
需要对β和α进行超参数搜索。
#初始化EWMA
def initialize_velocity(params):
"""
function: initialize the veclocity as a dict containing dW1,dW2,...
return: a dict of dW1,dW2,...
"""
L = len(params) // 2
velocity = {}
for layer in range(L):
velocity["dW" + str(layer + 1)] = np.zeros_like(params["W" + str(layer + 1)])
velocity["db" + str(layer + 1)] = np.zeros_like(params["b" + str(layer + 1)])
return velocity
#更新梯度
def update_params_with_momentum(params,grads,velocity,beta,learning_rate):
"""
arguments:
beta:the momentum hyperparam,scalar
return:
params: params by updated
velocity:velocity by updated
"""
L = len(params) // 2
for layer in range(L):
velocity["dW" + str(layer + 1)] = beta * velocity["dW" + str(layer + 1)] + (1 - beta) * grads["dW" + str(layer + 1)]
velocity["db" + str(layer + 1)] = beta * velocity["db" + str(layer + 1)] + (1 - beta) * grads["db" + str(layer + 1)]
params["W" + str(layer + 1)] = params["W" + str(layer + 1)] - learning_rate * velocity["dW" + str(layer + 1)]
params["b" + str(layer + 1)] = params["b" + str(layer + 1)] - learning_rate * velocity["db" + str(layer + 1)]
return params,velocity
4. Adam
Adam结合了Monmentum和RMSProp,计算过程: ①计算EWMA,和修正后的EWMA并存储;
②计算EWMA的平方及其修正值;
③更新参数
def initialize_adam(params):
"""
return:
v: v["dW" + str(layer)] = ...,v["db" + str(layer)] = ...
s: s["dW" + str(layer)] = ...,s["db" + str(layer)] = ...
"""
L = len(params) // 2
v = {}
s = {}
for layer in range(L):
v["dW" + str(layer + 1)] = np.zeros_like(params["W" + str(layer + 1)])
v["db" + str(layer + 1)] = np.zeros_like(params["b" + str(layer + 1)])
s["dW" + str(layer + 1)] = np.zeros_like(params["W" + str(layer + 1)])
s["db" + str(layer + 1)] = np.zeros_like(params["b" + str(layer + 1)])
return v,s
def update_params_with_adam(params,grads,v,s,t,learning_rate = 0.01,beta1 = 0.9,beta2 = 0.999,epsilon = 1e-8):
"""
t:num of iteration current
"""
L = len(params) // 2
v_corrected = {}
s_corrected = {}
for layer in range(L):
v["dW" + str(layer + 1)] = beta1 * v["dW" + str(layer + 1)] + (1 - beta1) * grads["dW" + str(layer + 1)]
v["db" + str(layer + 1)] = beta1 * v["db" + str(layer + 1)] + (1 - beta1) * grads["db" + str(layer + 1)]
v_corrected["dW" + str(layer + 1)] = v["dW" + str(layer + 1)] / (1 - np.power(beta1,t))
v_corrected["db" + str(layer + 1)] = v["db" + str(layer + 1)] / (1 - np.power(beta1,t))
s["dW" + str(layer + 1)] = beta2 * s["dW" + str(layer + 1)] + (1 - beta2) * np.power(grads["dW" + str(layer + 1)],2)
s["db" + str(layer + 1)] = beta2 * s["db" + str(layer + 1)] + (1 - beta2) * np.power(grads["db" + str(layer + 1)],2)
s_corrected["dW" + str(layer + 1)] = s["dW" + str(layer + 1)] / (1 - np.power(beta2,t))
s_corrected["db" + str(layer + 1)] = s["db" + str(layer + 1)] / (1 - np.power(beta2,t))
params["W" + str(layer + 1)] = params["W" + str(layer + 1)] - learning_rate * v_corrected["dW" + str(layer + 1)] / np.sqrt(s["dW" + str(layer + 1)] + epsilon)
params["b" + str(layer + 1)] = params["b" + str(layer + 1)] - learning_rate * v_corrected["db" + str(layer + 1)] / np.sqrt(s["db" + str(layer + 1)] + epsilon)
return params,v,s
5.Model with different optimization algorithms
训练集数据分布:
模型(通过optimizer参数选择优化方法):
def model(X,Y,layer_dims,optimizer,learning_rate = 7e-4,mini_batch_size = 64,
beta = 0.9,beta1 = 0.9,beta2 = 0.999,epsilon = 1e-8,epochs = 10000):
L = len(layer_dims)
costs = []
t = 0
seed = 10
params = initialize_parameters(layer_dims)
if optimizer == "gd":
pass
elif optimizer == "momentum":
v = initialize_velocity(params)
elif optimizer == "adam":
v,s = initialize_adam(params)
for epoch in range(epochs):
seed = seed + 1
mini_batches = random_mini_batch(X,Y,mini_batch_size,seed)
for mini_batch in mini_batches:
(mini_batch_X,mini_batch_Y) = mini_batch
AL,caches = forward_propagation(mini_batch_X,params)
cost = compute_cost(AL,mini_batch_Y)
grads = backward_propagation(mini_batch_X,mini_batch_Y,caches)
if optimizer == "gd":
params = update_params_with_gd(params,grads,learning_rate)
elif optimizer == "momentum":
params,v = update_params_with_momentum(params,grads,v,beta,learning_rate)
elif optimizer == "adam":
t = t + 1
params,v,s = update_params_with_adam(params,grads,v,s,t,learning_rate,beta1,beta2,epsilon)
if epoch % 1000 == 0:
print("epoch: %d ,loss: %3.3f" % (epoch,cost))
if epoch % 100 == 0:
costs.append(cost)
plt.rcParams['figure.figsize'] = (15.0, 4.0)
plt.subplot(1,2,1)
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('epochs')
plt.title("learning rate: "+str(learning_rate))
plt.subplot(1,2,2)
plt.title("Model with "+str(optimizer))
axes = plt.gca()
axes.set_xlim([-1.5, 2.5])
axes.set_ylim([-1, 1.5])
plot_decision_boundary(lambda x: predict_dec(params, x.T), X, np.squeeze(Y))
return params
结果对比:
结论:
由于learning_rate较小及数据集较为简单,standard gradient descent 和 momentum的结果相近,且两个算法还未收敛,需要更多的迭代次数;
但是Adam展现出显著的效果,收敛速度较快,其优点是:
①对内存需求相对较低(但高于standard gradient descent
和momentum);
②就算是在较小的learning_ratex下,表现也很好。