ModaHub魔搭社区:自动化机器学习Auto-Sklearn的贝叶斯优化

贝叶斯优化

贝叶斯优化的原理是利用现有的样本在优化目标函数中的表现,构建一个后验模型。该后验模型上的每一个点都是一个高斯分布,即有均值和方差。若该点是已有样本点,则均值就是该点的优化目标函数取值,方差为0。

ModaHub魔搭社区:自动化机器学习Auto-Sklearn的贝叶斯优化_第1张图片

 

而其他未知样本点的均值和方差是后验概率拟合的,不一定接近真实值。那么就用一个采集函数,不断试探这些未知样本点对应的优化目标函数值,不断更新后验概率的模型。由于采集函数可以兼顾Explore/Exploit,所以会更多地选择表现好的点和潜力大的点。因此,在资源预算耗尽时,往往能够得到不错的优化结果。即找到局部最优的优化目标函数中的参数。

ModaHub魔搭社区:自动化机器学习Auto-Sklearn的贝叶斯优化_第2张图片

贝叶斯优化

上图是在一个简单的 1D 问题上应用贝叶斯优化的实验图,这些图显示了在经过四次迭代后,高斯过程对目标函数的近似。我们以 t=3 为例分别介绍一下图中各个部分的作用。

上图 2 个 evaluations 黑点和一个红色 evaluations,是三次评估后显示替代模型的初始值估计,会影响下一个

你可能感兴趣的:(WinPlan经营大脑,《向量数据库指南》,机器学习,自动化,sklearn,WinPlan,人工智能,Auto-Sklearn)