【深度学习之YOLO8】环境部署

目录

  • 一、确定版本
    • CUDA toolkit、cuDNN版本
    • Python、PyTorch版本
  • 二、安装Python
    • 下载
    • 环境变量
    • 验证安装
  • 三、安装Anaconda
    • 安装
    • 环境变量
    • 验证安装
    • 创建conda虚拟环境
    • 常用命令
  • 四、安装CUDA toolkit
    • 下载
    • 验证安装
  • 五、配置cuDNN
    • 下载
  • 六、安装PyTorch(torch+torchversion+torchaudio)
    • 下载
    • 验证torch安装
  • 七、环境测试
    • 部署测试环境
    • 验证cuDNN
    • 验证YOLOv8
      • CLI
      • Python Code
  • 八、可能出现的问题
  • 九、附yolo命令参数解释

Ultralytics YOLOv8 是一款前沿、最先进(SOTA)的模型,基于先前 YOLO 版本的成功,引入了新功能和改进,进一步提升性能和灵活性。YOLOv8 设计快速、准确且易于使用,使其成为各种物体检测与跟踪、实例分割、图像分类和姿态估计任务的绝佳选择。

  • Python SDK Download
  • Ultralytics YOLOv8 GitHub
  • PyTorch GitHub
  • NVIDIA CUDA toolkit Download
  • NVIDIA cuDNN Download
  • Anaconda Download
配置Python环境变量
创建conda环境
配置CUDA环境变量
配置cuDNN文件
下载安装PythonSDK
拉取yolo8 GitHub项目到本地
Anaconda安装
下载安装CUDA toolkit
下载PyTorch
下载cuDNN
环境测试

除了拉取代码不需要验证,其他都需要自己check下到底是不是真安装成功了

一、确定版本

CUDA toolkit、cuDNN版本

  1. 查看显卡的CUDA支持的最高版本,我的是12.2.79,后面安装的CUDA toolkit和cuDNN大版本不能超过它
    【深度学习之YOLO8】环境部署_第1张图片
  2. 进PyTorch官网,查看支持的CUDA最高版本,即:我的电脑torch是最高支持11.8的CUDA
    【深度学习之YOLO8】环境部署_第2张图片

由以上两点,得出安装的CUDA、cuDNN不能超11.8,那我后面这俩安装<=11.8

Python、PyTorch版本

torch、python各版本兼容情况表

torch torchvision Python
main / nightly main / nightly >=3.8, <=3.11
2.0 0.15 >=3.8, <=3.11
1.13 0.14 >=3.7.2, <=3.10
1.12 0.13 >=3.7, <=3.10
1.11 0.12 >=3.7, <=3.10
1.10 0.11 >=3.6, <=3.9
1.9 0.10 >=3.6, <=3.9
1.8 0.9 >=3.6, <=3.9
1.7 0.8 >=3.6, <=3.9
1.6 0.7 >=3.6, <=3.8
1.5 0.6 >=3.5, <=3.8
1.4 0.5 ==2.7, >=3.5, <=3.8
1.3 0.4.2 / 0.4.3 ==2.7, >=3.5, <=3.7
1.2 0.4.1 ==2.7, >=3.5, <=3.7
1.1 0.3 ==2.7, >=3.5, <=3.7
<=1.0 0.2 ==2.7, >=3.5, <=3.7

上面有CUDA、cuDNN版本<=11.8

再在进PyTorch官网,预览一下DUDA<=11.8的有哪些

【深度学习之YOLO8】环境部署_第3张图片 【深度学习之YOLO8】环境部署_第4张图片

考虑到后面可能会用到其他组件,相互兼容的不是特别及时,所以我选了11.6的CUDA,看到PyTorch有1.13.0支持CUDA11.6的,那么在上面 torch、python各版本兼容情况表 里可以得出:我的电脑CUDA、duDNN、PyTorch它们三个,和Python互相兼容的py版本范围是3.7.2 ~ 3.10
所以,py版本不宜过高,基本都是向下兼容,YOLO5的默认SDK版本是3.7,YOLO8的默认SDK版本是3.8

最终版本选择
版本号
Python 3.8.0
CUDA toolkit 11.6.0
cuDNN 11.x
PyTorch 1.13.0
TorchAudio 0.13.0
TorchVision 0.14.0

二、安装Python

下载

已经有Python的需要卸载干净,去官网找自己对应版本的安装包(要卸载哪个就找哪个版本的exe安装包),比如找3.8.0的,下载运行点击Uninstall进行卸载

【深度学习之YOLO8】环境部署_第5张图片 【深度学习之YOLO8】环境部署_第6张图片 【深度学习之YOLO8】环境部署_第7张图片

电脑无Python残留,或没有安装过Python,进官网版本列表下载自己要的版本,一路确认即可,尽量是不要安在有中文的路径下,后面的安装也是

环境变量

将Python安装目录和里面的Scripts文件夹路径放在Path里

【深度学习之YOLO8】环境部署_第8张图片 【深度学习之YOLO8】环境部署_第9张图片 【深度学习之YOLO8】环境部署_第10张图片
C:\Users\Administrator\AppData\Local\Programs\Python\Python38
C:\Users\Administrator\AppData\Local\Programs\Python\Python38\Scripts

验证安装

win+r后键入cmd确认,出现版本号

python -V
或者
python --version

【深度学习之YOLO8】环境部署_第11张图片

三、安装Anaconda

一个易于安装的包管理器、环境管理器和 Python 发行版,包含 1,500 多个开源包,并提供 免费社区支持。Anaconda与平台无关,因此无论在Windows、macOS还是Linux上都可以使用它,与它类似的有pip。

安装

进Anaconda官网,点下载,无脑下一步即可

环境变量

将以下四个路径添加进Path
在这里插入图片描述

验证安装

conda -V

创建conda虚拟环境

后面的操作都是基于这个虚拟环境,最好是用管理员打开终端

CommandNotFoundError: Your shell has not been properly configured to use ‘conda activate
第一次激活环境,可能有这个错误,根据提示使用conda init,重启cmd。或者使用source activate env_name使环境可用。

# 创建虚拟环境
conda create -n yolov8 python=3.8.0
# 激活虚拟环境(切换至这个环境)
conda activate yolov8
# 查看已创建的虚拟环境
conda info -e

常用命令

# 查看版本
conda --version # 或者 conda -V
# 更新conda
conda update conda
# 更新Anaconda
conda update Anaconda
# 查看环境配置
conda config --show
# 查看安装了哪些包
conda list
# 查看Anaconda仓库有没有这个想要的包
conda search package_name
# 新增镜像channel
conda config --add channels mirrors_url
# 移除镜像channel
conda config --add channels mirrors_url
# 查看配了哪些镜像channel
conda config --show channels
# 设置清华镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
# 设置bioconda
conda config --add channels bioconda
conda config --add channels conda-forge
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes
# 创建虚拟环境
conda create -n env_name python=3.8
# 查看虚拟环境
conda env list #或conda info -e 或conda info --envs
# 激活虚拟环境
conda activate env_name
# 退出当前虚拟环境
conda deactivate
# 删除虚拟环境
conda remove -n env_name --all
# 安装包(在当前虚拟环境)
conda install package_name=package_version
# 更新包(在当前虚拟环境)
conda update package_name
# 删除包(在当前虚拟环境)
conda remove --name env_name  package_name
# 卸载包
conda uninstall package_name
# 增量卸载包(如果有虚拟环境在用,会跳过这个小包,就是不全卸载)
conda uninstall package_name --force
# 删除没有在用的包
conda clean -p
# 清理缓存
conda clean -y -all
# 变更Python版本
conda install python=3.5 #升级到最新版conda update python
# 查看配置文件地址 (默认`C:\Users\用户名\.condarc`)
conda info #user config file那行
# conda初始化
conda init

四、安装CUDA toolkit

下载

官网下载,跳转翻阅之前版本,找到CUDA-11.6.0下载

【深度学习之YOLO8】环境部署_第12张图片 【深度学习之YOLO8】环境部署_第13张图片 【深度学习之YOLO8】环境部署_第14张图片
安装,注意下面两步,其他默认
【深度学习之YOLO8】环境部署_第15张图片 【深度学习之YOLO8】环境部署_第16张图片
## 环境变量

默认安装在:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6
Path加入下面这5个路径(安装默认配了bin和libnvvp)。
【深度学习之YOLO8】环境部署_第17张图片

验证安装

cmd窗口输入:nvcc -V
【深度学习之YOLO8】环境部署_第18张图片

或者
cmd切换CUDA安装目录,进extras/demo_suite目录,执行里面的bandwidthTest.exe,再执行deviceQuery.exe,结果显示PASS即是成功
【深度学习之YOLO8】环境部署_第19张图片

五、配置cuDNN

通俗点讲,cuDNN就是CUDA toolkit的一个补丁,深度学习需要这个补丁才能使用API驱动GPU的CUDA

下载

进官网,需要登陆NVIDIA账号,并且注册成开发者,完成后进入下载界面
【深度学习之YOLO8】环境部署_第20张图片

解压,全选复制,黏贴到CUDA安装目录,全部"是"即可

【深度学习之YOLO8】环境部署_第21张图片 【深度学习之YOLO8】环境部署_第22张图片
## 验证配置 cuDNN的验证放在后面

六、安装PyTorch(torch+torchversion+torchaudio)

一种开源深度学习框架,以出色的灵活性和易用性著称。

下载

打开cmd,进入之前创建的虚拟环境yolov8,复制torch官网conda语句,安装PyTorch

【深度学习之YOLO8】环境部署_第23张图片
官网安装PyTorch语句在这,一定要看好自己需要哪个torch版本、cuda版本

conda activate yolov8
# -c pytorch可以去掉,即不指定pytorch官方channel下载,国内快一点
conda install pytorch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 pytorch-cuda=11.6 -c nvidia
# 或者pip下载 (2选1)
pip install torch==1.13.0+cu116 torchvision==0.14.0+cu116 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu116

如果有CondaHTTPError: HTTP 000 CONNECTION FAILED for url ...的错误, 修改conda配置文件,把下面内容全部替换掉原来的,重启命令行,进环境再install一下
配置文件默认地址C:\Users\{用户名}\.condarc

show_channel_urls: true
channels:
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
ssl_verify: false

channels:镜像源
ssl_verify:关闭SSL安全认证
show_channel_urls:从channel安装某个包时,显示channel的url

验证torch安装

官方验证,进cmd,进python环境,输入下面三行,看打印结果

import torch
x = torch.rand(5, 3)
print(x)

# 样例输出
tensor([[0.3380, 0.3845, 0.3217],
        [0.8337, 0.9050, 0.2650],
        [0.2979, 0.7141, 0.9069],
        [0.1449, 0.1132, 0.1375],
        [0.4675, 0.3947, 0.1426]])

【深度学习之YOLO8】环境部署_第24张图片

七、环境测试

我使用的是IDEA,也可以用PyCharm,下面是用PyCharm演示

部署测试环境

先不新建项目,打开之前拉取下拉的yolo8 GitHub项目,配下上面新建的conda环境yolov8,查看虚拟环境放哪了可以用conda info -e
【深度学习之YOLO8】环境部署_第25张图片

拉取后打开Pycharm,给这个项目配下上面创建的conda虚拟环境yolov8

【深度学习之YOLO8】环境部署_第26张图片 【深度学习之YOLO8】环境部署_第27张图片 【深度学习之YOLO8】环境部署_第28张图片

左下角终端打开,安装项目依赖

pip install -r requirements.txt
【深度学习之YOLO8】环境部署_第29张图片 【深度学习之YOLO8】环境部署_第30张图片

验证cuDNN

打开后新建一个自定义文件夹,new一个py文件,贴上以下代码,运行查看结果

import torch
# 查看pytorch版本
print(f'pytorch版本: {torch.version.__version__}')
# 查看显卡GPU是否可用
print(f'GPU是否可用: {torch.cuda.is_available()}')
# 查看GPU可用数
print(f'GPU可用数: {torch.cuda.device_count()}')
# 查看CUDA版本
print(f'CUDA版本: {torch.version.cuda}')
# 查看CUDA-cuDNN版本
print(f'cuDNN版本: {torch.backends.cudnn.version()}')
quit()

如果你看到GPU可用为True,那cuDNN就是安装成功了,此时环境就是GPU版本的了
【深度学习之YOLO8】环境部署_第31张图片

验证YOLOv8

这时就可能用到这个官网中文README。使用方式有两种,命令行(CLI) 和 Python代码

CLI

在项目里有个图片ultralytics/assets/bus.jpg,可以使用yolov8n.pt模型对这个图片做一个简单的推理

# 需要先安好这个库
pip install ultralytics
yolo predict model=yolov8n.pt source='可以填文件绝对路径或者网络上的图片url'

【深度学习之YOLO8】环境部署_第32张图片

推理结果保存在了runs\detect\predict,我在C:\Users\Administrator>执行的这个命令,所以文件在C:\Users\Administrator\runs\detect\predict

【深度学习之YOLO8】环境部署_第33张图片

Python Code

from ultralytics import YOLO

# 加载模型
# model = YOLO("yolov8n.yaml")  # 从头开始构建新模型
model = YOLO("yolov8n.pt")  # 加载预训练模型(建议用于训练)

# 使用模型
# model.train(data="coco128.yaml", epochs=3)  # 训练模型
metrics = model.val()  # 在验证集上评估模型性能
results = model(source='ultralytics/assets/bus.jpg')  # 对图像进行预测
results.print()  # 打印结果
# success = model.export(format="onnx")  # 将模型导出为 ONNX 格式

第一次运行此代码需要下载coco的标签包,要等待好长时间,结果例子如下,没有报错环境就部署成功了

Speed: 0.2ms preprocess, 3.1ms inference, 0.0ms loss, 0.7ms postprocess per image
Results saved to runs\detect\val7

image 1/1 D:\GitProjects\ultralytics\ultralytics\assets\bus.jpg: 640x480 4 persons, 1 bus, 23.9ms
Speed: 2.0ms preprocess, 23.9ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)
Ultralytics YOLOv8.0.138  Python-3.9.13 torch-1.13.0+cu116 CPU (Intel Core(TM) i9-9900K 3.60GHz)

PyTorch: starting from runs\detect\train11\weights\best.pt with input shape (1, 3, 640, 640) BCHW and output shape(s) (1, 84, 8400) (6.2 MB)

ONNX: starting export with onnx 1.14.0 opset 16...
ONNX: export success  0.7s, saved as runs\detect\train11\weights\best.onnx (12.2 MB)

Export complete (2.2s)
Results saved to D:\GitProjects\ultralytics\runs\runs\detect\train11\weights
Predict:         yolo predict task=detect model=runs\detect\train11\weights\best.onnx imgsz=640 
Validate:        yolo val task=detect model=runs\detect\train11\weights\best.onnx imgsz=640 data=D:\GitProjects\ultralytics\ultralytics\cfg\datasets\coco128.yaml 
Visualize:       https://netron.app

进程已结束,退出代码0

八、可能出现的问题

  • 乱码提示需要运行pip install --no-cache "py-cpuinfo",在这可能需要先更新pip,按照提示即可
    【深度学习之YOLO8】环境部署_第34张图片
  • xxx

九、附yolo命令参数解释

GitHub官方对所有参数的解释

task

  • detect:指定任务为目标检测,即通过模型识别图像或视频中的物体,然后在图像上标注出它们的位置。
  • classify:指定任务为图像分类,即通过模型将图像分为不同的类别。
  • segment:指定任务为图像分割,即将图像分割为不同的区域,并为每个区域分配一个标签。

mode

  • train:指定模式为训练模式,用于训练模型。
  • predict:指定任务为预测,即使用训练好的模型对新的图像进行预测。
  • val:指定验证模式,用于评估模型在验证集上的性能。
  • export:指定任务为导出模型,即将训练好的模型导出到其他格式,如ONNX。

model

  • yolov8n.pt:指定模型的文件名或路径,其中yolov8n.pt表示模型的文件名。
  • yolov8n-cls.yaml:指定用于图像分类的模型配置文件的文件名或路径。
  • yolov8n-seg.yaml:指定用于图像分割的模型配置文件的文件名或路径。
Key Value Description
data None 数据文件路径,例如 coco128.yaml
imgsz 640 图像尺寸,可以是一个标量或 (h, w) 的列表,例如 (640, 480)
batch 16 每个批次的图像数(-1 表示自动批处理)
save_json FALSE 是否将结果保存为 JSON 文件
save_hybrid FALSE 是否保存标签的混合版本(标签 + 额外的预测结果)
conf 0.001 目标置信度阈值,用于检测
iou 0.6 NMS(非最大抑制)的交并比阈值
max_det 300 每张图像的最大检测数
half TRUE 是否使用半精度(FP16)
device None 运行模型的设备,例如 cuda device=0/1/2/3 或 device=cpu
dnn FALSE 是否使用 OpenCV DNN 进行 ONNX 推断
plots FALSE 训练过程中是否显示图表
rect FALSE 针对最小填充的每个批次进行矩形验证
split val 用于验证的数据集拆分,例如 ‘val’、‘test’ 或 ‘train’

你可能感兴趣的:(深度学习,python,算法,pytorch,边缘计算)