matlab使用教程(29)—微分方程实例

        此示例说明如何使用 MATLAB® 构造几种不同类型的微分方程并求解。MATLAB 提供了多种数值算法来求解各种微分方程:

1.初始值问题

        vanderpoldemo 是用于定义 van der Pol 方程的函数
type vanderpoldemo
function dydt = vanderpoldemo(t,y,Mu)
%VANDERPOLDEMO Defines the van der Pol equation for ODEDEMO.
% Copyright 1984-2014 The MathWorks, Inc.
dydt = [y(2); Mu*(1-y(1)^2)*y(2)-y(1)];
        该方程写作包含两个一阶常微分方程 (ODE) 的方程组。将针对参数 μ 的不同值计算这些方程。为了实现更快的积分,您应该根据 μ 的值选择合适的求解器。
tspan = [0 20];
y0 = [2; 0];
Mu = 1;
ode = @(t,y) vanderpoldemo(t,y,Mu);
[t,y] = ode45(ode, tspan, y0);
% Plot solution
plot(t,y(:,1))
xlabel('t')
ylabel('solution y')
title('van der Pol Equation, \mu = 1')

matlab使用教程(29)—微分方程实例_第1张图片

        对于较大的 μ,问题将变为刚性。此标签表示拒绝使用普通方法计算的问题。这种情况下,要实现快速积分,需要使用特殊的数值方法。 ode15s ode23s ode23t ode23tb 函数可有效地求解刚性问题。当 μ = 1000 时,van der Pol 方程的求解使用 ode15s,初始条件相同。您需要将时间范围大幅度延长到[0, 3000 ]才能看到解的周期性变化。
tspan = [0, 3000];
y0 = [2; 0];
Mu = 1000;
ode = @(t,y) vanderpoldemo(t,y,Mu);
[t,y] = ode15s(ode, tspan, y0);
plot(t,y(:,1))
title('van der Pol Equation, \mu = 1000')
axis([0 3000 -3 3])
xlabel('t')
ylabel('solution y')

matlab使用教程(29)—微分方程实例_第2张图片

2.边界值问题

        bvp4c bvp5c 可以求解常微分方程的边界值问题。示例函数 twoode 将一个微分方程写作包含两个一阶 ODE 的方程组。此微分方程为
type twoode
function dydx = twoode(x,y)
%TWOODE Evaluate the differential equations for TWOBVP.
%
% See also TWOBC, TWOBVP.
% Lawrence F. Shampine and Jacek Kierzenka
% Copyright 1984-2014 The MathWorks, Inc.
dydx = [ y(2); -abs(y(1)) ];
        函数 twobc 求解该问题的边界条件为: y( 0)= 0 y( 4)= − 2
type twobc
function res = twobc(ya,yb)
%TWOBC Evaluate the residual in the boundary conditions for TWOBVP.
%
% See also TWOODE, TWOBVP.
% Lawrence F. Shampine and Jacek Kierzenka
% Copyright 1984-2014 The MathWorks, Inc.
res = [ ya(1); yb(1) + 2 ];
        在调用 bvp4c 之前,您必须为要在网格中表示的解提供一个猜想值。然后,求解器就像对解进行平滑处理一样修改网格。
        bvpinit 函数以您可以传递给求解器 bvp4c 的形式设定初始猜想值。对于 [0 1 2 3 4] 的网格以及y(x)  = 1 y′ ( x)  = 0 的常量猜想值,对 bvpinit 的调用为:
solinit = bvpinit([0 1 2 3 4],[1; 0]);
        利用这个初始猜想值,您可以使用 bvp4c 对该问题求解。使用 deval 计算 bvp4c 在某些点返回的解,然后绘制结果值。
sol = bvp4c(@twoode, @twobc, solinit);
xint = linspace(0, 4, 50);
yint = deval(sol, xint);
plot(xint, yint(1,:));
xlabel('x')
ylabel('solution y')
hold on

        此特定的边界值问题实际上有两种解。通过将初始猜想值更改为 y x = − 1y′ x = 0,可以求出另一个解。

solinit = bvpinit([0 1 2 3 4],[-1; 0]);
sol = bvp4c(@twoode,@twobc,solinit);
xint = linspace(0,4,50);
yint = deval(sol,xint);
plot(xint,yint(1,:));
legend('Solution 1','Solution 2')
hold off

matlab使用教程(29)—微分方程实例_第3张图片

3.时滞微分方程

        dde23 ddesd ddensd 可以求解具有各种时滞的时滞微分方程。示例 ddex1 ddex2 ddex3ddex4 ddex5 构成了这些求解器的迷你使用教程。ddex1 示例说明如何求解微分方程组
matlab使用教程(29)—微分方程实例_第4张图片
        您可以使用匿名函数表示这些方程
ddex1fun = @(t,y,Z) [Z(1,1); Z(1,1)+Z(2,2); y(2)];
        问题的历史解(t ≤ 0 时)固定不变:

matlab使用教程(29)—微分方程实例_第5张图片

        您可以将历史解表示为由 1 组成的向量。
ddex1hist = ones(3,1);
        采用二元素向量表示方程组中的时滞。
lags = [1 0.2];
        将函数、时滞、历史解和积分区间 0, 5 作为输入传递给求解器。求解器在整个积分区间生成适合绘图的连续解。
sol = dde23(ddex1fun, lags, ddex1hist, [0 5]);
plot(sol.x,sol.y);
title({'An example of Wille and Baker', 'DDE with Constant Delays'});
xlabel('time t');
ylabel('solution y');
legend('y_1','y_2','y_3','Location','NorthWest');

matlab使用教程(29)—微分方程实例_第6张图片

4.偏微分方程

        pdepe 使用一个空间变量和时间对偏微分方程求解。示例 pdex1 pdex2 pdex3 pdex4 pdex5 构成了 pdepe 的迷你使用教程。此示例问题使用函数 pdex1pde pdex1ic pdex1bc
        pdex1pde 定义微分方程
type pdex1pde
function [c,f,s] = pdex1pde(x,t,u,DuDx)
%PDEX1PDE Evaluate the differential equations components for the PDEX1 problem.
%
% See also PDEPE, PDEX1.
% Lawrence F. Shampine and Jacek Kierzenka
% Copyright 1984-2014 The MathWorks, Inc.
c = pi^2;
f = DuDx;
s = 0;
        pdex1ic 设置初始条件
u ( x , 0) = sin πx .
type pdex1ic
function u0 = pdex1ic(x)
%PDEX1IC Evaluate the initial conditions for the problem coded in PDEX1.
%
% See also PDEPE, PDEX1.
% Lawrence F. Shampine and Jacek Kierzenka
% Copyright 1984-2014 The MathWorks, Inc.
u0 = sin(pi*x);
        pdex1bc 设置边界条件
matlab使用教程(29)—微分方程实例_第7张图片
type pdex1bc
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
%PDEX1BC Evaluate the boundary conditions for the problem coded in PDEX1.
%
% See also PDEPE, PDEX1.
% Lawrence F. Shampine and Jacek Kierzenka
% Copyright 1984-2014 The MathWorks, Inc.
pl = ul;
ql = 0;
pr = pi * exp(-t);
qr = 1;
        pdepe 需要提供空间离散 x 和时间向量 t(您要获取解快照的时间点)。使用包含 20 个节点的网格求解此问题,并请求五个 t 值的解。提取解的第一个分量并绘图。
x = linspace(0,1,20);
t = [0 0.5 1 1.5 2];
sol = pdepe(0,@pdex1pde,@pdex1ic,@pdex1bc,x,t);
u1 = sol(:,:,1);
surf(x,t,u1);
xlabel('x');
ylabel('t');
zlabel('u');

matlab使用教程(29)—微分方程实例_第8张图片

你可能感兴趣的:(从0开始学Matlab,算法,matlab,开发语言)