Main diagonal - Wikipedia
主对角线(main diagonal)
In linear algebra, the main diagonal (sometimes :principal diagonal, primary diagonal, leading diagonal, major diagonal, or good diagonal) of a matrix A is the list of entries a i j a_{ij} aijwhere i = j i=j i=j.
All off-diagonal elements are zero in a diagonal matrix.
副对角线(antidiagonal)
三角形行列式
三角行列式的值等于主对角线元素的乘积
∣ A T D ∣ = ∏ i = 1 n a i j |A_{TD}|=\prod\limits_{i=1}^{n}a_{ij} ∣ATD∣=i=1∏naij
∣ a 11 a 12 ⋯ a 1 n a 22 ⋯ a 2 n ⋱ ⋮ a n n ∣ = ∣ a 11 a 21 a 22 ⋮ ⋮ ⋱ a n 1 a n 2 ⋯ a n n ∣ = ( − 1 ) τ ( 12 ⋯ n ) a 11 a 22 ⋯ a n n = a 11 a 22 ⋯ a n n \\ \begin{vmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ & a_{22}& \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{vmatrix} =\begin{vmatrix} a_{11}& & & \\ a_{21}& a_{22}& & \\ \vdots & \vdots & \ddots & \\ a_{n1}& a_{n2}& \cdots & a_{nn} \end{vmatrix} \\=(-1)^{\tau{(12\cdots{n})}}a_{11}a_{22}\cdots{a_{nn}} =a_{11}a_{22}\cdots{a_{nn}} a11a12a22⋯⋯⋱a1na2n⋮ann = a11a21⋮an1a22⋮an2⋱⋯ann =(−1)τ(12⋯n)a11a22⋯ann=a11a22⋯ann
∣ A A T D ∣ = ( − 1 ) 1 2 n ( n − 1 ) ∏ i = 1 n a i j |A_{ATD}|=(-1)^{\frac{1}{2}n(n-1)}\prod\limits_{i=1}^{n}a_{ij} ∣AATD∣=(−1)21n(n−1)i=1∏naij
∣ a 11 a 12 ⋯ a 1 , n − 1 a 1 n a 21 a 22 ⋯ a 2 , n − 1 0 ⋮ ⋮ ⋮ ⋮ a n − 1 , 1 a n − 1 , 2 ⋯ 0 0 a n 1 0 ⋯ 0 0 ∣ = ∣ 0 0 ⋯ 0 a 1 n 0 0 ⋯ a 2 , n − 1 a 2 n ⋮ ⋮ ⋮ ⋮ 0 a n − 2 , 2 ⋯ a n − 2 , n − 2 a n − 2 , n a n 1 a n 2 ⋯ a n , n − 1 a n , n ∣ = ( − 1 ) τ ( n ⋯ 21 ) a 1 n a 2 , n − 1 ⋯ a n 1 = ( − 1 ) 1 2 n ( n − 1 ) a 1 n a 2 , n − 1 ⋯ a n 1 \\ \begin{vmatrix} a_{11}& a_{12}& \cdots &a_{1,n-1} & a_{1n} \\ a_{21}& a_{22}& \cdots &a_{2,n-1} & 0 \\ \vdots & \vdots & &\vdots & \vdots \\ a_{n-1,1}&a_{n-1,2}&\cdots&0&0\\ a_{n1}& 0& \cdots &0 &0 \end{vmatrix} =\begin{vmatrix} 0&0& \cdots &0 & a_{1n} \\ 0& 0&\cdots &a_{2,n-1} & a_{2n} \\ \vdots & \vdots & &\vdots & \vdots \\ 0&a_{n-2,2}&\cdots&a_{n-2,n-2}&a_{n-2,n}\\ a_{n1}& a_{n2}& \cdots &a_{n,n-1} &a_{n,n} \end{vmatrix} \\ =(-1)^{\tau(n\cdots21)}a_{1n}a_{2,n-1}\cdots{a_{n1}} \\ =(-1)^{\frac{1}{2}n(n-1)}a_{1n}a_{2,n-1}\cdots{a_{n1}} a11a21⋮an−1,1an1a12a22⋮an−1,20⋯⋯⋯⋯a1,n−1a2,n−1⋮00a1n0⋮00 = 00⋮0an100⋮an−2,2an2⋯⋯⋯⋯0a2,n−1⋮an−2,n−2an,n−1a1na2n⋮an−2,nan,n =(−1)τ(n⋯21)a1na2,n−1⋯an1=(−1)21n(n−1)a1na2,n−1⋯an1
行列式
展开设方阵A是m+n阶的 A m + n A_{m+n} Am+n
∣ A m R O B n ∣ = ∣ A m O R B n ∣ = ∣ A m ∣ ⋅ ∣ B n ∣ \begin{vmatrix} A_m&R \\ O&B_n \end{vmatrix} = \begin{vmatrix} A_m& O\\ R&B_n \end{vmatrix} =|A_m|\cdot|B_n| AmORBn = AmROBn =∣Am∣⋅∣Bn∣
∣ O A m B n R ∣ = ∣ R A m B n O ∣ = ( − 1 ) m n ∣ A m ∣ ⋅ ∣ B n ∣ \begin{vmatrix} O&A_m \\ B_n&R \end{vmatrix} = \begin{vmatrix} R&A_m \\ B_n&O \end{vmatrix} =(-1)^{mn}|A_m|\cdot|B_n| OBnAmR = RBnAmO =(−1)mn∣Am∣⋅∣Bn∣
设n阶行列式:
子式:在线性代数中,一个矩阵A的子式是指将A的某些行与列的交点组成的方阵的行列式;
余子式:A的余子式(又称余因式,英语:minor)是指将方阵A的某些行与列去掉之后所余下的方阵的行列式
将方阵A的一行与一列去掉之后所得到的余子式可用来获得相应的代数余子式(英语:cofactor),后者在可以通过降低多阶矩阵的阶数来简化矩阵计算,并能和转置矩阵的概念一并用于逆矩阵计算。
元素 a i j a_{ij} aij的余子式(minor),通常记为 M ( a i j ) = M i j M(a_{ij})=M_{ij} M(aij)=Mij
元素 a i j 的 a_{ij}的 aij的代数余子式(cofactor)可以记为 C i j = ( − 1 ) i + j M i j C_{ij}=(-1)^{i+j}M_{ij} Cij=(−1)i+jMij
余子式和代数余子式都是一个数
余子式只计算去掉某行某列之后剩余行列式的值,
而代数余子式则需要考虑去掉的这一个元素对最后值正负所产生的影响。
对于n阶行列式而言,其包含的 n × n n\times{n} n×n个元素都有各自的余子式和代数余子式
In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix, cut down from A by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which in turn are useful for computing both the determinant and inverse of square matrices.
对于n阶行列式 ∣ A ∣ |A| ∣A∣
行列式按行展开(第i行展开)
∣ A ∣ = ∑ k = 1 n a i k C i k , i = 1 , 2 , ⋯ , n |A|=\sum_{k=1}^{n}a_{ik}C_{ik},i=1,2,\cdots,n ∣A∣=k=1∑naikCik,i=1,2,⋯,n
按列展开类似
融合上述写法:
T = ∑ k = 1 n a i k C j k = ∑ k = 1 n a k i C k j = { 0 , i = j ∣ A ∣ , i ≠ j i , j = 1 , 2 , ⋯ , n a i k C j k 和 a k i C k j 下标 k 位置是对应的 T=\sum_{k=1}^{n}a_{ik}C_{jk}=\sum_{k=1}^{n}a_{ki}C_{kj} =\begin{cases} 0,i=j \\|A|,i\neq{j} \end{cases} \\i,j=1,2,\cdots,n \\a_{ik}C_{jk}和a_{ki}C_{kj}下标k位置是对应的 T=k=1∑naikCjk=k=1∑nakiCkj={0,i=j∣A∣,i=ji,j=1,2,⋯,naikCjk和akiCkj下标k位置是对应的
可以推导伴随矩阵的性质 A A ∗ = ∣ A ∣ E AA^*=|A|E AA∗=∣A∣E
A n × n = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ) A n × n ∗ = ( A i j ) n × n T = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋱ ⋮ A 1 n A 2 n ⋯ A n n ) A i j 表示 a i j 关于方阵 A = ( a i j ) n × n 的代数余子式 ( A i j ) n × n 表示方阵 A 的代数余子式矩阵 ( A i j ) n × n T 是方阵 A 的伴随矩阵 A_{n\times{n}}= \begin{pmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}& a_{n2}& \cdots & a_{nn} \end{pmatrix} \\A^*_{n\times{n}}=(A_{ij})^T_{n\times{n}} =\begin{pmatrix} A_{11}& A_{21}& \cdots & A_{n1} \\ A_{12}& A_{22}& \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n}& A_{2n}& \cdots & A_{nn} \end{pmatrix} \\A_{ij}表示a_{ij}关于方阵A=(a_{ij})_{n\times{n}}的代数余子式 \\(A_{ij})_{n\times{n}}表示方阵A的代数余子式矩阵 \\(A_{ij})^T_{n\times{n}}是方阵A的伴随矩阵 An×n= a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann An×n∗=(Aij)n×nT= A11A12⋮A1nA21A22⋮A2n⋯⋯⋱⋯An1An2⋮Ann Aij表示aij关于方阵A=(aij)n×n的代数余子式(Aij)n×n表示方阵A的代数余子式矩阵(Aij)n×nT是方阵A的伴随矩阵
A A ∗ = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ) ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋱ ⋮ A 1 n A 2 n ⋯ A n n ) = ( ∣ A ∣ 0 ⋯ 0 0 ∣ A ∣ ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ ∣ A ∣ ) = ∣ A ∣ E A ∗ A = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋱ ⋮ A 1 n A 2 n ⋯ A n n ) ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ) = ∣ A ∣ E A A ∗ = A ∗ A = ∣ A ∣ E AA^*=\begin{pmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}& a_{n2}& \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} A_{11}& A_{21}& \cdots & A_{n1} \\ A_{12}& A_{22}& \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n}& A_{2n}& \cdots & A_{nn} \end{pmatrix} \\=\begin{pmatrix} |A|& 0& \cdots &0 \\ 0& |A|& \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0& 0& \cdots & |A| \end{pmatrix}=|A|E \\ A^*A=\begin{pmatrix} A_{11}& A_{21}& \cdots & A_{n1} \\ A_{12}& A_{22}& \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n}& A_{2n}& \cdots & A_{nn} \end{pmatrix}\begin{pmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}& a_{n2}& \cdots & a_{nn} \end{pmatrix}=|A|E \\AA^*=A^*A=|A|E AA∗= a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann A11A12⋮A1nA21A22⋮A2n⋯⋯⋱⋯An1An2⋮Ann = ∣A∣0⋮00∣A∣⋮0⋯⋯⋱⋯00⋮∣A∣ =∣A∣EA∗A= A11A12⋮A1nA21A22⋮A2n⋯⋯⋱⋯An1An2⋮Ann a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann =∣A∣EAA∗=A∗A=∣A∣E
设 A 可逆 , A A − 1 = E , A A ∗ = A ∗ A = ∣ A ∣ E ( 1 ∣ A ∣ A ∗ ) A = ( A 1 ∣ A ∣ ) A ∗ = E A − 1 = 1 ∣ A ∣ A ∗ ( A ∗ ) − 1 = 1 ∣ A ∣ A 设A可逆,AA^{-1}=E,AA^*=A^*A=|A|E \\(\frac{1}{|A|}A^*)A=(A\frac{1}{|A|})A^*=E \\ \boxed{A^{-1}=\frac{1}{|A|}A^* } \\\boxed{(A^*)^{-1}=\frac{1}{|A|}A} 设A可逆,AA−1=E,AA∗=A∗A=∣A∣E(∣A∣1A∗)A=(A∣A∣1)A∗=EA−1=∣A∣1A∗(A∗)−1=∣A∣1A
矩阵A是可逆的充要条件是 ∣ A ∣ ≠ 0 |A|\neq{0} ∣A∣=0,当A可逆时, A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A−1=∣A∣1A∗
若A可逆,则存在 B = A − 1 B=A^{-1} B=A−1,使得 A B = E AB=E AB=E
若 ∣ A ∣ ≠ 0 |A|\neq{0} ∣A∣=0,则由 A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA∗=A∗A=∣A∣E可知
若 A , B A,B A,B都是n阶矩阵,且 A B = E AB=E AB=E,则A,B均可逆(且A,B互为逆矩阵: A − 1 = B , B − 1 = A A^{-1}=B,B^{-1}=A A−1=B,B−1=A)
对于可逆矩阵,可用一下公式求解二阶矩阵的可逆矩阵的逆矩阵
对于三阶以及更高阶的可逆方阵,采用初等变换法求解逆矩阵!
对于n阶方阵:
余子式方阵记为 M m M_m Mm
代数余子式方阵记为 M c M_{c} Mc
M c M_{c} Mc可以由两个同型方阵:符号方阵S和余子式方阵 M m M_m Mm元素对应乘积再转置(记为 M a c = ( S ⊙ M m ) T M_{ac}=(S\odot M_{m})^T Mac=(S⊙Mm)T得到
S = ( + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 ) S =\begin{pmatrix} +1&-1&+1\\ -1&+1&-1\\ +1&-1&+1\\ \end{pmatrix} S= +1−1+1−1+1−1+1−1+1
所谓结合 ⊙ \odot ⊙,就是元素对应乘积(Hadamard product)
s i j = ( − 1 ) i + j s_{ij}=(-1)^{i+j} sij=(−1)i+j
构造符号矩阵的时候可以批量进行
相邻元素取符号
这个规则张开符号矩阵1 | -1 | 1 | -1 |
---|---|---|---|
-1 | 1 | -1 | 1 |
1 | -1 | 1 | -1 |
-1 | 1 | -1 | 1 |
通常不超过3阶的矩阵我们才考虑使用伴随矩阵法来求解(否则计算量过大)
从表格可以看出,4阶可逆方阵的伴随矩阵的各个元素的符号( ± \pm ±)矩阵
由于其对称性,转置之后表格不发生改变
表格中的元素的相邻元素符号取反
主对角线上的元素的符号全部为正
计算完符号矩阵,开始计算各个元素的余子式部分的值,并填充到相应的位置.
若A是n阶矩阵:
A T A^{T} AT是A的转置矩阵,则 ∣ A T ∣ = ∣ A ∣ |A^T|=|A| ∣AT∣=∣A∣
∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| ∣kA∣=kn∣A∣
若B是n阶矩阵, ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| ∣AB∣=∣A∣∣B∣
更一般的: ∣ A n ∣ = ∣ A ∣ n |A^n|=|A|^n ∣An∣=∣A∣n
矩阵和实数相仿,具有加/减/乘三种运算
数的乘法的逆运算是除法,相对应矩阵乘法的逆运算用矩阵的逆来描述
若A可逆,则A的逆矩阵唯一
A可逆 ⇔ ∣ A ∣ ≠ 0 \Leftrightarrow|A|\neq{0} ⇔∣A∣=0
设 A , B A,B A,B是n阶矩阵且 A B = E , 则 B A = E AB=E,则BA=E AB=E,则BA=E(A,B互为逆矩阵)
设 A A A可逆
( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A−1)−1=A
( λ A ) − 1 = λ − 1 A − 1 (\lambda{A})^{-1}={\lambda^{-1}}A^{-1} (λA)−1=λ−1A−1
( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^T (AT)−1=(A−1)T
A , B A,B A,B可逆,则 A B AB AB可逆,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)−1=B−1A−1
∵ ( A B ) ( B − 1 A − 1 ) = A ( B B − 1 ) A − 1 = A E A − 1 = A A − 1 = E \because{(AB)(B^{-1}A^{-1}})=A(BB^{-1})A^{-1}=AEA^{-1}=AA^{-1}=E ∵(AB)(B−1A−1)=A(BB−1)A−1=AEA−1=AA−1=E
∴ ( A B ) − 1 = B − 1 A − 1 \therefore{(AB)^{-1}=B^{-1}A^{-1}} ∴(AB)−1=B−1A−1
更一般的:
A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA∗=A∗A=∣A∣E(数量阵)
( A ∗ ) − 1 = ( A − 1 ) ∗ = 1 ∣ A ∣ A , ( ∣ A ∣ ≠ 0 ) (A^*)^{-1}=(A^{-1})^*=\frac{1}{|A|}A,(|A|\neq{0}) (A∗)−1=(A−1)∗=∣A∣1A,(∣A∣=0)
对 A A ∗ = ∣ A ∣ E AA^*=|A|E AA∗=∣A∣E两边同时取行列式: ∣ A ∣ ∣ A ∗ ∣ = ∣ A ∣ n ∣ E ∣ = ∣ A ∣ n , |A||A^*|=|A|^n|E|=|A|^n, ∣A∣∣A∗∣=∣A∣n∣E∣=∣A∣n,
因为 ∣ A ∣ ≠ 0 , ∣ A ∗ ∣ ≠ 0 |A|\neq{0},|A^*|\neq{0} ∣A∣=0,∣A∗∣=0,即 A ∗ A^* A∗可逆, ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} ∣A∗∣=∣A∣n−1
由于 k E kE kE是可逆矩阵,所以 A A ∗ = ∣ A ∣ E AA^*=|A|E AA∗=∣A∣E两边都是可逆矩阵( k = ∣ A ∣ k=|A| k=∣A∣)
由 A A A可逆,可知B= A − 1 A^{-1} A−1是可逆的,且 A − 1 = A A^{-1}=A A−1=A
B B ∗ = ∣ B ∣ E BB^*=|B|E BB∗=∣B∣E,同时左乘 B − 1 B^{-1} B−1, B ∗ = ∣ B ∣ B − 1 B^*=|B|B^{-1} B∗=∣B∣B−1即 ( A − 1 ) ∗ = ∣ A − 1 ∣ ( A − 1 ) − 1 (A^{-1})^*=|A^{-1}|(A^{-1})^{-1} (A−1)∗=∣A−1∣(A−1)−1
而前面讨论过 ∣ A − 1 ∣ = ∣ A ∣ − 1 |A^{-1}|=|A|^{-1} ∣A−1∣=∣A∣−1,从而 ( A − 1 ) ∗ = ∣ A ∣ − 1 A (A^{-1})^*=|A|^{-1}A (A−1)∗=∣A∣−1A
可见 ( A ∗ ) − 1 = ( A − 1 ) ∗ = 1 ∣ A ∣ A , ( ∣ A ∣ ≠ 0 ) (A^*)^{-1}=(A^{-1})^*=\frac{1}{|A|}A,(|A|\neq{0}) (A∗)−1=(A−1)∗=∣A∣1A,(∣A∣=0)
方法2:
( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)∗=kn−1A∗
( A ∗ ) T = ( A T ) ∗ (A^*)^T=(A^T)^* (A∗)T=(AT)∗
∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} ∣A∗∣=∣A∣n−1
( A ∗ ) ∗ = ∣ A ∣ n − 2 A ( n ⩾ 2 ) (A^*)^*=|A|^{n-2}A(n\geqslant{2}) (A∗)∗=∣A∣n−2A(n⩾2)
综合运用上面得到的结论可以推到出来
记 B = A ∗ ; B ∗ = ∣ B ∣ B − 1 ; ( A ∗ ) ∗ = ∣ A ∗ ∣ ( A ∗ ) − 1 = ∣ A ∣ n − 1 ( ∣ A ∣ − 1 A ) = ∣ A ∣ n − 2 A 记B=A^*;B^*=|B|B^{-1};(A^*)^*=|A^*|(A^*)^{-1}=|A|^{n-1}(|A|^{-1}A)=|A|^{n-2}A 记B=A∗;B∗=∣B∣B−1;(A∗)∗=∣A∗∣(A∗)−1=∣A∣n−1(∣A∣−1A)=∣A∣n−2A