day30| 332.重新安排行程、51. N皇后、37. 解数独

目录:

解题及思路学习

332. 重新安排行程

给你一份航线列表 tickets ,其中 tickets[i] = [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。

所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。

  • 例如,行程 ["JFK", "LGA"] 与 ["JFK", "LGB"] 相比就更小,排序更靠前。

假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。

示例 1:

!https://assets.leetcode.com/uploads/2021/03/14/itinerary1-graph.jpg

输入:tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]]
输出:["JFK","MUC","LHR","SFO","SJC"]

思考:之前华为有道笔试题就考的类似。有点像深搜,使用了回溯。

这道题目有几个难点:

  1. 一个行程中,如果航班处理不好容易变成一个圈,成为死循环
  2. 有多种解法,字母序靠前排在前面,让很多同学望而退步,如何该记录映射关系呢 ?
  3. 使用回溯法(也可以说深搜) 的话,那么终止条件是什么呢?
  4. 搜索的过程中,如何遍历一个机场所对应的所有机场。

记录映射关系:

一个机场映射多个机场,机场之间要靠字母序排列,一个机场映射多个机场,可以使用std::unordered_map,如果让多个机场之间再有顺序的话,就是用std::map 或者std::multimap 或者 std::multiset。

unordered_map> tartgets; unordered_map<出发机场, map<达到机场,航班次数>> targets.

在遍历 unordered_map<出发机场, map<到达机场, 航班次数>> targets的过程中,可以使用"航班次数"这个字段的数字做相应的增减,来标记到达机场是否使用过了。

如果“航班次数”大于零,说明目的地还可以飞,如果“航班次数”等于零说明目的地不能飞了,而不用对集合做删除元素或者增加元素的操作。

相当于说我不删,我就做一个标记!

for (pair& target : targets[result[result.size() - 1]]) 这行代码是因为同一个出发点可以有多个降落点,所以在最新的出发点,寻找满足条件的节点。

class Solution {
public:
		// unordered_map<出发机场, map<到达机场, 航班次数>> targets
    unordered_map<string, map<string, int>> targets;
    bool backtracking(int ticketNum, vector<string>& result) {
        if (result.size() == ticketNum + 1) {
            return true;
        }
        for (pair<const string, int>& target : targets[result[result.size() - 1]]) {
            if (target.second > 0) {  // 记录到达机场是否飞过了
                result.push_back(target.first);
                target.second--;
                if (backtracking(ticketNum, result)) return true;
                result.pop_back();
                target.second++;
            }
        }
        return false;
    }

    vector<string> findItinerary(vector<vector<string>>& tickets) {
        targets.clear();
        vector<string> result;
        for (const vector<string>& vec : tickets) {
            targets[vec[0]][vec[1]]++;   // 记录映射关系
        }
        result.push_back("JFK");  // 起始机场
        backtracking(tickets.size(), result);
        return result;
    }
};

本题难在容器的选择和使用上

本题其实是一道深度优先搜索的题目,但是我完全使用回溯法的思路来讲解这道题题目,算是给大家拓展一下思维方式,其实深搜和回溯也是分不开的,毕竟最终都是用递归

51. N 皇后

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 **n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

示例 1:

!https://assets.leetcode.com/uploads/2020/11/13/queens.jpg

输入:n = 4
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
解释:如上图所示,4 皇后问题存在两个不同的解法。

思考:这道题用回溯搜索。 另写一个算法判断放在当前位置是否满足要求。

皇后们的约束条件:

  1. 不能同行
  2. 不能同列
  3. 不能同斜线
class Solution {
private:
vector<vector<string>> result;
// n 为输入的棋盘大小
// row 是当前递归到棋盘的第几行了
void backtracking(int n, int row, vector<string>& chessboard) {
    if (row == n) {
        result.push_back(chessboard);
        return;
    }
    for (int col = 0; col < n; col++) {
        if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
            chessboard[row][col] = 'Q'; // 放置皇后
            backtracking(n, row + 1, chessboard);
            chessboard[row][col] = '.'; // 回溯,撤销皇后
        }
    }
}
bool isValid(int row, int col, vector<string>& chessboard, int n) {
    // 检查列
    for (int i = 0; i < row; i++) { // 这是一个剪枝
        if (chessboard[i][col] == 'Q') {
            return false;
        }
    }
    // 检查 45度角是否有皇后
    for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    // 检查 135度角是否有皇后
    for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    return true;
}
public:
    vector<vector<string>> solveNQueens(int n) {
        result.clear();
        std::vector<std::string> chessboard(n, std::string(n, '.'));
        backtracking(n, 0, chessboard);
        return result;
    }
};
  • 时间复杂度: O(n!)
  • 空间复杂度: O(n)

除了验证棋盘的合理性,其他都是按照模板来的。

棋盘的宽度就是for循环的长度,递归的深度就是棋盘的高度,这样就可以套进回溯法的模板里了

37. 解数独

编写一个程序,通过填充空格来解决数独问题。

数独的解法需 遵循如下规则

  1. 数字 1-9 在每一行只能出现一次。
  2. 数字 1-9 在每一列只能出现一次。
  3. 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)

数独部分空格内已填入了数字,空白格用 '.' 表示。

示例 1:

!https://assets.leetcode-cn.com/aliyun-lc-upload/uploads/2021/04/12/250px-sudoku-by-l2g-20050714svg.png

输入:board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
输出:[["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]

思考:只需要传入整个棋盘就行。然后用i,j表示行列,分别进行判断。

class Solution {
private:
bool backtracking(vector<vector<char>>& board) {
    for (int i = 0; i < board.size(); i++) {        // 遍历行
        for (int j = 0; j < board[0].size(); j++) { // 遍历列
            if (board[i][j] == '.') {
                for (char k = '1'; k <= '9'; k++) {     // (i, j) 这个位置放k是否合适
                    if (isValid(i, j, k, board)) {
                        board[i][j] = k;                // 放置k
                        if (backtracking(board)) return true; // 如果找到合适一组立刻返回
                        board[i][j] = '.';              // 回溯,撤销k
                    }
                }
                return false;  // 9个数都试完了,都不行,那么就返回false
            }
        }
    }
    return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}
bool isValid(int row, int col, char val, vector<vector<char>>& board) {
    for (int i = 0; i < 9; i++) { // 判断行里是否重复
        if (board[row][i] == val) {
            return false;
        }
    }
    for (int j = 0; j < 9; j++) { // 判断列里是否重复
        if (board[j][col] == val) {
            return false;
        }
    }
    int startRow = (row / 3) * 3;
    int startCol = (col / 3) * 3;
    for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复
        for (int j = startCol; j < startCol + 3; j++) {
            if (board[i][j] == val ) {
                return false;
            }
        }
    }
    return true;
}
public:
    void solveSudoku(vector<vector<char>>& board) {
        backtracking(board);
    }
};

感觉跟N皇后问题很类似,都是传入棋盘,然后遍历上面的位置,判断放置是否合适。再需要单独写一个判断函数。

复盘总结

个人反思

1、回溯的模板

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

2、组合问题。用递归控制for循环嵌套的数量!for循环横向遍历,递归纵向遍历,回溯不断调整结果集。

3、如果是一个集合来求组合的话,就需要startIndex。如果是多个集合取组合,各个集合之间相互不影响,那么就不用startIndex。

4、去重的逻辑中,可以使用used数据也可以使用startindex进行去重。要先排序。

5、子集问题。在树形结构中子集问题是要收集所有节点的结果,而组合问题是收集叶子节点的结果

6、排列问题。处理排列问题就不用使用startIndex了。

  • 每层都是从0开始搜索而不是startIndex
  • 需要used数组记录path里都放了哪些元素了

7、使用set去重的版本相对于used数组的版本效率都要低很多。使用used数组在时间复杂度上几乎没有额外负担!

8、N皇后,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了棋盘的宽度就是for循环的长度,递归的深度就是棋盘的高度,这样就可以套进回溯法的模板里了

9、解数独。本题中棋盘的每一个位置都要放一个数字,并检查数字是否合法,解数独的树形结构要比N皇后更宽更深

复杂度:

子集问题分析:

  • 时间复杂度:O(2n),因为每一个元素的状态无外乎取与不取,所以时间复杂度为O(2n)
  • 空间复杂度:O(n),递归深度为n,所以系统栈所用空间为O(n),每一层递归所用的空间都是常数级别,注意代码里的result和path都是全局变量,就算是放在参数里,传的也是引用,并不会新申请内存空间,最终空间复杂度为O(n)

排列问题分析:

  • 时间复杂度:O(n!),这个可以从排列的树形图中很明显发现,每一层节点为n,第二层每一个分支都延伸了n-1个分支,再往下又是n-2个分支,所以一直到叶子节点一共就是 n * n-1 * n-2 * … 1 = n!。
  • 空间复杂度:O(n),和子集问题同理。

组合问题分析:

  • 时间复杂度:O(2^n),组合问题其实就是一种子集的问题,所以组合问题最坏的情况,也不会超过子集问题的时间复杂度。
  • 空间复杂度:O(n),和子集问题同理。

N皇后问题分析:

  • 时间复杂度:O(n!) ,其实如果看树形图的话,直觉上是O(n^n),但皇后之间不能见面所以在搜索的过程中是有剪枝的,最差也就是O(n!),n!表示n * (n-1) * … * 1。
  • 空间复杂度:O(n),和子集问题同理。

解数独问题分析:

  • 时间复杂度:O(9^m) , m是’.'的数目。
  • 空间复杂度:O(n2),递归的深度是n2

你可能感兴趣的:(LeetCode,刷题,C++,训练营二刷,数据结构,算法,leetcode,c++)