目录:
给你一份航线列表 tickets
,其中 tickets[i] = [fromi, toi]
表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。
所有这些机票都属于一个从 JFK
(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK
开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。
["JFK", "LGA"]
与 ["JFK", "LGB"]
相比就更小,排序更靠前。假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。
示例 1:
!https://assets.leetcode.com/uploads/2021/03/14/itinerary1-graph.jpg
输入:tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]]
输出:["JFK","MUC","LHR","SFO","SJC"]
思考:之前华为有道笔试题就考的类似。有点像深搜,使用了回溯。
这道题目有几个难点:
记录映射关系:
一个机场映射多个机场,机场之间要靠字母序排列,一个机场映射多个机场,可以使用std::unordered_map,如果让多个机场之间再有顺序的话,就是用std::map 或者std::multimap 或者 std::multiset。
unordered_map
在遍历 unordered_map<出发机场, map<到达机场, 航班次数>> targets
的过程中,可以使用"航班次数"这个字段的数字做相应的增减,来标记到达机场是否使用过了。
如果“航班次数”大于零,说明目的地还可以飞,如果“航班次数”等于零说明目的地不能飞了,而不用对集合做删除元素或者增加元素的操作。
相当于说我不删,我就做一个标记!
for (pair
class Solution {
public:
// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map<string, map<string, int>> targets;
bool backtracking(int ticketNum, vector<string>& result) {
if (result.size() == ticketNum + 1) {
return true;
}
for (pair<const string, int>& target : targets[result[result.size() - 1]]) {
if (target.second > 0) { // 记录到达机场是否飞过了
result.push_back(target.first);
target.second--;
if (backtracking(ticketNum, result)) return true;
result.pop_back();
target.second++;
}
}
return false;
}
vector<string> findItinerary(vector<vector<string>>& tickets) {
targets.clear();
vector<string> result;
for (const vector<string>& vec : tickets) {
targets[vec[0]][vec[1]]++; // 记录映射关系
}
result.push_back("JFK"); // 起始机场
backtracking(tickets.size(), result);
return result;
}
};
本题难在容器的选择和使用上。
本题其实是一道深度优先搜索的题目,但是我完全使用回溯法的思路来讲解这道题题目,算是给大家拓展一下思维方式,其实深搜和回溯也是分不开的,毕竟最终都是用递归。
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 皇后问题 研究的是如何将 n
个皇后放置在 n×n
的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n
,返回所有不同的 **n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q'
和 '.'
分别代表了皇后和空位。
示例 1:
!https://assets.leetcode.com/uploads/2020/11/13/queens.jpg
输入:n = 4
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
解释:如上图所示,4 皇后问题存在两个不同的解法。
思考:这道题用回溯搜索。 另写一个算法判断放在当前位置是否满足要求。
皇后们的约束条件:
class Solution {
private:
vector<vector<string>> result;
// n 为输入的棋盘大小
// row 是当前递归到棋盘的第几行了
void backtracking(int n, int row, vector<string>& chessboard) {
if (row == n) {
result.push_back(chessboard);
return;
}
for (int col = 0; col < n; col++) {
if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
chessboard[row][col] = 'Q'; // 放置皇后
backtracking(n, row + 1, chessboard);
chessboard[row][col] = '.'; // 回溯,撤销皇后
}
}
}
bool isValid(int row, int col, vector<string>& chessboard, int n) {
// 检查列
for (int i = 0; i < row; i++) { // 这是一个剪枝
if (chessboard[i][col] == 'Q') {
return false;
}
}
// 检查 45度角是否有皇后
for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
if (chessboard[i][j] == 'Q') {
return false;
}
}
// 检查 135度角是否有皇后
for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
if (chessboard[i][j] == 'Q') {
return false;
}
}
return true;
}
public:
vector<vector<string>> solveNQueens(int n) {
result.clear();
std::vector<std::string> chessboard(n, std::string(n, '.'));
backtracking(n, 0, chessboard);
return result;
}
};
除了验证棋盘的合理性,其他都是按照模板来的。
棋盘的宽度就是for循环的长度,递归的深度就是棋盘的高度,这样就可以套进回溯法的模板里了。
编写一个程序,通过填充空格来解决数独问题。
数独的解法需 遵循如下规则:
1-9
在每一行只能出现一次。1-9
在每一列只能出现一次。1-9
在每一个以粗实线分隔的 3x3
宫内只能出现一次。(请参考示例图)数独部分空格内已填入了数字,空白格用 '.'
表示。
示例 1:
!https://assets.leetcode-cn.com/aliyun-lc-upload/uploads/2021/04/12/250px-sudoku-by-l2g-20050714svg.png
输入:board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
输出:[["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]
思考:只需要传入整个棋盘就行。然后用i,j表示行列,分别进行判断。
class Solution {
private:
bool backtracking(vector<vector<char>>& board) {
for (int i = 0; i < board.size(); i++) { // 遍历行
for (int j = 0; j < board[0].size(); j++) { // 遍历列
if (board[i][j] == '.') {
for (char k = '1'; k <= '9'; k++) { // (i, j) 这个位置放k是否合适
if (isValid(i, j, k, board)) {
board[i][j] = k; // 放置k
if (backtracking(board)) return true; // 如果找到合适一组立刻返回
board[i][j] = '.'; // 回溯,撤销k
}
}
return false; // 9个数都试完了,都不行,那么就返回false
}
}
}
return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}
bool isValid(int row, int col, char val, vector<vector<char>>& board) {
for (int i = 0; i < 9; i++) { // 判断行里是否重复
if (board[row][i] == val) {
return false;
}
}
for (int j = 0; j < 9; j++) { // 判断列里是否重复
if (board[j][col] == val) {
return false;
}
}
int startRow = (row / 3) * 3;
int startCol = (col / 3) * 3;
for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复
for (int j = startCol; j < startCol + 3; j++) {
if (board[i][j] == val ) {
return false;
}
}
}
return true;
}
public:
void solveSudoku(vector<vector<char>>& board) {
backtracking(board);
}
};
感觉跟N皇后问题很类似,都是传入棋盘,然后遍历上面的位置,判断放置是否合适。再需要单独写一个判断函数。
1、回溯的模板
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
2、组合问题。用递归控制for循环嵌套的数量!for循环横向遍历,递归纵向遍历,回溯不断调整结果集。
3、如果是一个集合来求组合的话,就需要startIndex。如果是多个集合取组合,各个集合之间相互不影响,那么就不用startIndex。
4、去重的逻辑中,可以使用used数据也可以使用startindex进行去重。要先排序。
5、子集问题。在树形结构中子集问题是要收集所有节点的结果,而组合问题是收集叶子节点的结果。
6、排列问题。处理排列问题就不用使用startIndex了。
7、使用set去重的版本相对于used数组的版本效率都要低很多。使用used数组在时间复杂度上几乎没有额外负担!
8、N皇后,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了。棋盘的宽度就是for循环的长度,递归的深度就是棋盘的高度,这样就可以套进回溯法的模板里了。
9、解数独。本题中棋盘的每一个位置都要放一个数字,并检查数字是否合法,解数独的树形结构要比N皇后更宽更深。
复杂度:
子集问题分析:
排列问题分析:
组合问题分析:
N皇后问题分析:
解数独问题分析: