- 数据挖掘|关联分析与Apriori算法详解
皖山文武
数据挖掘商务智能数据挖掘关联分析Apriori算法机器学习
数据挖掘|关联分析与Apriori算法1.关联分析2.关联规则相关概念2.1项目2.2事务2.3项目集2.4频繁项目集2.5支持度2.6置信度2.7提升度2.8强关联规则2.9关联规则的分类3.Apriori算法3.1Apriori算法的Python实现3.2基于mlxtend库的Apriori算法的Python实现1.关联分析关联规则分析(Association-rulesAnalysis)是数
- OPPO机器学习算法岗(AI智能体)内推
飞300
人工智能业界资讯
专注于以端设备为中心的AI智能体研究与应用,研究方向包括但不限于智能体与多智能体框架、大模型推理与规划、大模型工具使用等。1、负责大模型驱动的AI智能体框架的实现、评估与优化,并参与构建产品原型;2、设计微调方案、适配算法和调优工程方案,结合智能体应用,实现最佳效果与性能;3、跟踪与研究AI智能体相关前沿技术,并针对大模型推理与规划、工具使用、结构化输出等提出创新性方案。推荐码:X3448036
- 【商城实战(18)】后台管理系统基础搭建:从0到1构建电商中枢
奔跑吧邓邓子
商城实战商城实战uniappSpringBoot后台管理系统
【商城实战】专栏重磅来袭!这是一份专为开发者与电商从业者打造的超详细指南。从项目基础搭建,运用uniapp、ElementPlus、SpringBoot搭建商城框架,到用户、商品、订单等核心模块开发,再到性能优化、安全加固、多端适配,乃至运营推广策略,102章内容层层递进。无论是想深入钻研技术细节,还是探寻商城运营之道,本专栏都能提供从0到1的系统讲解,助力你打造独具竞争力的电商平台,开启电商实战
- 跨领域算法安全优化与可解释实践
智能计算研究中心
其他
内容概要作为系统性研究框架,《跨领域算法安全优化与可解释实践》从算法研发的全生命周期切入,重点解决多领域交叉应用中的核心矛盾。通过整合联邦学习的分布式架构与量子计算的高效特性,构建兼顾隐私保护与运算效率的算法优化范式,同时引入动态可解释性分析技术,为医疗影像诊断、金融风险预测等高敏感场景提供决策透明度保障。在技术路径层面,研究聚焦特征工程的鲁棒性设计、超参数的自适应调优策略,以及生成对抗网络在数据
- 智能算法安全与跨领域创新实践
智能计算研究中心
其他
内容概要在智能算法快速渗透各行业的背景下,安全治理与技术创新已成为驱动跨领域应用的核心议题。当前研究重点围绕算法可解释性增强、动态风险评估及数据安全防护展开,通过融合联邦学习的分布式协作框架、量子计算的算力突破以及注意力机制的特征聚焦能力,构建起多模态技术融合的创新路径。在应用场景层面,医疗影像诊断、金融风险预测与自动驾驶系统等关键领域已形成算法效能与安全性的双重验证体系,其中超参数优化、特征工程
- 算力安全创新驱动未来趋势endofsentence
智能计算研究中心
其他
内容概要算力安全与技术创新正在重塑全球算力生态,其核心驱动力来自异构计算、边缘计算及量子计算等前沿技术的深度融合。当前算力架构正经历从集中式向分布式演进,通过异构加速芯片、动态资源调度算法及绿色能效优化,显著提升算力基础设施的可扩展性与可靠性。例如,异构计算通过CPU、GPU、FPGA的协同加速,使复杂模型训练效率提升40%以上。关键数据:根据IDC预测,到2025年全球智能算力需求将增长30倍,
- STM32实时时钟(RTC)代码深度解析 | 零基础入门STM32第三十九步
触角01010001
STM32stm32单片机嵌入式硬件
主题内容教学目的/扩展视频RTC时钟的使用重点课程RTC时钟的原理,电路原理分析,固件库分析,驱动程序分析。在超级终端上显示时钟。做可修改的超级终端显示RTC的项目。师从洋桃电子,杜洋老师文章目录一、RTC初始化流程分析1.1时钟与备份域配置1.2初始化检测机制二、时间处理核心算法2.1闰年判断算法2.2时间戳转换(Unix时间)三、时间读取与转换3.1读取计数器值3.2星期计算算法四、中断处理机
- AIGC视频生成模型:ByteDance的PixelDance模型
好评笔记
AIGC音视频机器学习人工智能深度学习计算机视觉transformer
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录热门专栏机器学习深度学习
- 1.动手学习深度学习课程安排及深度学习数学基础
Unknown To Known
动手学习深度学习深度学习人工智能
视频资源B站:动手学习深度学习——李沐目录目标内容将学到什么1.N维数组样例2.访问2维数组元素3.数据操作4.线性代数5.矩阵计算6.自动求导目标介绍深度学习景点和最新模型LeNetAlexNetVGGResNetLSTMBERT…机器学习基础损失函数,目标函数,过拟合,优化实践使用pytorch实现介绍的知识点在真实数据上体验算法效果内容深度学习基础——线性神经网络,多层感知机卷积神经网络——
- Python实现链表反转:迭代与递归双解法详解
达不溜先生 ୧⍢⃝୨
python数据结构链表算法leetcode
目录一、问题描述二、核心代码实现2.1迭代法实现迭代法中的prev初始值是None的原因:关键步骤图解2.2递归法实现递归法中要设置head.next=None的原因递归过程拆解三、方法对比与选择建议一、问题描述链表反转是数据结构中的基础算法问题,常见于面试和算法题库(如LeetCode#206)。要求将单向链表的节点顺序完全倒置二、核心代码实现2.1迭代法实现时间复杂度:O(n)空间复杂度:O(
- 数学建模与图形建模资源全解析
点我头像干啥
Ai数学建模人工智能python深度学习数据挖掘分类
引言在当今的数据驱动时代,数学建模与图形建模已成为解决复杂问题、揭示数据内在规律的重要工具。无论是科学研究、工程设计,还是商业分析、决策支持,建模技术都发挥着举足轻重的作用。本文旨在为数学建模与图形建模的初学者及进阶者提供一份详尽的资源指南,涵盖软件工具、学习资料、在线课程、社区论坛等多个方面,帮助大家更好地掌握这些技能。一、数学建模资源概览1.数学建模软件工具数学建模离不开强大的软件支持。以下是
- H100架构解析与性能优化策略
智能计算研究中心
其他
内容概要NVIDIAH100GPU作为面向高性能计算与人工智能领域的旗舰级产品,其架构设计与优化策略在计算效率、显存带宽及并行任务处理等方面实现了显著突破。本文将从核心架构创新与典型场景调优两个维度展开:首先解析第三代TensorCore的稀疏计算加速机制、FP8混合精度支持特性及其对矩阵运算的优化效果;其次,针对显存子系统中HBM3堆栈布局、L2缓存分区策略以及数据预取算法的协同优化进行拆解;最
- Java快排算法详解
大梦谁先觉i
数据结构与算法算法java排序算法
快排算法底层基本思想:先取出数列中的第一个数作为基准数。将数列中比基准数大的数全部放在他的右边,比基准数小的数全部放在它的左边。然后在对左右两部分重复第二步,直到各个区间只有一个数。具体Java代码实现publicclassQuickSort{publicstaticvoidsort(int[]array,intlow,inthigh){if(low=benchmark){high--;}//比基
- Django框架的全面指南:从入门到高级
步入烟尘
Python超入门指南全册djangosqlite数据库
本文已收录于《Python超入门指南全册》本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从基础到精通不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/mrdeam/category_12647587.html优点:订阅限时19.9付费专栏,私信博主还可进入全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以
- 大模型全军覆没,中科院自动化所推出多图数学推理新基准 | CVPR 2025
量子位
关注前沿科技量子位挑战多图数学推理新基准,大模型直接全军覆没?!事情是这样的。近日,中国科学院自动化研究所推出多图数学推理全新基准MV-MATH(该工作已被CVPR2025录用),这是一个精心策划的多图数学推理数据集,旨在全面评估MLLM(多模态大语言模型)在多视觉场景中的数学推理能力。结果评估下来发现,GPT-4o仅得分32.1,类o1模型QvQ得分29.3,所有模型均不及格。具体咋回事,下面接
- 【排序算法】选择排序
啥也不会干的小码
排序算法排序算法算法c语言
一、定义:选择排序(Selectionsort)是一种简单直观的排序算法。第一次从待排序的数据(元素)中选出最小(或最大)的一个元素,存放在数组的起始位置,然后再从剩余的没有排序的元素中寻找到最小(大)元素,然后放到已排序的数组的末尾。以此类推,直到全部待排序的数据元素的个数为零。对于数据量大的排序就没啥用了,排的比较慢。二、原理:1、对于待排序的数组,我们从首元素开始,将首元素的下标用min记住
- 归并排序(二叉树的后续遍历思想和数组的双指针技巧)
冰火同学
力扣算法排序算法数据结构
这次归并排序就只讲思路了,代码实现放到下次刷题再做首先确认一下归并排序的时间复杂度是NlogN的时间复杂度。实现归并排序的算法,我认为有几个困难需要克服掉1、首先就是要明确归并排序的算法思想,就是二叉数据的后序遍历,就是先从中间分割成两个子数组,然后继续分,直到只剩下一个元素,那么此时就是有序的,这个和构造二叉树时的分解思想十分相似,把子问题全部解决,那问题也就都解决了,至于我们只关注其中一个节点
- 第 146 题「LRU缓存机制」(手撸LRU算法)
冰火同学
力扣缓存数据结构算法
首选用比较通俗的语言来讲一讲LRU算法,那手机内存来举例子,就是当内存超出了手机设置的内存后,就要删除了内存,那删除那部分内存呢,LRU算法就是提供一个策略来选择那些需要缓存需要被删除掉,就是谁隔得最远就删除掉谁。LRU算法的描述怎么描述呢,其实上述描述的就是LRU算法要实现的逻辑只不多是人能理解的活,那么如何从写代码的角度来说一下实现LRU算法的逻辑呢,这个时候就要通过基础的数据结构结合来讲LR
- C语言实现排序之选择排序算法
Seraphina_Lily
C语言排序算法排序算法c语言算法
1.代码#include#include#include//函数声明int*create_and_generate_random_array(intsize);voidprint_array(int*array,intsize);voidselection_sort(int*array,intsize);intgenerate_random_size();intmain(){intsize=gen
- 如何有效管理 JavaScript 中的内存:垃圾回收与最佳实践
名之以父
JavaScript前端安全javascript前端框架react.jsvue.js网络
“垃圾回收是现代编程语言的核心特性之一,它使得开发者可以专注于功能实现,而无需担心内存管理的细节。”——在JavaScript中,垃圾回收(GC)是一个自动化的内存管理过程,它帮助我们确保不再使用的内存得到释放。尽管JavaScript的垃圾回收机制非常强大,但如果对其原理和工作方式不够了解,也可能导致一些性能问题和内存泄漏。本文将深入探讨JavaScript中的垃圾回收机制、算法以及如何优化垃圾
- 卡尔曼滤波算法c语言stm32,卡尔曼滤波算法及C语言实现_源代码
weixin_39643255
卡尔曼滤波算法c语言stm32
a往南向北2019-01-1620:39:2011340收藏111分类专栏:C语言嵌入式文章标签:卡尔曼滤波C代码卡尔曼滤波理论很容易就可以在MATLAB软件环境下实现,但是,实际的硬件板子上还是需要C语言,当然可以自动代码生成,还有一种就是直接手动编写C语言。1.前言在google上搜索卡尔曼滤波,很容易找到以下这个帖子:http://blog.csdn.net/lanbing510/artic
- 《算法二》选择排序算法及它的时间复杂度
code 旭
算法选择排序算法算法选择排序时间复杂度
1.选择排序算法选择排序算法的时间复杂度为O(N^2)选择排序算法规则:1.指定位置的数和后面的数比较2.如果指定位置的数大,则两个数交换位置3.向后移动一个位置,和指定位置的数进行比较假设数组大小n,第一轮比较n-1次,最小的数排在了最前面第二轮比较,第一个数已经是最小不用比较,此轮比较n-2次,第二小的排在第二个位置。依次类推,最后一轮,一次比较,最后得出有序的数列1.1和冒泡排序算法相比选择
- 池化的定义与核心思想
code 旭
AI人工智能学习pythonnumpy人工智能
一、池化的定义与核心思想定义:池化是卷积神经网络(CNN)中的一种下采样操作,用于降低特征图的空间维度(宽高),保留主要特征。核心目标:减少计算量:缩小特征图尺寸,降低后续层参数规模。增强模型鲁棒性:对微小平移、旋转等变化不敏感。防止过拟合:通过降维减少冗余信息。二、池化的数学公式1.最大池化(MaxPooling)取池化窗口内的最大值:yi,j=maxp=0kh−1maxq=0kw−1xi⋅
- K-means 算法核心原理
code 旭
AI人工智能学习算法kmeans机器学习
一、K-means算法核心原理1.算法目标将n个样本划分到k个簇中,使得每个样本到所属簇中心的距离平方和最小。2.数学公式目标函数(SSE,簇内平方误差):J=∑i=1k∑x∈Ci∥x−μi∥2J=\sum_{i=1}^k\sum_{x\inC_i}\|x-\mu_i\|^2J=i=1∑kx∈Ci∑∥x−μi∥2其中:CiC_iCi表示第iii个簇μi\mu_iμi表示第iii个簇的质心二、算法步
- XGBoost常见面试题(五)——模型对比
月亮月亮要去太阳
机器学习经验分享
XGBoost与GBDT的区别机器学习算法中GBDT和XGBOOST的区别有哪些?-知乎基分类器:传统GBDT以CART树作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。导数:传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。同时xgboo
- 【算法】BFS(最短路径问题、拓扑排序)
秦jh_
算法算法数据结构c++
个人主页:秦jh_-CSDN博客系列专栏:https://blog.csdn.net/qinjh_/category_12862161.html?fromshare=blogcolumn&sharetype=blogcolumn&sharerId=12862161&sharerefer=PC&sharesource=qinjh_&sharefrom=from_link目录边权为1的最短路径问题多源
- MPU6050 卡尔曼滤波算法 四元数欧拉姿态解算 STM32 CubeMX HAL库 MDKkeil5 零基础移植
辛尘大海
算法stm32嵌入式硬件
文章目录一、在cubemx开启IIC并设置好对应的IIC引脚二、generatecode生成代码三、复制以下的全部代码新建分别保存放到IncSrc文件夹中1.MPU6050.h2.MPU6050.C四、如何使用总结一、在cubemx开启IIC并设置好对应的IIC引脚二、generatecode生成代码(记得生成单个c.h.文件)!!!!!!三、复制以下的全部代码新建分别保存放到IncSrc文件夹中
- 常用图像增强算法原理及 OpenCV C++ 实现
埃菲尔铁塔_CV算法
opencv计算机视觉人工智能c++算法机器学习
一、引言图像增强是数字图像处理中的一个重要分支,其目的是改善图像的视觉效果,突出图像中的重要信息,或者将图像转换为更适合人或机器分析处理的形式。在实际应用中,图像增强技术广泛应用于医学影像、遥感图像、安防监控等领域。本文将详细介绍常用的图像增强算法原理,并给出基于OpenCVC++库的实现代码。二、图像增强算法分类图像增强算法可以分为空间域增强和频域增强两大类。空间域增强是直接对图像的像素值进行操
- 算法与数据结构(回文数)
a_j58
数据结构
题目思路对于这个我的第一想法就是转换为字符串然后判断字符串是否为回文,它会消耗额外的地址空间。还有一种想法就是将数字反转并判断是否为回文,但可能需要处理数字溢出的问题。若要避免出现数字溢出的问题,我们可以只反转它的一半,若前半部分和后半部分相同,则说明它是一个回文数。如123321,我们将它的后半部分反转,得到123,它与前半部分相同,说明它是一个回文数。算法首先,我们可以先考虑到它的一些临界情况
- 垃圾收集算法与收集器
HBryce24
JVMjvm
在JVM中,垃圾收集(GarbageCollection,GC)算法的核心目标是自动回收无用对象的内存,同时尽量减少对应用性能的影响。以下是JVM中主要垃圾收集算法的原理、流程及实际应用场景的详细介绍:一、标记-清除算法(Mark-Sweep)原理标记阶段:从GCRoots(如栈引用、静态变量)出发,遍历对象图,标记所有存活对象。清除阶段:扫描堆内存,回收未被标记的对象所占用的内存(直接释放,不整
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc