从jdk源码深入剖析java类加载机制

类加载过程整体分析

当我们用java命令运行某个类的main函数启动程序时,首先需要通过类加载器把主类加载到 JVM

public class Math {
    public static final int initData = 666;
    public static User user = new User();

    public int compute() { //一个方法对应一块栈帧内存区域
        int a = 1;
        int b = 2;
        int c = (a + b) * 10;
        return c;
    }

    public static void main(String[] args) {
        Math math = new Math();
        math.compute();
    }
}

通过Java命令执行代码的大体流程如下:


类加载整体流程.png

从上图我们可以看出发起调用的地方是操作系统底层帮我们实现的,引导类加载器也不是由java编写的。

在真正加载我们要运行的类之前要做很多准备工作,这其中很多地方都不是java语言所能处理的,因此不必做过多的探究。

那么类加载在加载类的过程中发生了哪些事情呢?大概可以分为以下七个阶段:

类加载几大阶段.png

  • 加载:在硬盘上查找并通过IO读入字节码文件,使用到类时才会加载,例如调用类的main()方法,new对象等等,在加载阶段会在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口
  • 验证:校验字节码文件的正确性
  • 准备:给类的静态变量分配内存,并赋予默认值
  • 解析:将符号引用替换为直接引用,该阶段会把一些静态方法(符号引用,比如main()方法)替换为指向数据所存内存的指针或句柄等(直接引用),这是所谓的静态链接过程(类加载期间完成),动态链接是在程序运行期间完成的将符号引用替换为直接引用
  • 初始化:对类的静态变量初始化为指定的值,执行静态代码块
    类加载过程.png

    PS:类被加载到方法区中后主要包含 运行时常量池、类型信息、字段信息、方法信息、类加载器的引用、对应class实例的引用等信息。
    类加载器的引用:这个类到类加载器实例的引用
    对应class实例的引用:类加载器在加载类信息放到方法区中后,会创建一个对应的Class 类型的对象实例放到堆(Heap)中, 作为开发人员访问方法区中类定义的入口和切入点。
    那么类是在jvm启动时就全部加载了吗?

答案是否定的,事实上,主类在运行过程中如果使用到其它类,会逐步加载这些类。jar包或war包里的类不是一次性全部加载的,是使用到时才加载。请看下面例子:

public class TestDynamicLoad {
    static {
        System.out.println("*************加载主启动类************");
    }

    public static void main(String[] args) {
        new A();
        System.out.println("*******加载测试********");
        B b = null;//B不会加载,除非这里执行new B();
    }
}

class A{
    static {
        System.out.println("*******加载A类********");
    }

    public A() {
        System.out.println("*******初始化A类********");
    }
}

class B{
    static {
        System.out.println("*******加载B类********");
    }

    public B() {
        System.out.println("*******初始化B类********");
    }
}
运行结果:
*************加载主启动类************
*******加载A类********
*******初始化A类********
*******加载测试********

类加载器和双亲委派机制

上面的类加载过程主要是通过类加载器来实现的,Java里有如下几种类加载器:

  1. Bootstrp loader
    Bootstrp加载器是用C++语言写的,它是在Java虚拟机启动后初始化的,它主要负责加载%JAVA_HOME%/jre/lib,-Xbootclasspath参数指定的路径以及%JAVA_HOME%/jre/classes中的类。

  2. ExtClassLoader
    Bootstrp loader加载ExtClassLoader,并且将ExtClassLoader的父加载器设置为Bootstrp loader.ExtClassLoader是用Java写的,具体来说就是 sun.misc.Launcher$ExtClassLoader,ExtClassLoader主要加载%JAVA_HOME%/jre/lib/ext,此路径下的所有classes目录以及java.ext.dirs系统变量指定的路径中类库。

  3. AppClassLoader
    Bootstrp loader加载完ExtClassLoader后,就会加载AppClassLoader,并且将AppClassLoader的父加载器指定为 ExtClassLoader。AppClassLoader也是用Java写成的,它的实现类是 sun.misc.Launcher$AppClassLoader,另外我们知道ClassLoader中有个getSystemClassLoader方法,此方法返回的正是AppclassLoader.AppClassLoader主要负责加载classpath所指定的位置的类或者是jar文档,它也是Java程序默认的类加载器。

类加载器初始化过程:

参见类运行加载全过程图可知其中会创建JVM启动器实例sun.misc.Launcher。 sun.misc.Launcher初始化使用了单例模式设计,保证一个JVM虚拟机内只有一个 sun.misc.Launcher实例。 在Launcher构造方法内部,其创建了两个类加载器,分别是 sun.misc.Launcher.ExtClassLoader(扩展类加载器)和sun.misc.Launcher.AppClassLoader(应 用类加载器)。 JVM默认使用Launcher的getClassLoader()方法返回的类加载器AppClassLoader的实例加载我们 的应用程序。

jdk源代码如下:

//Launcher的构造方法
public Launcher() {
    Launcher.ExtClassLoader var1;
    try {
    //构造扩展类加载器,在构造的过程中将其父加载器设置为null
        var1 = Launcher.ExtClassLoader.getExtClassLoader();
        } catch (IOException var10) {
            throw new InternalError("Could not create extension class loader",      var10);
        }
    try {
        //构造应用类加载器,在构造的过程中将其父加载器设置为ExtClassLoader,
        //Launcher的loader属性值是AppClassLoader,我们一般都是用这个类加载器来加载我们自己写的应用程序
        this.loader = Launcher.AppClassLoader.getAppClassLoader(var1);
        } catch (IOException var9) {
            throw new InternalError("Could not create application class loader", var9);
        }
        Thread.currentThread().setContextClassLoader(this.loader);

双亲委派机制

前面说了,java中有三个类加载器,问题就来了,碰到一个类需要加载时,它们之间是如何协调工作的,即java是如何区分一个类该由哪个类加载器来完成呢。 在这里java采用了委托模型机制,这个机制简单来讲,就是“类装载器有载入类的需求时,会先请示其Parent使用其搜索路径帮忙载入,如果Parent 找不到,那么才由自己依照自己的搜索路径搜索类

下面举一个例子来说明,为了更好的理解,先弄清楚几行代码:

Public class Test{
 
    Public static void main(String[] arg){
 
      ClassLoader c  = Test.class.getClassLoader();  //获取Test类的类加载器
 
        System.out.println(c); 
 
      ClassLoader c1 = c.getParent();  //获取c这个类加载器的父类加载器
 
        System.out.println(c1);
 
      ClassLoader c2 = c1.getParent();//获取c1这个类加载器的父类加载器
 
        System.out.println(c2);
 
  }
 
}

结果:
……AppClassLoader……
 
……ExtClassLoader……
 
Null

可以看出Test是由AppClassLoader加载器加载的,AppClassLoaderParent 加载器是 ExtClassLoader,但是ExtClassLoaderParentnull 是怎么回事呵,朋友们留意的话,前面有提到Bootstrap Loader是用C++语言写的,依java的观点来看,逻辑上并不存在Bootstrap Loader的类实体,所以在java程序代码里试图打印出其内容时,我们就会看到输出为null

我们来看下应用程序类加载器AppClassLoader加载类的双亲委派机制源码,AppClassLoader 的loadClass方法最终会调用其父类ClassLoader的loadClass方法,该方法的大体逻辑如下:

  1. 首先,检查一下指定名称的类是否已经加载过,如果加载过了,就不需要再加载,直接 返回。

  2. 如果此类没有加载过,那么,再判断一下是否有父加载器;如果有父加载器,则由父加 载器加载(即调用parent.loadClass(name, false);).或者是调用bootstrap类加载器来加 载。

  3. 如果父加载器及bootstrap类加载器都没有找到指定的类,那么调用当前类加载器的 findClass方法来完成类加载。

源代码如下:

ClassLoader.java

protected Class loadClass(String name, boolean resolve)
        throws ClassNotFoundException
    {
        synchronized (getClassLoadingLock(name)) {
           // 检查当前类加载器是否已经加载了该类
            Class c = findLoadedClass(name);
            if (c == null) {
                long t0 = System.nanoTime();
                try {
                    if (parent != null) { //如果当前加载器父加载器不为空则委托父加载器加载该类
                        c = parent.loadClass(name, false);
                    } else {//如果当前加载器父加载器为空则委托引导类加载器加载该类
                        c = findBootstrapClassOrNull(name);
                    }
                } catch (ClassNotFoundException e) {
                    // ClassNotFoundException thrown if class not found
                    // from the non-null parent class loader
                }

                if (c == null) {
                    // If still not found, then invoke findClass in order
                    // to find the class.
                    long t1 = System.nanoTime();
                    //都会调用URLClassLoader的findClass方法在加载器的类路径里查找并加载该类
                    c = findClass(name);

                    // this is the defining class loader; record the stats
                    sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
                    sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
                    sun.misc.PerfCounter.getFindClasses().increment();
                }
            }
            if (resolve) {
                resolveClass(c);
            }
            return c;
        }
    }

URLClassLoader.java

protected Class findClass(final String name)
        throws ClassNotFoundException
    {
        final Class result;
        try {
            result = AccessController.doPrivileged(
                new PrivilegedExceptionAction>() {
                    public Class run() throws ClassNotFoundException {
                        //匹配被加载类的路径和当前类加载器的加载路径,看能否匹配到
                        String path = name.replace('.', '/').concat(".class");
                        Resource res = ucp.getResource(path, false);
                        if (res != null) {
                            try {
                                //如果能匹配到,就进行真正的类加载,
                                //就会执行前面说的类加载的几个阶段
                                return defineClass(name, res);
                            } catch (IOException e) {
                                throw new ClassNotFoundException(name, e);
                            }
                        } else {
                            return null;
                        }
                    }
                }, acc);
        } catch (java.security.PrivilegedActionException pae) {
            throw (ClassNotFoundException) pae.getException();
        }
        if (result == null) {
            throw new ClassNotFoundException(name);
        }
        return result;
    }

那么为什么要设计双亲委派机制?

主要有以下2点原因:

  1. 沙箱安全机制:自己写的java.lang.String.class类不会被加载,这样便可以防止核心 API库被随意篡改
  2. 避免类的重复加载:当父亲已经加载了该类时,就没有必要子ClassLoader再加载一 次,保证被加载类的唯一性

Tomcat打破双亲委派机制

以Tomcat类加载为例,Tomcat 如果使用默认的双亲委派类加载机制行不行?

我们思考一下:Tomcat是个web容器, 那么它要解决什么问题:

  1. 一个web容器可能需要部署两个应用程序,不同的应用程序可能会依赖同一个第三方类库的 不同版本,不能要求同一个类库在同一个服务器只有一份,因此要保证每个应用程序的类库都是 独立的,保证相互隔离。

  2. 部署在同一个web容器中相同的类库相同的版本可以共享。否则,如果服务器有10个应用程 序,那么要有10份相同的类库加载进虚拟机。

  3. web容器也有自己依赖的类库,不能与应用程序的类库混淆。基于安全考虑,应该让容器的 类库和程序的类库隔离开来。

  4. web容器要支持jsp的修改,我们知道,jsp 文件最终也是要编译成class文件才能在虚拟机中 运行,但程序运行后修改jsp已经是司空见惯的事情, web容器需要支持 jsp 修改后不用重启。

再看看我们的问题:Tomcat 如果使用默认的双亲委派类加载机制行不行?

答案是不行的。为什么?

第一个问题,如果使用默认的类加载器机制,那么是无法加载两个相同类库的不同版本的,默认 的类加器是不管你是什么版本的,只在乎你的全限定类名,并且只有一份。

第二个问题,默认的类加载器是能够实现的,因为他的职责就是保证唯一性

第三个问题和第一个问题一样。

我们再看第四个问题,我们想我们要怎么实现jsp文件的热加载,jsp 文件其实也就是class文 件,那么如果修改了,但类名还是一样,类加载器会直接取方法区中已经存在的,修改后的jsp 是不会重新加载的。那么怎么办呢?我们可以直接卸载掉这jsp文件的类加载器,所以你应该想 到了,每个jsp文件对应一个唯一的类加载器,当一个jsp文件修改了,就直接卸载这个jsp类加载 器。重新创建类加载器,重新加载jsp文件。

Tomcat自定义加载器详解

tomcat类加载器.png

tomcat的几个主要类加载器:

  • commonLoader:Tomcat最基本的类加载器,加载路径中的class可以被Tomcat容 器本身以及各个Webapp访问;

  • catalinaLoader:Tomcat容器私有的类加载器,加载路径中的class对于Webapp不 可见;

  • sharedLoader:各个Webapp共享的类加载器,加载路径中的class对于所有 Webapp可见,但是对于Tomcat容器不可见;

  • WebappClassLoader:各个Webapp私有的类加载器,加载路径中的class只对当前 Webapp可见,比如加载war包里相关的类,每个war包应用都有自己的WebappClassLoader,实现相互隔离,比如不同war包应用引入了不同的spring版本, 这样实现就能加载各自的spring版本;

从图中的委派关系中可以看出:

CommonClassLoader能加载的类都可以被CatalinaClassLoader和SharedClassLoader使用, 从而实现了公有类库的共用,而CatalinaClassLoader和SharedClassLoader自己能加载的类则 与对方相互隔离。

WebAppClassLoader可以使用SharedClassLoader加载到的类,但各个WebAppClassLoader 实例之间相互隔离。

而JasperLoader的加载范围仅仅是这个JSP文件所编译出来的那一个.Class文件,它出现的目的 就是为了被丢弃:当Web容器检测到JSP文件被修改时,会替换掉目前的JasperLoader的实例, 并通过再建立一个新的Jsp类加载器来实现JSP文件的热加载功能。

tomcat 这种类加载机制违背了java 推荐的双亲委派模型了吗?答案是:违背了。

很显然,tomcat 不是这样实现,tomcat 为了实现隔离性,没有遵守这个约定,每个 webappClassLoader加载自己的目录下的class文件,不会传递给父类加载器,打破了双亲委 派机制。


iu.jpeg

关于类加载机制就分析到这里了,原创不易,觉得写得不错的话就点点赞关注关注呗,我的微信公众号:java时光

你可能感兴趣的:(从jdk源码深入剖析java类加载机制)