- 项目上传github步骤
虾饺爱下棋
githubgiteegit
上传到GitHub的步骤大致是这样的:1.添加文件到暂存区首先,你需要将你修改的文件添加到Git的暂存区。使用gitadd.可以将当前目录下的所有文件(包括新增文件和修改过的文件)添加到暂存区:gitadd.2.提交文件到本地仓库接下来,使用gitcommit提交你的更改。你可以为提交写一个简短的说明,描述此次提交的内容。例如:gitcommit-m"添加了新的训练模型"3.推送更改到远程仓库然后
- 【实战记录】SSL证书部署到阿里云及注意事项
AntyRia
后端杂记阿里云sslhttps
目录前言正文部署流程注意事项总结前言原本正常的服务器在项目经过一次迭代之后突然无法使用https访问,一直显示不能提供安全的链接。先后检查了SSL证书状态、域名状态、服务器状态,都是没有问题的,甚至咨询了阿里的工程师,但是没有解决…于是狠下心来,备份数据,重装服务器…经过一番折腾,也算是可以访问了,特此记录一下。正文部署流程下载证书文件到本地部署到本地项目中下载的文件解压,里面有俩东西。全部复制到
- 【AI-38】为什么开源的是预训练好的模型权重,而不是预训练模型呢?
W Y
人工智能DeepSeek
开源预训练好的模型权重而不是整个预训练模型,主要有以下几方面原因:知识产权与商业考量保护核心技术与数据:模型开发者可能希望保护模型的某些核心技术细节、独特算法或私有数据,这些是模型的关键竞争力所在。只开源权重可以让开发者在分享部分成果的同时,保留对核心部分的控制权,避免技术泄露。例如,一些企业在研发大模型时,使用了独特的数据清洗和标注方法,或者在模型架构上有创新的设计,他们可能不想公开这些细节,以
- 中国大模型大全 · 爆肝干货整理 · 244 个
凭空起惊雷
物联网/互联网/人工智能/其他大模型国内百度商汤讯飞腾讯
中国大模型大全,全面收集有明确来源的大模型情况,包括机构、来源信息和分类等。序号公司大模型省市类别官网说明1百度文心一言北京
- 用人类反馈微调大模型,InstructGPT 让 GPT-3 脱胎换骨
人工智能
用人类反馈微调大模型,InstructGPT让GPT-3脱胎换骨本文展示了一种通过利用人类反馈进行微调,使大语言模型在广泛任务中契合用户意图的方法。我们从一组标注员编写的提示以及通过OpenAIAPI提交的提示开始,收集了一个数据集,其中包含标注员展示的期望模型行为,利用这些数据通过监督学习对GPT-3进行微调。接着,我们收集模型输出的排名数据集,使用人类反馈强化学习对这个经过监督学习训练的模型进
- 探索Omniglot:一个无尽的手写字符集合
宋溪普Gale
探索Omniglot:一个无尽的手写字符集合omniglotomniglot-一个包含大量不同语言手写字符图像的数据集,用于机器学习模型的训练和评估。项目地址:https://gitcode.com/gh_mirrors/om/omniglot项目简介Omniglot是由BrendenLake等人创建的一个开源项目,其目标是提供一个广泛的手写字符集,用于研究人类和机器的学习能力。这个项目不仅仅是一
- cap4:YoloV5的TensorRT部署指南(python版)
我是一个对称矩阵
TensorRT全流程部署指南YOLOpython人工智能TensorRT模型部署
《TensorRT全流程部署指南》专栏文章目录:《TensorRT全流程部署指南》专栏主页cap1:TensorRT介绍及CUDA环境安装cap2:1000分类的ResNet的TensorRT部署指南(python版)cap3:自定义数据集训练ResNet的TensorRT部署指南(python版)cap4:YoloV5目标检测任务的TensorRT部署指南(python版)cap5:YoloV5
- 基于Python开发的使用多个单视图特征融合的基于图卷积网络(GCN)的肺结节检测系统的示例
go5463158465
python深度学习算法python迁移学习开发语言
以下是一个基于Python开发的使用多个单视图特征融合的基于图卷积网络(GCN)的肺结节检测系统的示例。我们将使用PyTorch和torch_geometric库来实现图卷积网络,并模拟数据进行演示。步骤概述数据准备:模拟生成多个单视图的肺结节特征数据,并构建图数据。特征融合:将多个单视图特征进行融合。图卷积网络构建:构建一个简单的图卷积网络模型。模型训练:使用训练数据对模型进行训练。模型评估:使
- 基于YOLOv5、FaceNet与KNN的人脸识别系统
reset2021
人脸识别系统YOLOfacenetknn人脸检测
步骤1:环境配置安装依赖库:安装Python3.x安装TensorFlow、Keras、OpenCV等深度学习库获取数据集:收集训练用的多个人脸图像(每个用户至少几十张)将图像按用户分类存放在data/train/user1,user2等文件夹中步骤2:训练YOLO模型配置YOLO数据集:创建一个data.yaml文件,配置您的数据集路径和标签train:./data/train/images/v
- 软考高项备考技巧
chengxuyuan1213_
职场和发展
软考高项备考是一个系统而复杂的过程,以下是一些有效的备考技巧:一、制定备考计划明确时间节点:掌握报名时间、考试时间、成绩查询时间和证书领取时间等关键信息,以便合理安排备考进度。例如,软考高项通常在上半年进行,报名时间一般在考前几个月,考试时间则固定在5月底左右。分阶段备考:将备考过程分为不同的阶段,如基础学习阶段、强化训练阶段和冲刺复习阶段。每个阶段都有明确的学习目标和任务,确保备考过程有条不紊。
- Meta官宣Llama3:迄今为止最强大的开源大模型
人工智能开源
4月18日,Meta在官方博客官宣了Llama3,标志着人工智能领域迈向了一个重要的飞跃。此版本具有经过预训练和指令微调的语言模型,具有8B(80亿)和70B(700亿)参数,可以支持广泛的用例。Llama3在各种行业基准上展示了最先进的性能,并提供了新功能,包括改进的推理能力。领先的性能新的8B和70B参数Llama3模型是Llama2模型的重大飞跃,为这些规模的LLM模型确立了新的先进水平。得
- 第G9周:ACGAN理论与实战
OreoCC
GAN
>-**本文为[365天深度学习训练营]中的学习记录博客**>-**原作者:[K同学啊]**本人往期文章可查阅:深度学习总结我的环境:语言环境:Python3.11编译器:PyCharm深度学习环境:Pytorchtorch==2.0.0+cu118torchvision==0.18.1+cu118显卡:NVIDIAGeForceGTX1660论文地址:ConditionalImageSynthe
- 【DeepSeek零基础入门】从零开始:如何训练自己的AI模型
Evaporator Core
DeepSeek进阶开发与应用#DeepSeek快速入门deepseek应用开发实例deepseek
从零开始:如何训练自己的AI模型在人工智能的世界里,训练一个属于自己的AI模型,就像是在培养一个新生儿。你需要耐心、技巧,以及对数据的深刻理解。今天,我们将一起探索如何从零开始,训练一个AI模型,并通过一个具体的案例来加深理解。第一步:明确目标与选择框架在开始之前,首先要明确你的AI模型需要解决什么问题。是图像识别、自然语言处理,还是预测分析?明确目标后,选择一个合适的机器学习框架至关重要。Ten
- DeepSeek 和 Qwen 模型快速部署指南
moton2017
深度学习运维模型部署DeepSeekQwen大型语言模型LLM人工智能AI
导读:DeepSeek-V3&DeepSeek-R1模型对比特性DeepSeek-V3DeepSeek-R1模型大小总参数量6710亿(671B),MoE架构,每个token激活370亿参数总参数量与V3相当,基于DeepSeek-V3-Base,采用类似的MoE架构训练方法包含预训练、监督微调(SFT)和强化学习(RL),使用14.8兆高品质文本进行预训练引入多阶段训练流程,冷启动微调后进行推理
- P3405 [USACO16DEC] Cities and States S题解
互联网的猫
集合应用算法c++
题目FarmerJohn有若干头奶牛。为了训练奶牛们的智力,FarmerJohn在谷仓的墙上放了一张美国地图。地图上表明了每个城市及其所在州的代码(前两位大写字母)。由于奶牛在谷仓里花了很多时间看这张地图,他们开始注意到一些奇怪的关系。例如,FLINT的前两个字母就是MIAMI所在的FL州,MIAMI的前两个字母则是FLINT所在的MI州。确切地说,对于两个城市,它们的前两个字母互为对方所在州的名
- DeepSeek混合精度训练核心技术解析与实践指南
燃灯工作室
Deepseek数据挖掘语音识别计算机视觉目标检测机器学习人工智能
1.主题背景1.1Why混合精度训练(价值)混合精度训练通过结合FP16和FP32数据格式,在保证模型精度的前提下实现:40-60%显存占用降低(ResNet50案例:从7.8GB降至4.2GB)1.5-3倍训练速度提升(BERT-Large案例:从8h缩短至5h)突破大模型训练显存瓶颈(GPT-3训练显存需求从3TB降至1.8TB)1.2行业定位属于深度学习基础设施层的训练优化技术,处于模型开发
- 《AIGC团队协作:成功案例背后的秘密》
css3深度学习人工智能
AIGC时代,协作新挑战[]()AIGC时代的到来,无疑为团队协作带来了全新的机遇,但在享受技术红利的同时,我们也必须清醒地认识到,一系列前所未有的挑战正悄然降临。协作模式与沟通方式的转变带来了诸多挑战。传统的团队协作模式在AIGC时代逐渐显得力不从心,新的协作模式需要重新构建。比如,以往面对面的沟通和会议,在远程办公和AIGC工具辅助的情况下,更多地依赖线上交流,这可能导致信息传递的失真和误解。
- Qwen2.5-Coder Technical Report
UnknownBody
LLMDailyLLMforcodeTechnicalReport语言模型人工智能自然语言处理
本文是LLM系列文章,针对《Qwen2.5-CoderTechnicalReport》的翻译。Qwen2.5-Coder技术报告摘要1引言2模型架构3预训练3.1预训练数据3.1.1数据组成3.1.2数据混合3.2训练策略3.2.1文件级预训练3.2.2仓库级预训练4后训练4.1指令数据的配方4.2训练策略5去污6在基础模型上的评估6.1代码生成6.2代码补全6.3代码推理6.4数学推理6.5通用
- 什么是Grok-3?技术特点,场景,潜在问题与挑战
AndrewHZ
深度学习新浪潮深度学习transformer人工智能语言模型LLMGrok-3ElonMusk
Grok-3的技术特点与优势1.超大算力与训练规模算力投入:Grok-3使用了20万块英伟达H100GPU,分两个阶段训练(第一阶段10万GPU训练144天,第二阶段20万GPU训练92天),总计算量是前代Grok-2的10倍。这种规模远超同期其他项目(如印度的1.8万GPU公共设施),显著提升了模型性能。模型规模:推测其参数量可能达到200B-500B,远超DeepSeek-R1等模型,通过推大
- ChatGLM-6B中英双语对话大模型Windows本地部署实战
ErbaoLiu
数据分析&大模型自然语言处理&大模型机器学习&大模型ChatGLMChatGLM-6B中英双语对话语言模型LLM大模型GPT聊天机器人
目录智谱清言ChatGLM简介ChatGLM下载硬件需求Conda环境下载代码下载模型部署测试网页版Demo命令行DemoAPI方式部署低成本部署智谱清言智谱清言是北京智谱华章科技有限公司研发的大模型。智谱AI致力于打造新一代认知智能大模型,专注于做大模型的中国创新。公司于2020年底研发GLM预训练架构,2021年训练完成百亿参数模型GLM-10B,利用MoE架构成功训练出收敛的万亿稀疏模型,2
- 模型算力需求估算
由数入道
人工智能
计算模型的算力需求,通常基于模型的参数量(BillionParameters,简称B)和训练/推理的计算任务复杂度,结合硬件计算能力(例如每秒浮点运算次数,FLOPS)来估算。以下是详细的方法和公式说明,以及实际的计算示例。1.算力需求的基本公式1.1训练阶段训练阶段的算力需求可以通过以下公式估算:训练算力需求(FLOPs)=2×P×N×S×D\text{训练算力需求(FLOPs)}=2\time
- 百万架构师第五课:设计模式:深度分析代理模式
大雄野比
设计模式代理模式
代理模式作用:AOP实现拦截器中介黄牛媒婆解耦专人做专事自己不想做,又不得不做的事增强代理:静态代理动态代理角色代理角色被代理的角色(目标对象)由被代理的角色来做最终的决定代理角色通常来说会持有被代理角色对象引用(以便于代理角色完成工作之前或者之后能够找到被代理的对象,能够通知被代理对象)静态代理动态代理的区别:静态代理:在代理之前所有的东西都是已知的(人工)动态代理:在代理之前,所有的东西都是未
- 蓝桥杯训练题(1)
wuhu_king
算法算法
幂ab的末3位数是多少?输入两个正整数a,b。1≤a≤100,1≤b≤10000。输出从高位到低位输出幂的末三位数字,中间无分隔符。若幂本身不足三位,在前面补零。样例输入72011样例输出743答案#includeintmain(){inta,b;intret=1;scanf("%d%d",&a,&b);inti;for(i=0;i
- 蓝桥杯真题训练
怀化第一深情
编程题集蓝桥杯蓝桥杯c++算法
目录1.2.3.4.5.1..题目描述在电子计算机普及以前,人们经常用一个粗略的方法来验算四则运算是否正确。比如:248*15=3720把乘数和被乘数分别逐位求和,如果是多位数再逐位求和,直到是1位数,得2+4+8=14==>1+4=5;1+5=65*6而结果逐位求和为35*6的结果逐位求和与3符合,说明正确的可能性很大!!(不能排除错误)请你写一个计算机程序,对给定的字符串逐位求和:输入输入为一
- 蓝桥杯训练题No.6
GC_Lion
蓝桥杯蓝桥杯c++
#includeusingnamespacestd;signedmain()//正在研究signed{intn;cin>>n;cout.fill('0');//不足位数补0coutusingnamespacestd;typedeflonglongll;lla[100005];llw[105];intmain(){intn;cin>>n;for(lli=0;i>w[i];a[0]=1;memset(
- 蓝桥杯真题训练 五一 4/5
iuk11
蓝桥杯刷题
1217垒骰子矩阵快速幂op[i]表示的是与i的对面的数。如果有面互斥,就在矩阵中标记为零,否则标记为4,代表顶和底确定的时候可以有四种情况。(矩阵乘法)就是快速幂里面的乘法变成了矩阵乘法。#includeusingnamespacestd;constintmod=1e9+7;typedeflonglongll;constintmaxn=6;lln,m;inta,b;intvis[7][7];in
- 数据标注中的归类与定义,从聚类,相关,关联,回归四个方面分析
小宝哥Code
人工智能训练师聚类回归数据挖掘
在数据标注和AI训练过程中,数据的归类与定义是关键步骤,不同的数据分析方法可以用于不同的场景。本文从**聚类(Clustering)、相关(Correlation)、关联(Association)、回归(Regression)**四个角度探讨数据标注的优化,并结合Python代码示例进行说明。1.聚类(Clustering)1.1概念聚类是一种无监督学习方法,它将相似的数据点分为同一个组,而无需预
- 冬训周报(四)
HL0614SC
算法蓝桥杯
一、补题天梯赛训练补题-CSDN博客蓝桥杯训练补题-CSDN博客二、算法本周主要是蓝桥杯的一个训练,这其中对于搜索和二分的算法居多,对于搜索而言,简单的搜索可能还不成问题,但稍微一复杂写起来还是有些吃力的;另外还有二分,二分的关键就在于check函数,这要求对题目理解足够透彻,同时二分还要注意左右端点的值以及答案记录。三、小结本周是寒假训练的最后一周,这周进行了三次的蓝桥杯训练,对于OI的赛制感觉
- 冬训周报(二)
HL0614SC
算法c++
一、天梯训练赛L2-1插松枝模拟题:有一个推送器和一个盒子,推送器会给出松针片,松针下面的片一定要比上面的大,看能组合成一些什么样的松针感觉没什么特别的地方,模拟就行了,但是赛时写拉了,只拿了19分#includeusingnamespacestd;#defineintlonglong#definell__int128#definePIIpair#defineendl'\n'#definemkma
- 暑期集训周报(第一周)
HL0614SC
算法
第☝️周训练内容个人赛为主,加上题单的练习,主要的算法包括二分,三分,栈,队列,01分数规划等等。存在的问题①英文题面这几次个人赛的大多题面都是英文,四级还不知道过没过的我属实觉得读题有点困难了,大多时候都是靠翻译解决的读题问题,而这也可能导致一些题没读准的情况,就类似于这道题一样,没仔细读题,结果白磕的很长时间,导致后面更简单的G题没写。所以还是要提升读英文题面的能力才行;②作息问题之前的训练大
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23