前言: 小白一个, 没有系统性的学习过python网络通信,只是单纯的cv加修改代码,仅作留念以及参考用,感谢互联网博主们和bito插件,使得chatGPT得以免费使用.
另外该多线程传输图片的速度比没有多线程执行还满,后续不对python服务端做优化,而改为C++服务端实现.写出来继续再分享把
前篇博客地址
采用生存者消费者模式、模式2和joinablequeue库.
客户端实现还是比较简单的,麻烦在server端
import pickle
import time
from multiprocessing import Process, JoinableQueue
from queue import Queue
from multiprocessing.connection import Client, Listener
from client_apart import draw_box
from image import plot_boxes, img_encode
import os
from natsort import ns, natsorted
host = 'localhost'
port = 9006
total_time = 0
def img_product(img_queue, path, path_mode='image'):
if path_mode == 'image':
img = img_encode(path)
img_obj = {'frame_num': 1, 'image': img} # need frame_num?
img_queue.put(img_obj)
elif path_mode == 'dir':
dir_list = os.listdir(path)
files = natsorted(dir_list, alg=ns.PATH) # 顺序读取文件名
i = 1
for filename in files:
img_path = path + '/' + filename
img = img_encode(img_path)
img_obj = {'frame_num': i, 'image': img} # need frame_num?
i += 1
img_queue.put(img_obj)
img_queue.put({'frame_num': 0, 'image': "end"}) # end signal
img_queue.join()
def server_consumer(img_queue):
# 1. send data
while True:
img_obj = img_queue.get()
if img_obj is None:
client.close() # avoid connection-reset-by-peer
break # exit end
data_bytes = pickle.dumps(img_obj)
start = int(round(time.time() * 1000))
start_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
client.send(data_bytes) # 40ms/per send img
# print('send cost time: ', (end - start))
img_queue.task_done()
try:
det_result = client.recv()
end = int(round(time.time() * 1000))
end_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
print('recv cost time: ', (end-start))
except EOFError:
break
det_result = pickle.loads(det_result)
draw_box(det_result, img_obj)
if __name__ == '__main__':
client = Client((host, port))
Listener()
img_dir = './data'
one_img = './data/Enterprise001.jpg'
mode = 'dir'
img_jq = JoinableQueue()
producer = Process(target=img_product, args=(img_jq, img_dir, mode,))
consumer = Process(target=server_consumer, args=(img_jq,))
consumer.daemon = True # set daemon but not set join()
producer.start()
consumer.start()
producer.join()
此处接受图片和发送结果线程处在一个类内,使得可以共享一个Listener,来自chatGPT的idea.
from ctypes import *
import ctypes
import time
import pickle
from PHeader import *
import cv2
import numpy as np
from multiprocessing.connection import Listener
from multiprocessing import JoinableQueue, Process, Queue, connection
import threading
class ListenerThread(threading.Thread):
def __init__(self, address, data_handler, lib):
super().__init__()
self.daemon = True
self.address = address
self.data_handler = data_handler
self.lib = lib
self.listener = Listener(self.address, backlog=5)
self.conn = None
self.is_running = True
def run(self):
print('Listening on', self.listener.address)
while self.is_running:
try:
self.conn = self.listener.accept() # ready to accept data continually
print('Connected by', self.listener.last_accepted)
t1 = threading.Thread(target=self.receive_data)
t2 = threading.Thread(target=self.send_result)
t1.start()
t2.start()
t1.join()
t2.join()
except OSError as e:
if e.errno != 98: # Address already in use
raise
print('Address already in use, retrying in 1 second...')
time.sleep(1)
def destroy_Model(self): # when qt send a signal
self.lib.interface_destoryThread()
def receive_data(self):
time_cost1 = 0
while True:
try:
start = int(round(time.time() * 1000))
received_bytes = self.conn.recv() # recv Client data
end = int(round(time.time() * 1000))
print('recv time cost: ', end-start)
time_cost1 += end-start
img_dict = pickle.loads(received_bytes)
if img_dict["frame_num"] == 0:
print("receive's thread already receive all data, close thread!!")
print("recv: ", time_cost1)
self.lib.interface_setEmptyFlag() # make send thread break
break
img_dict['image'] = cv2.imdecode(img_dict['image'], cv2.IMREAD_COLOR)
self.data_handler.sendImgtoC(self.lib, img_dict, 0) # prepare to send img
except EOFError:
print('Connection closed')
self.conn.close()
break
def send_result(self):
time_cost1 = 0
time_cost2 = 0
while True:
self.lib.interface_getClsQueue.restype = ObjClassifyOutput
start = int(round(time.time() * 1000))
output = self.lib.interface_getClsQueue() # get result from model
end = int(round(time.time() * 1000))
time_cost1 += end-start
print('get cls time cost: ', end-start)
if output.object_list.object_num >= 0:
cls_result = self.data_handler.CtoP(output)
cls_result = pickle.dumps(cls_result)
start = int(round(time.time() * 1000))
self.conn.send(cls_result)
end = int(round(time.time() * 1000))
print('send time cost: ', end-start)
time_cost2 += end-start
elif output.object_list.object_num == -1: # queue is empty for now
time.sleep(0.04)
continue
elif output.object_list.object_num == -2: # all data is classify
print("send's thread alreay handle all data, close thread!!")
print("cls: ", time_cost1, ' send: ', time_cost2)
# self.close()
break
def close(self): # useless for now
self.conn.close()
# self.listener.close()
self.run()
class DataHandler:
def __init__(self):
self.data = None
def CtoP(self, output): # 将模型结果解析为python列表
# [cv_object_list: [cv_object: [cv_box: [] ]]]
cv_object_list = []
cls_out = []
obj_list = output.object_list
if obj_list.object_num != 0:
for i in range(obj_list.object_num):
cv_box = []
cv_object = []
obj = obj_list.object[i]
# bbox
cv_box.append(obj.bbox.left_top_x)
cv_box.append(obj.bbox.left_top_y)
cv_box.append(obj.bbox.w)
cv_box.append(obj.bbox.h)
cv_object.append(cv_box)
# classes/objectness/prob
cv_object.append(obj.classes)
cv_object.append(obj.objectness)
prob = POINTER(c_float)(obj.prob)
cv_object.append(prob.contents.value)
# cv_object
cv_object_list.append(cv_object)
cv_object_list.append(obj_list.object_num)
# cv_object_list
cls_out.append(cv_object_list)
return cls_out
def sendImgtoC(self, lib, img_dict, i):
lib.interface_receive.argtypes = [PythonMat]
# 1. combine info to img
pi = PythonMat()
pi.frame_num[0] = img_dict["frame_num"]
img = img_dict['image']
# 1.1 set width/height
PARAM = c_int * 32
height = PARAM()
height[0] = img.shape[0]
pi.height = height
width = PARAM()
width[0] = img.shape[1]
pi.width = width
# 1.2 set Mat
frame_data = np.asarray(img, dtype=np.uint8)
frame_data = frame_data.ctypes.data_as(c_char_p)
pi.frame[0] = frame_data
# 2. send img to detect model
lib.interface_receive(pi)
if __name__ == '__main__':
address = ('localhost', 9006)
data_handler = DataHandler()
ll = ctypes.cdll.LoadLibrary
lib = ll("../../lib/libDetClsController.so") # create a C lib
listener_thread = ListenerThread(address, data_handler, lib)
listener_thread.start()
try:
det_process = threading.Thread(target=lib.interface_initDetectImage)
cls_process = threading.Thread(target=lib.interface_initClassifyImage)
det_process.start()
cls_process.start()
det_process.join() # need a break signal
cls_process.join()
except KeyboardInterrupt:
# 程序被强制关闭
print('Program terminated')
# 关闭ListenerThread对象
listener_thread.is_running = False
listener_thread.join()
finally:
# 关闭ListenerThread对象
listener_thread.is_running = False
listener_thread.join()
此处涉及其他人员写的代码,做修改处理
typedef struct
{
int width[CV_MAX_BATCH_SIZE];
int height[CV_MAX_BATCH_SIZE];
char* frame[CV_MAX_BATCH_SIZE];
int frame_num[CV_MAX_BATCH_SIZE];
}PythonMat;
// 多线程控制相关
mutex mtxQueueDet; // mutex for detect queue
mutex mtxQueueImg; // mutex for image queue
mutex mtxQueueCls; // mutex for classify queue
mutex mtxif;
queue<> queueDetOut;// Det output queue
queue<> queueClsOut;// Det classify queue
queue<cv::Mat> queueMat;
bool DetectFlag = true;
bool ClassifyFlag = true;
bool empty_flag = false;
void receiveImg(PythonMat &img)
{
cv::Mat frame(img.height[0], img.width[0], CV_8UC3, img.frame[0]);
mtxQueueImg.lock();
queueMat.push(frame);
cout << "frame num: "<< img.frame_num[0] << endl;
mtxQueueImg.unlock();
}
void DetectImage()
{
Detect detect_output;
Detect detectmodel;
detectmodel.Init(config_path, 1);
cv::Mat frame;
while(1)
{
if (queueMat.empty())
{
if(!DetectFlag)
{
break;
}
usleep(2000);
continue;
}
mtxQueueImg.lock();
frame = queueMat.front();
queueMat.pop();
mtxQueueImg.unlock();
detect_output = detectmodel.Run(detect_input);
// lock
mtxQueueDet.lock();
queueDetOut.push(detect_output);
cout << "detect run !!" << endl;
mtxQueueDet.unlock();
}
return;
}
void ClassifyImage()
{
Classify objclassify;
objclassify.Init(config_path, 1);
ClassifyInput input;
ClassifyOutput output;
cv::Mat frame;
while(1)
{
if (queueDetOut.empty())
{
if(!ClassifyFlag)
{
break;
}
usleep(2000);
continue;
}
mtxQueueDet.lock();
detect_result = queueDetOut.front();
queueDetOut.pop();
mtxQueueDet.unlock();
output = objclassify.Run(input);
mtxQueueCls.lock();
queueClsOut.push(output);
mtxQueueCls.unlock();
}
return;
}
ClassifyOutput getClsQueue(){
ObjClassifyOutput output;
if (queueClsOut.empty()){
usleep(2000);
output.object_list.object_num = -1; // -1 is now empty; -2 is all empty
if (empty_flag){
output.object_list.object_num = -2;
empty_flag = false;
}
return output;
}
mtxQueueCls.lock();
output = queueClsOut.front();
queueClsOut.pop();
cout << "cls_out pop " << output.object_list.object_num << endl;
mtxQueueCls.unlock();
return output;
}
extern "C" {
int i = 0;
void interface_initDetectImage(){
// if (flag ) exit thread detect/classify
DetectImage();
}
void interface_initClassifyImage(){
ClassifyImage();
}
void interface_receive(PythonMat &img){
printf("run %d times\n", i++);
receiveImg(img);
}
void interface_setEmptyFlag(){
empty_flag = true;
}
void testThread(){
printf("C++ method!!\n");
}
ClassifyOutput interface_getClsQueue(){
ClassifyOutput output;
output = getClsQueue();
return output;
}
void interface_destoryThread(){
DetectFlag = false;
ClassifyFlag = false;
}
}
至此这个混合编程项目结束,但是server接收到client耗时居然300ms,需要优化…