- 小白学AI量化:DeepSeek+Python构建强大的金融数据挖掘与多维分析机器人
老余捞鱼
AI顾投高级策略AI探讨与学习人工智能python金融deepseek
作者:老余捞鱼原创不易,转载请标明出处及原作者。写在前面的话:在机构主导的量化交易时代,普通投资者如何用一杯奶茶的钱(15元/天)打造专业级智能量化产品?本文将为您揭秘一个革命性的解决方案——基于国产大模型DeepSeek和Python构建的智能数据挖掘分析机器人。它不仅适用于通用网页数据抓取,更能深度应用于金融领域,精准捕捉市场信号。本文“干货”很多,请务必耐心读完。一、颠覆认知的性价比革命1.
- 【机器学习】朴素贝叶斯入门:从零到垃圾邮件过滤实战
吴师兄大模型
0基础实现机器学习入门到精通机器学习人工智能朴素贝叶斯深度学习pytorchsklearn开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 大模型学习终极指南:从新手到专家的必经之路,全网最详尽解析,你敢挑战吗?
大模型入门教程
学习人工智能AI大模型大模型学习大模型教程AI大模型
随着人工智能技术的飞速发展,大模型(Large-ScaleModels)已经成为推动自然语言处理(NLP)、计算机视觉(CV)等领域进步的关键因素。本文将为您详细介绍从零开始学习大模型直至成为专家的全过程,包括所需掌握的知识点、学习资源以及实践建议等。无论您是初学者还是有一定基础的专业人士,都能从中获得有价值的指导。一、基础知识准备在开始学习大模型之前,需要先掌握一些基础知识,这些知识将为后续的学
- 机器学习——KNN超参数
练习AI两年半
机器学习人工智能深度学习
sklearn.model_selection.GridSearchCV是scikit-learn中用于超参数调优的核心工具,通过结合交叉验证和网格搜索实现模型参数的自动化优化。以下是详细介绍:一、功能概述GridSearchCV在指定参数网格上穷举所有可能的超参数组合,通过交叉验证评估每组参数的性能,最终选择最优参数组合。其核心价值在于:自动化调参:替代手动参数调试,提升效率3。交叉验证支持:通
- Macrorit Partition Expert:守护硬盘数据的「分区手术专家」
KJ-拾荒者
职场和发展经验分享性能优化软件推荐效率提升
你是否经历过这些崩溃瞬间?想给C盘扩容却怕误删文件,硬盘买回来发现系统不认大容量分区,或是想彻底清除隐私数据却担心被恢复软件找回……传统分区工具要么功能受限,要么操作风险高,稍有不慎就会导致数据灾难。MacroritPartitionExpert的出现,为普通用户和专业运维人员提供了一站式解决方案。作为兼容性极强的分区管理工具,它同时支持MBR和GPT分区表,轻松突破传统系统对2TB以上大硬盘的识
- HarmonyOS Next 应用性能优化实战
SameX-4869
harmonyos性能优化华为
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中应用性能优化的技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、性能评估指标与工具(一)关键性能评估指标CPU使用率CPU使用率是衡量应用在运行过程中对CPU资源占用情况的重要指标。一个高效的Ha
- 10分钟读完《每天最重要的2小时》读书
周盛欢
读书
关于作者乔西・戴维斯(JoséDavis),美国知名作家、演讲家和效率专家。他长期致力于研究人类行为、认知科学以及时间管理等领域,通过结合前沿科学研究成果与实际案例,为读者提供实用且有效的个人成长建议。其作品风格深入浅出,深受广大读者喜爱与认可。关于本书《每天最重要的2小时》是一本聚焦于时间管理与个人效率提升的实用指南。书中,作者乔西・戴维斯基于神经科学、心理学等多学科研究成果,深入剖析了人们在日
- 使用 Sa-Token 完成踢人下线功能
一、需求在企业级项目中,踢人下线是一个很常见的需求,如果要设计比较完善的话,至少需要以下功能点:可以根据用户userId踢出指定会话,对方再次访问系统会被提示:您已被踢下线,请重新登录。可以查询出一个账号共在几个设备端登录,并返回其对应的Token凭证,以便后续操作。可以只踢出一个账号某一个端的会话,其他端不受影响。例如在某电商APP上可以看到当前账号共在几个手机上登录,并注销指定端的会话,当前端
- 小菜鸟的Python笔记001:将Word文档中数据汇总到Excel表格
蜉蝣2805
小菜鸟的Python笔记python数据分析
将Word文档中数据汇总到Excel表格前言一、应用场景二、程序思路及准备工作思路如下:准备工作:三、程序代码1、主程序2、获取Word文档列表3、提取文档内数据4、导入到Excel表格四、遇到的问题1、错误AttributeError:word.Application.Quit2、word文档中复选框的识别总结前言我并非一个专业的程序员,只是一个普通的编程爱好者、一只小菜鸟。得益于网络上各路大神
- 记账本app的需求分析
Shen Planck
记账本应用程序的需求分析包括对应用程序的功能和性能进行评估,以确定应用程序的设计和开发应该包含哪些内容。首先,应对记账本应用程序的用户进行用户调研,以了解用户的使用需求。这可以包括访问用户的使用情况,以及他们希望记账本应用程序具有哪些功能。其次,应确定记账本应用程序的目标市场,以确定应用程序的设计应该如何进行。这可能会考虑该应用程序的使用者人群,以及应用程序的使用场景。随后,应分析记账本应用程序的
- AI大模型训练教程
Small踢倒coffee_氕氘氚
python自学经验分享笔记
1.引言随着人工智能技术的快速发展,大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。训练一个大模型需要大量的计算资源、数据和专业知识。本教程将带你了解如何从零开始训练一个AI大模型。2.准备工作2.1硬件要求GPU:推荐使用NVIDIA的高性能GPU,如A100、V100等。内存:至少64GBRAM。存储:SSD存储,至少1TB。#2.2软件环境操作系统:Lin
- vscode如何找letax模板_VScode如何实时预览LaTeX?
weixin_39789327
好像感觉我要火了,这个必须专业回答下啊,看完别忘了点赞啊!!用户友好型实时预览的定义即不用手动编译,不用手动刷新文档(PDF)的LaTeX写作方式.实现方式与工具目前主要用的是Latexmk这个perl脚本或者支持实时预览的Markdown编辑器.关于TeX集成系统的一个建议个人建议用TeXLive而非MikTeX甚至CTeX套装,相比而言我用TeXLive时碰到的问题最少.后两种你可能发现好好的
- 前端开发:这就是终点吗?
前端javascript
ReactHook深入浅出CSS技巧与案例详解vue2与vue3技巧合集VueUse源码解读让我们重新回到2021年后远程办公风潮兴起的日子,那时候,程序员岗位炙手可热。机会遍地都是,你甚至只需参加少量培训,通过面试后便能轻松收获年薪超15万的工作,还有余暇拍摄一段《程序员的一天》上传网络。经过短短一年左右的培训,你便踏上了年薪六位数的职业道路——那时候,当程序员似乎是一个人人羡慕的理想职业。然而
- 景联文科技提供高质量文本标注服务,驱动AI技术发展
景联文科技
科技人工智能
文本标注是指在原始文本数据上添加标签的过程,这些标签可以用来指示特定的实体、关系、事件等信息,以帮助计算机理解和处理这些数据。文本标注是自然语言处理(NLP)领域的一个重要环节,它通过为文本的不同部分提供具体的含义和上下文信息,增强机器学习和深度学习模型对文本内容的理解能力。标注类型情感分析情感极性:确定文本表达的情感倾向,如正面、负面或中立。强度评估:衡量情感的强烈程度,从轻微到极端不等。命名实
- 景联文科技:以高质量数据标注推动人工智能领域创新与发展
景联文科技
科技人工智能数据标注
在当今这个由数据驱动的时代,高质量的数据标注对于推动机器学习、自然语言处理(NLP)、计算机视觉等领域的发展具有不可替代的重要性。数据标注过程涉及对原始数据进行加工,通过标注特定对象的特征来生成能够被机器学习模型识别和使用的编码格式,从而使数据更具有意义和可解读性。数据标注的主要类型包括:图像标注:指在图片中标识出目标物体的位置、形状或类别等信息,如自动驾驶技术中的行人、车辆及交通标志的识别。文本
- 侯捷 C++ 课程学习笔记:深入掌握 C++ 高阶特性 —— 实践与心得分享
清水白石008
C++学习笔记课程教程c++学习笔记
侯捷C++课程学习笔记:深入掌握C++高阶特性——实践与心得分享自从开始接触侯捷C++系列精品课程以来,我对C++语言有了全新的认识与深入理解。这套课程不仅系统地梳理了C++的基础知识,更从实际案例中展示了许多高阶特性和工程实战技巧。作为一名长期从事C++开发的专业人士,我深深感受到侯捷老师讲解中那种由浅入深、逻辑严密的魅力,也正是这种教学风格让我在短时间内掌握了不少难以琢磨的知识点。今天,我将结
- matlab两矩阵相似性,两个矩阵同时相似对角化MATLAB程序.docx
weixin_39870664
matlab两矩阵相似性
两个矩阵同时相似对角化MATLAB程序摘要:使用Matlab语言设计出实现两个复矩阵同时相似对角化的计算机程序。关键词:同时相似对角化;Matlab;程序矩阵对角化是重要的数学方法,但因其计算过程繁琐,人们往往望之生畏,尤其是多个矩阵同时对角化问题,因此本文设计出判断及计算两个复矩阵能否同时相似对角化的Matlab程序,用此能够方便地解决两个复矩阵同时相似对角化问题。1.理论基础定义[1]:设A、
- 《代码拯救世界》
可问 可问春风
重生之我来csdn写小说网络计算机小说网络安全
《代码拯救世界》第一章:神秘的黑客组织“全球多个银行系统遭受黑客攻击,资金被大量转移,损失高达数十亿美元……”新闻播报员的声音在办公室里回荡,小陈的手心已经捏出了汗。作为一名网络安全工程师,他知道这次攻击的严重性远超普通黑客行为。“老李,你看这个。”小陈把一份报告递给同事,“攻击手法非常专业,利用了多个零日漏洞(未被公开的漏洞),而且目标明确,显然是早有预谋。”老李推了推眼镜,眉头紧锁:“这不像普
- 开发小型、专业、安全且可扩展的语言模型:Arcee的实用指南
fgayif
安全语言模型人工智能python
技术背景介绍在现代企业中,利用语言模型提升效率和推动创新已成为趋势。然而,大型语言模型(LLMs)的高资源消耗和安全性问题,往往让企业望而却步。为解决这些问题,Arcee提供了一种全新的解决方案:小型、专业、安全且可扩展的语言模型(SLMs)。通过SLM适配系统和无缝、可靠的集成,Arcee使企业能够充分发挥领域适应型语言模型的潜力。核心原理解析Arcee的核心在于其SLM适配系统,允许用户根据特
- 【004安卓开发方案调研】之Ionic+Vue+Capacitor开发安卓
ThinkPet
移动app开发androidionicCapacitorVue
基于Ionic+Vue+CapacitorPlugins的国内安卓开发生态和技术现状,结合跨平台框架特性与国内实际环境,以下是综合分析:一、技术成熟度评估1.核心优势跨平台开发效率Ionic提供预制的UI组件库(如卡片、列表、表单),结合Vue的响应式数据绑定,可快速构建80%以上的基础功能界面,开发效率比原生开发提升约40%。典型场景:企业内部工具App、电商商品详情页、新闻资讯类应用。Capa
- 【001安卓开发方案调研】之Java+Gradle+XML 原生安卓开发
ThinkPet
移动app开发androidjavaxml
基于2025年国内安卓开发领域的最新动态,结合Java+Gradle+XML技术组合的生态发展,以下是综合分析:一、技术成熟度评估1.核心架构稳定性Java语言基础作为安卓开发官方支持语言,Java在国内拥有超过15年的技术积累,字节码编译机制与安卓ART虚拟机的深度适配,使其在内存管理、多线程处理等场景表现稳定。主流应用如微信、支付宝均保留Java核心模块。Gradle构建体系Gradle8.5
- Oracle证书靠谱吗?值得考吗?
噗老师
Oracle认证oracle数据库
Oracle认证在数据库管理领域享有极高的声誉和价值,是许多专业人士职业生涯中的重要里程碑。那么,Oracle认证是否值得投入时间和精力去考取呢?这个问题的答案很大程度上取决于你的职业规划、个人兴趣和对未来的展望。首先,Oracle认证的价值还体现在其广泛的行业需求上。在金融、医疗、政府等多个行业中,对数据库管理和分析的依赖性日益增加,这导致了对Oracle专业人才的巨大需求。Oracle数据库在
- 知识图谱系列文章——文物知识图谱
weixin_43407382
知识图谱
文章介绍背景1、文物可以提供创意,如哥窑面饰的照相机2、目前文物数字化工作非常少,没有纳入设计元素3、文物知识图谱建成后具有很多好处¥方法一、本体构建1、明确领域和目的——文物知识图谱&设计创意2、领域信息采集与分析——文物信息,340件文物实例,3、定义文物本体概念和结构层次4、定义概念属性和属性约束5、本体编码(建模语言和工具)6、本体评估——Jena的内嵌推理机,基于描述的逻辑7、本体实
- 【数学建模】熵权法
烟锁池塘柳0
数学建模数学建模算法
熵权法介绍熵权法是一种常用的用于多指标决策问题中的权重确定方法,它通过对决策矩阵的熵值进行计算,来自动地评估各个指标的权重。熵值能够反映各个指标的不确定性,熵值越小,表明该指标的信息量越大,反之亦然。熵权法可以避免人为设定权重的问题,通过熵权法确定的权重是一个客观量,只和数据本身的性质有关。熵权法在多目标优化问题中具有广泛的应用。文章目录熵权法介绍1.熵权法的基本原理2.熵权法步骤步骤1:标准化决
- 2025年首个!又一家智驾供应链企业成功上市,踩准感知红利风口
高工智能汽车
人工智能汽车
3月18日,弘景光电在深交所创业板正式挂牌上市,成为了2025年开年首家成功上市的智能汽车供应链企业。弘景光电作为一家专业从事光学镜头及摄像模组产品的研发、设计、生产和销售的高新技术企业,已深耕行业十多年,目前其产品应用领域主要包括智能汽车汽车及新兴消费两大领域,其中车载光学镜头产品主要应用于智能座舱和智能驾驶系统。在过去的几年中,弘景光电抓住车载光学镜头和新兴消费电子市场的巨大增长机会,业绩实现
- 华为基于IPD如何做需求管理?!从解读96页【华为IPD如何做需求管理】PPT开始
智慧化智能化数字化方案
华为学习专栏项目经理售前工程师技能提升华为华为IPD流程IPD流程体系
该文档全面介绍了华为的IPD需求管理体系,包括概论、体系构建、跨部门协作、需求收集、分析、分发、文档编写与评审、确认、变更管理、跟踪与监控、效果评估以及常见问题解答等内容,旨在为企业提供一套系统的需求管理方法,以提高产品开发的成功率和客户满意度。需求管理概论1.需求管理的定义与流程-需求从客户中来,通过市场管理、需求管理流程提取,经IPD流程实现后回到客户中,形成端到端需求管理。IPD流程总体框架
- 线性代数介绍
ZhuBin365
其它机器学习线性代数人工智能
线性代数介绍线性代数是数学的一个重要分支,它研究向量空间、线性变换和线性方程组。其概念抽象,应用广泛,是现代科学技术中不可或缺的数学工具。本篇将详细解释线性代数中的核心概念,包括行列式、矩阵、向量与向量空间、线性方程组、特征值与特征向量以及二次型,力求深入浅出,帮助读者全面理解。一、行列式(Determinants)行列式是线性代数中一个fundamental的概念,它是一个将方阵映射到一个标量的
- 【蓝桥杯】真题 2386染色时间 (优先队列BFS)
遥感小萌新
蓝桥杯蓝桥杯宽度优先职场和发展
思路这里每一个格子染色多了时间这一层限制,相当于图的每一边有了权重的限制,那么我们就不能直接用双向队列求最短路。而是使用优先队列。规则是这样的:每一个节点可以多次入队,但是只有第一次出队有效。所以这次我们不会在加入队列时更改标签vis,而是在出队时更改标签。如果在出队时发现vis已经更改,这说明这个元素以前出过队列(不是第一次出队),则直接continuecode我们额外设置两个数组,vis标签数
- 从 0 到 万粉的 AI 公众号博主教程
hikktn
从0到万粉的AI公众号博主教程公众号
《从0到万粉的AI公众号博主教程》专栏简介作为一名深耕品牌领域二十余载的资深专家,我深刻感受到当下商业环境的剧变。去年,我开始探索AI技术在内容创作中的应用,短短4个月内,我的公众号突破万粉,这让我意识到AI时代带来的巨大机遇。在与众多职场人士交流的过程中,我发现很多人都面临着相似的困境:想要利用AI进行个人品牌升级,但不知如何入门?拥有专业积累,但难以转化为个人IP?尝试做自媒体,但始终无法突破
- LINUX PCIe架构详解
吕喜曦
LINUXPCIe架构详解【下载地址】LINUXPCIe架构详解分享LINUXPCIe架构详解欢迎阅读《LINUXPCIe架构详解》文档项目地址:https://gitcode.com/Open-source-documentation-tutorial/cb0cf欢迎阅读《LINUXPCIe架构详解》文档。本指南深入浅出地介绍了在Linux操作系统环境下,针对PCIExpress(PCIe)设备
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key