Gluon 实现 dropout 丢弃法

http://www.mamicode.com/info-detail-2537502.html

多层感知机中:

技术分享图片

hi 以 p 的概率被丢弃,以 1-p 的概率被拉伸,除以  1 - p

Gluon 实现 dropout 丢弃法_第1张图片

import mxnet as mx
import sys
import os
import time
import gluonbook as gb
from mxnet import autograd,init
from mxnet import nd,gluon
from mxnet.gluon import data as gdata,nn
from mxnet.gluon import loss as gloss


‘‘‘
# 模型参数
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784,10,256,256

W1 = nd.random.normal(scale=0.01,shape=(num_inputs,num_hiddens1))
b1 = nd.zeros(num_hiddens1)

W2 = nd.random.normal(scale=0.01,shape=(num_hiddens1,num_hiddens2))
b2 = nd.zeros(num_hiddens2)

W3 = nd.random.normal(scale=0.01,shape=(num_hiddens2,num_outputs))
b3 = nd.zeros(num_outputs)

params = [W1,b1,W2,b2,W3,b3]

for param in params:
    param.attach_grad()

# 定义网络

‘‘‘
# 读取数据
# fashionMNIST 28*28 转为224*224
def load_data_fashion_mnist(batch_size, resize=None, root=os.path.join(
        ‘~‘, ‘.mxnet‘, ‘datasets‘, ‘fashion-mnist‘)):
    root = os.path.expanduser(root)  # 展开用户路径 ‘~‘。
    transformer = []
    if resize:
        transformer += [gdata.vision.transforms.Resize(resize)]
    transformer += [gdata.vision.transforms.ToTensor()]
    transformer = gdata.vision.transforms.Compose(transformer)
    mnist_train = gdata.vision.FashionMNIST(root=root, train=True)
    mnist_test = gdata.vision.FashionMNIST(root=root, train=False)
    num_workers = 0 if sys.platform.startswith(‘win32‘) else 4
    train_iter = gdata.DataLoader(
        mnist_train.transform_first(transformer), batch_size, shuffle=True,
        num_workers=num_workers)
    test_iter = gdata.DataLoader(
        mnist_test.transform_first(transformer), batch_size, shuffle=False,
        num_workers=num_workers)
    return train_iter, test_iter


# 定义网络
drop_prob1,drop_prob2 = 0.2,0.5
# Gluon版
net = nn.Sequential()
net.add(nn.Dense(256,activation="relu"),
        nn.Dropout(drop_prob1),
        nn.Dense(256,activation="relu"),
        nn.Dropout(drop_prob2),
        nn.Dense(10)
        )
net.initialize(init.Normal(sigma=0.01))



# 训练模型

def accuracy(y_hat, y):
    return (y_hat.argmax(axis=1) == y.astype(‘float32‘)).mean().asscalar()
def evaluate_accuracy(data_iter, net):
    acc = 0
    for X, y in data_iter:
        acc += accuracy(net(X), y)
    return acc / len(data_iter)


def train(net, train_iter, test_iter, loss, num_epochs, batch_size,
              params=None, lr=None, trainer=None):
    for epoch in range(num_epochs):
        train_l_sum = 0
        train_acc_sum = 0
        for X, y in train_iter:
            with autograd.record():
                y_hat = net(X)
                l = loss(y_hat, y)
            l.backward()
            if trainer is None:
                gb.sgd(params, lr, batch_size)
            else:
                trainer.step(batch_size)  # 下一节将用到。
            train_l_sum += l.mean().asscalar()
            train_acc_sum += accuracy(y_hat, y)
        test_acc = evaluate_accuracy(test_iter, net)
        print(‘epoch %d, loss %.4f, train acc %.3f, test acc %.3f‘
              % (epoch + 1, train_l_sum / len(train_iter),
                 train_acc_sum / len(train_iter), test_acc))


num_epochs = 5
lr = 0.5
batch_size = 256
loss = gloss.SoftmaxCrossEntropyLoss()
train_iter, test_iter = load_data_fashion_mnist(batch_size)

trainer = gluon.Trainer(net.collect_params(),‘sgd‘,{‘learning_rate‘:lr})
train(net,train_iter,test_iter,loss,num_epochs,batch_size,None,None,trainer)

Gluon 实现 dropout 丢弃法_第2张图片

 

Gluon 实现 dropout 丢弃法

标签:com   24*   shuff   dom   hat   normal   sgd   rom   step   

原文地址:https://www.cnblogs.com/TreeDream/p/10045913.html

转载于:https://www.cnblogs.com/jukan/p/10814806.html

你可能感兴趣的:(人工智能)