数学建模--模型总结(5)

优化问题:线性规划,半定规划、几何规划、非线性规划,整数规划,多目标规划(分层序列法),最优控制(结合微分方程组)、变分法、动态规划,存贮论、代理模型、响应面分析法、列生成算法

预测模型:微分方程,小波分析,回归分析,灰色预测,马尔可夫预测,时间序列分析(AR MA ARMA ARIMA,LSTM神经网络),混沌模型时间序列预测,支持向量机,神经网络预测(与机器学习部分很多重合)

动态模型:微分方程模型(ODE、SDE、DDE、DAE、PDE,初值问题与边值问题),有限差分法(显式&隐式&CN格式),元胞自动机,排队论,蒙特卡罗随机模拟

图论模型:最短路径,最小生成树,最小费用最大流,指派问题,旅行商问题,VRPTW路径规划,网络流,路径规划算法(Dijkstra,Floyd,A*,D*,RRT*,LPA*,D*lite)

评价模型:层次分析法,熵权法,最优赋权法,主成分分析法,主成分回归评价,因子分析,模糊综合评价,TOPSIS法,数据包络分析,秩和比法,灰色综合评价法, 最小二乘主客观一致赋权评价模型,BP神经网络综合评价法

统计分析模型:分布检验,均值T检验,方差分析,协方差分析,相关分析,卡方检验,秩和检验,回归分析,Logistic回归,聚类分析,判别分析,关联分析(Apriori算法)

现代智能算法:(求极值,多目标规划,TSP,车间调度等)模拟退火,遗传算法,粒子群算法,禁忌搜索、免疫算法,鱼群算法,神经网络,蚁群算法

其他算法:二分法、直接搜索法、变范围搜索、单因素优选法0.618 法(黄金分割法)、拉格朗日乘子法、信赖域算法,欧拉法\改进欧拉法,牛顿-拉弗森算法(牛顿迭代法)、拟牛顿法、梯度下降法 备注:优先使用传统算法,避免群智能机器学习深度学习

机器学习:

分类问题:KNN,逻辑回归,决策树,随机森林, ADABOOST、GBDT\XGBoost\LightGBM,支持向量机,朴素贝叶斯,神经网络

回归问题:线性回归, LASSO回归,岭回归,决策树回归,集成学习中回归方法,支持向量回归,高斯混合模型,神经网络

聚类问题:K均值聚类, DBSCAN聚类,EM算法

你可能感兴趣的:(数学建模)