图:最短路径问题(BFS算法,Dijkstra算法,Floyd算法)

1 .单源最短路径

1.BFS算法(无权图)

使用广度优先遍历实现一个顶点到达其他所有顶点的最短路径。
注:无权图可以视为一种特殊的带权图,只是每条边的权值都为1。

1.算法思路:

  • 定义一个数组存储每个结点与当前的结点的最短距离,
  • 定义一个数组存储当前结点的前驱结点序号。
  • 定义一个数组存储所有结点的访问情况:已访问为true,未访问为false。

2.代码实现:

就是对BFS的小修改:
在visit一个顶点时,修改其最短路径长度d[]并在path[]记录前驱结点

//求顶点u到其他顶点的最短路径
void BFS_MIN_Distance(Graph G, int u) {
    // d[i]表示从u到i结点的最短路径
    for (i = 0; i < G.vexnum; ++i) {
        d[i] = o;//初始化路径长度
        path[i] = -1;//最短路径从哪个顶点过来
    }
    d[u] = 0;
    visited[u] = TRUE;
    EnQueue(Q, u);
    while (!isEmpty(Q)) {// BFS算法主过程
        DeQueue(Q, u);//队头元素u出队
        for (w = FirstNeighbor(G, u); w >= 0; w = NextNeighbor(G, u, w))
            if (!visited[w]) {// w为u的尚未访问的邻接顶点
                d[w] = d[u] + 1;//路径长度加1
                path[w] = u;//最短路径应从u到w
                visited[w] = TRUE;//设已访问标记
                EnQueue(Q, w);//顶点w入队
            }
    }
}

由广度优先遍历生成的广度优先生成树,一定是高度最小的生成树。

2.Dijkstra(迪杰斯特拉)算法(带权图、无权图)

1.分析BFS算的局限性
BFS算法求单源最短路径只适用于无权图,或所有边的权值都相同的图。

回顾知识点:

  • 带权路径长度:当图是带权图时,一条路径上所有边的权值之和,称为该路径的带权路径长度。

2.算法分析

  • 第一个数组标记各顶点是否已找到最短路径,存放true或者false。
  • 第二个数组记录各顶点的最短路径长度,无穷代表暂没找到最短路径。
  • 第三个数组记录各个结点最短路径上的直接前驱。

3.算法步骤

  • 第1轮︰循环遍历所有结点,找到还没确定最短路径,且dist最小的顶点Vi,令final[i]=ture。
  • 检查所有邻接自V的顶点,若其final值为false,则更新dist和 path 信息。
  • 第2轮:循环遍历所有结点,找到还没确定最短路径,且dist最小的顶点Vi,令final[i]=ture。
  • 检查所有邻接自V的顶点,若其final值为false,则更新dist和path 信息。
  • 直到最后一轮:循环遍历所有结点,找到还没确定最短路径,且dist最小的顶点Vi,令final[i]=ture。

4.算法实现

  • 初始:若从Vo开始,令final[0]=ture; dist[0]=O; path[0]=-1。
  • 其余顶点final[k]=false;dist[k]=arcs[0][k]; path[k]= (arcs[O][k]==co) ? -1:0。
  • n-1轮处理∶循环遍历所有顶点,找到还没确定最短路径,且dist最小的顶点V,令finali]=ture。并检查所有邻接自Vi的顶点,对于邻接自Vi的顶点V,若final[i]==false且dist[i]+arcs[i]i]< dist[i],则令dist[i]=dist[i]+arcs[i]lil; path[i]=i。(注: arcs[们]表示V到V%的弧的权值)

某个结点到其他结点的最短路径的时间复杂度为O(N2)即O(|V|2),
也可用Dijkstra算法求所有顶点间的最短路径,重复V次即可,总的时间复杂度也是OIV|3).

5.用于带负权值带权图

结论:Dijkstra算法不适用于有负权值的带权图。

2.各顶点间的最短路径

1.Floyd算法(带权图、无权图)

Floyd算法:求出每一对顶点之间的最短路径。

1.算法思想
使用动态规划思想,将问题的求解分为多个阶段:

  • 对于n个顶点的图G,求任意一对顶点Vi->Vj之间的最短路径可分为如下几个阶段:#初始︰不允许在其他顶点中转,最短路径是?
  • #O:若允许在Vo中转,最短路径是?
  • #1∶若允许在Vo、V中转,最短路径是?
  • #2:若允许在Vo、V1、V2中转,最短路径是?
  • #n-1:若允许在Vo、V1、V2… Vn-1中转,最短路径是?

2.算法实现

  • 定义一个二维数组A(相当于图的邻接矩阵)存储每个顶点之间的最短路径
  • 定义一个二维数组path存储A位置对应路径需要经过的中转顶点。
  • 使用动态规划,逐渐增加可以中转顶点个数,更新两个二维数组的信息。

3 .代码实现
时间复杂度,O(IVl3)
空间复杂度,O(IV|2)

    // ......准备工作,根据图的信息初始化矩阵A和path (如上图)
    for (int k = 0; k < n; k++) {//考虑以vk 作为中转点
        for (int i = 0; i < n; i++) {
            //遍历整个矩阵,i为行号,j为列号
            for (int j = 0; j < n; j++) {
                if (A[i][j] > A[i][k] + A[k][j]) {
                    //以Vk 为中转点的路径更短
                    A[i][j] = A[i][k] + A[k][j];//更新最短路径长度
                    path[i][j] = k; //中转点
                }
            }
        }
    }

4.Floyd算法可以用于负值带权图

Floyd算法不能解决带有“负权回路”的图(有负权值的边组成回路),这种图有可能没有最短路径。

3.三种算法的比较

BFS 算法 Dijkstra算法 Floyd 算法
无权图
带权图 x
带负权值的图 x x x
带负权回路的图 x x x
时间复杂度 O(V2)或O(V+E) O(V2 O(V3
通常用于 求无权图的单源最短路径 求带权图的单源最短路径 求带权图中各顶点间的最短路径

你可能感兴趣的:(数据结构与算法,算法,宽度优先,图论,数据结构)