基于粒子群算法的考虑需求响应的风-光-柴-储容量优化配置

目录

文章摘要:

研究背景:

考虑柔性负荷的风、光、柴、储微电网模型:

储能配置模型:

粒子群算法:

运行结果:

1. 全年运行效果展示:

2. 典型日运行效果:

Matlab代码+数据分享:


文章摘要:

为了充分发挥需求响应技术在削峰填谷、消纳可再生能源方面的作用,本文针对一个含风、光、柴、储资源的微型电网系统进行储能容量配置,该微电网系统采用风光的互补优势,结合蓄电池及柴油机对负荷进行供电。本文基于Matlab平台建立了以总净现值成本最低为目标函数,并以燃料消耗、蓄电池容量、柴油机功率及其污染物的排放量为约束条件,对其进行容量配置。采用了粒子群算法进行优化,提高了算法的收敛速度,避免陷入局部最优解。仿真结果表明,在对负荷进行容量配置的过程中,本文方法可以有效进行寻优,提高了系统的稳定性和经济性。

研究背景:

近年来,推广可再生能源的利用、减少能源浪费、降低对化石能源的依赖已成为全球发展的关注点。然而风能和光能等可再生能源的大规模渗透和其本身具有的随机性,不仅带来了本地消纳的困难的问题,还影响了微电网的经济运行。并且单纯的依靠储能平抑可再生能源出力的波动性以及负荷和可再生能源出力之间功率的不平衡不仅无法解决这些问题还会带来容量冗余,使微电网配置成本增加。作为一种可调度的负荷侧资源,柔性负荷在作为调度发电补充同时还可以作为“虚拟储能”,既实现了供需互动还可以协调储能系统对可再生能源供电的平衡作用,可有效提高可再生能源的利用率和降低系统成本。因此,柔性负荷和微电网的结合可使两者实现互补,给微电网面临的问题提供了可行方案。

作为未来智能电网的重要组成部分,合理利用自然资源,对微电网系统容量进行优化配置是微电网规划设计领域中的核心课题。近年来,针对微电网在经济性、可靠性、环境保护、能源利用、节能降损等方面的影响和效益,国内外已有较多研究成果。基于已有是研究,当前微电网(独立型和并网型)容量优化配置方法大致可分为对目标函数和求解方法的研究两大类。

考虑柔性负荷的风、光、柴、储微电网模型:

微电网结构模式的确定是进行微电网规划设计的前提条件,结构模式的构建对微电网具体接入电网的电压等级和容量规划以及具体分布式电源的选择会产生较大影响。本文中,由风力发电、光伏发电、储能系统、逆变器以及负荷(包含固定负荷和柔性负荷)构成了风/光/储微电网系统。其中,本文将可调度的柔性负荷分为工业高载负荷、商业聚合负荷和居民智能家用负荷3类。并且根据风/光/储微电网系统各种组网方式的特点,选择了具有控制简单、扩容方便等优点的直流母线组网方式,其系统结构如图2-1所示。

基于粒子群算法的考虑需求响应的风-光-柴-储容量优化配置_第1张图片

储能配置模型:

出力模型分析在容量配置中,出力模型由风力发电机、光伏、蓄电池以及柴油机组成。其中,风力发电机的功率由该地区的风速及风力发电机的额定功率决定。光伏的实际输出功率由光照强度和光伏的额定功率决定。蓄电池在容量配置中的作用是进行能量调节和平衡负载,原理是将化学能转换为电能,这个过程就是蓄电池充放电的过程。柴油机作为互补系统中主要的后备发电设备,它的输出功率与耗油量及柴油机的型号有关。

在进行风光柴储的容量配置中,需要在兼顾经济性的同时考虑到系统的稳定性,经济性由系统的投资成本Cin、维护成本Cm、缺电损失成本Ccop、治污成本Con及燃油成本Cf组成[4]。稳定性考虑到负荷缺电率(lossofpowersupplyprobability,LPSP)和能量浪费率(energywasterate,EWR)两个指标,为了提高系统的收敛速度,把负荷缺电率和能量浪费率合并成一个指标,以LE表示,用α进行平衡。由此,系统的多目标函数表达式为:

基于粒子群算法的考虑需求响应的风-光-柴-储容量优化配置_第2张图片

粒子群算法:

粒子群算法的发展过程。粒子群优化算法(ParticalSwarmOptimizationPSO),粒子群中的每一个粒子都代表一个问题的可能解,通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。由于PSO操作简单、收敛速度快,因此在函数优化、图像处理、大地测量等众多领域都得到了广泛的应用。

粒子群算法(ParticleSwarmOptimization,PSO)最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。最简单有效的策略?寻找鸟群中离食物最近的个体来进行搜素。PSO算法就从这种生物种群行为特性中得到启发并用于求解优化问题。

用一种粒子来模拟上述的鸟类个体,每个粒子可视为N维搜索空间中的一个搜索个体,粒子的当前位置即为对应优化问题的一个候选解,粒子的飞行过程即为该个体的搜索过程.粒子的飞行速度可根据粒子历史最优位置和种群历史最优位置进行动态调整.粒子仅具有两个属性:速度和位置,速度代表移动的快慢,位置代表移动的方向。每个粒子单独搜寻的最优解叫做个体极值,粒子群中最优的个体极值作为当前全局最优解。不断迭代,更新速度和位置。最终得到满足终止条件的最优解。

算法流程如下:

1、初始化

首先,我们设置最大迭代次数,目标函数的自变量个数,粒子的最大速度,位置信息为整个搜索空间,我们在速度区间和搜索空间上随机初始化速度和位置,设置粒子群规模为M,每个粒子随机初始化一个飞翔速度。

2、个体极值与全局最优解

定义适应度函数,个体极值为每个粒子找到的最优解,从这些最优解找到一个全局值,叫做本次全局最优解。与历史全局最优比较,进行更新。

3、更新速度和位置的公式

基于粒子群算法的考虑需求响应的风-光-柴-储容量优化配置_第3张图片

4、终止条件

(1)达到设定迭代次数;(2)代数之间的差值满足最小界限

基于粒子群算法的考虑需求响应的风-光-柴-储容量优化配置_第4张图片

以上就是最基本的一个标准PSO算法流程。和其它群智能算法一样,PSO算法在优化过程中,种群的多样性和算法的收敛速度之间始终存在着矛盾.对标准PSO算法的改进,无论是参数的选取、小生境技术的采用或是其他技术与PSO的融合,其目的都是希望在加强算法局部搜索能力的同时,保持种群的多样性,防止算法在快速收敛的同时出现早熟收敛。

运行结果:

1. 全年运行效果展示:

基于粒子群算法的考虑需求响应的风-光-柴-储容量优化配置_第5张图片

2. 典型日运行效果:

基于粒子群算法的考虑需求响应的风-光-柴-储容量优化配置_第6张图片

基于粒子群算法的考虑需求响应的风-光-柴-储容量优化配置_第7张图片

Matlab代码+数据分享:

基于粒子群算法的考虑需求响应的风-光-柴-储容量优化配置_第8张图片

你可能感兴趣的:(电网优化,微电网,容量配置,优化算法,粒子群,优化调度)