想说的都在代码注释里:
# Author: Robert Guthrie
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim
'''
第一,句子x中的每一个单元都代表着由字嵌入或词嵌入构成的向量。其中,字嵌入是随机初始化的,词嵌入是通过数据训练得到的。所有的嵌入在训练过程中都会调整到最优。
第二,这些字或词嵌入为BiLSTM-CRF模型的输入,输出的是句子x中每个单元的标签。
'''
# 设置随机数种子,每次的随机数都一样
torch.manual_seed(1)
# 返回vec中每一行最大的那个元素的下标
def argmax(vec):
# return the argmax as a python int
_, idx = torch.max(vec, 1)
# 获取该元素:tensor只有一个元素才能调用item方法
return idx.item()
# 单词转为索引
def prepare_sequence(seq, to_ix):
# 生成列表
idxs = [to_ix[w] for w in seq]
return torch.tensor(idxs, dtype=torch.long)
# 计算一维向量vec 与 其最大值的 log_sum_exp
# Compute log sum exp in a numerically stable way for the forward algorithm
def log_sum_exp(vec):
max_score = vec[0, argmax(vec)]
max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1])
# 减去最大值是为了防止数值溢出
return max_score + \
torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))
class BiLSTM_CRF(nn.Module):
def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
#调用父类的init
super(BiLSTM_CRF, self).__init__()
# 嵌入维度: 词向量维度
self.embedding_dim = embedding_dim
# 隐藏层维度
self.hidden_dim = hidden_dim
# 词汇量大小
self.vocab_size = vocab_size
# 标签转下标的词典
self.tag_to_ix = tag_to_ix
# 输出维度:目标取值范围大小
self.tagset_size = len(tag_to_ix)
''' Embedding的用法
A simple lookup table that stores embeddings of a fixed dictionary and size.
This module is often used to store word embeddings and retrieve them using indices.
The input to the module is a list of indices, and the output is the corresponding word embeddings.
requires_grad: 用于说明当前量是否需要在计算中保留对应的梯度信息
'''
# an Embedding module containing 词汇量大小的 tensors of size 词向量维度
self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
# LSTM模型
'''
默认参数意义:input_size,hidden_size,num_layers
hidden_size : LSTM在运行时里面的维度。隐藏层状态的维数,即隐藏层节点的个数
torch里的LSTM单元接受的输入都必须是3维的张量(Tensors):
第一维体现的每个句子的长度,即提供给LSTM神经元的每个句子的长度,如果是其他的带有带有序列形式的数据,则表示一个明确分割单位长度,
第二维度体现的是batch_size,即每一次给网络句子条数
第三维体现的是输入的元素,即每个具体的单词用多少维向量来表示
'''
self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2,
num_layers=1, bidirectional=True)
# Maps the output of the LSTM into tag space.
# 建立一个 把LSTM的输出到标签空间 的映射关系,通过一个线性连接层将 BiLSTM 隐状态维度 转变为 tag 的种类大小
self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)
# Matrix of transition parameters. Entry i,j is the score of transitioning *to* i *from* j.
# 转移矩阵是随机的,在网络中会随着训练不断更新
self.transitions = nn.Parameter(
torch.randn(self.tagset_size, self.tagset_size))
# These two statements enforce the constraint that we never transfer to the start tag and we never transfer from the stop tag
# 转移矩阵: 列标 转 行标
# 规定:其他tag不能转向start,stop也不能转向其他tag
self.transitions.data[tag_to_ix[START_TAG], :] = -10000
self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000
# 初始化hidden layer
self.hidden = self.init_hidden()
def init_hidden(self):
# randn : output ~ N(0,1) [取自正态分布的随机数,但不意味着它的数据符合正态分布]
return (torch.randn(2, 1, self.hidden_dim // 2),
torch.randn(2, 1, self.hidden_dim // 2))
# Do the forward algorithm to compute the partition function
# 前向算法:feats是LSTM所有时间步的输出
def _forward_alg(self, feats):
# alpha初始为-10000
init_alphas = torch.full((1, self.tagset_size), -10000.)
# START_TAG has all of the score.
# start位置的alpha为0
init_alphas[0][self.tag_to_ix[START_TAG]] = 0.
# Wrap in a variable so that we will get automatic backprop
# 包装进变量,实现自动反向传播
forward_var = init_alphas
# Iterate through the sentence
for feat in feats:
# The forward tensors at this timestep
# 当前 timestep 的前向tensor
alphas_t = []
for next_tag in range(self.tagset_size):
# broadcast the emission score: it is the same regardless of the previous tag
'''
LSTM生成的矩阵是emit score[观测/发射概率], 即公式中的H()函数的输出
CRF是判别式模型
emit score: BilSTM 对序列中 每个位置 的 对应标签 打分的和
transition score 是该序列状态转移矩阵中对应的和
Score = EmissionScore + TransitionScore
'''
emit_score = feat[next_tag].view(
1, -1).expand(1, self.tagset_size)
# the ith entry of trans_score is the score of transitioning to next_tag from i
trans_score = self.transitions[next_tag].view(1, -1)
# The ith entry of next_tag_var is the value for the edge (i -> next_tag) before we do log-sum-exp
next_tag_var = forward_var + trans_score + emit_score
# The forward variable for this tag is log-sum-exp of all the scores.
alphas_t.append(log_sum_exp(next_tag_var).view(1))
# 合并分数[cat dim=0]
# ??? 不太懂
forward_var = torch.cat(alphas_t).view(1, -1)
terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
alpha = log_sum_exp(terminal_var)
return alpha
# LSTM的输出, 即emit score
def _get_lstm_features(self, sentence):
self.hidden = self.init_hidden()
embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
lstm_out, self.hidden = self.lstm(embeds, self.hidden)
lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
lstm_feats = self.hidden2tag(lstm_out)
return lstm_feats
# CRF的输出,即emit+transition scores
def _score_sentence(self, feats, tags):
# Gives the score of a provided tag sequence
score = torch.zeros(1)
tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags])
# 转移+前向
for i, feat in enumerate(feats):
score = score + \
self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
return score
# Decoding的意义:
# 给定一个已知的观测序列,求其最有可能对应的状态序列
def _viterbi_decode(self, feats):
backpointers = []
# Initialize the viterbi variables in log space
init_vvars = torch.full((1, self.tagset_size), -10000.)
init_vvars[0][self.tag_to_ix[START_TAG]] = 0
# forward_var at step i holds the viterbi variables for step i-1
forward_var = init_vvars
for feat in feats:
bptrs_t = [] # holds the backpointers for this step
viterbivars_t = [] # holds the viterbi variables for this step
for next_tag in range(self.tagset_size):
# next_tag_var[i] holds the viterbi variable for tag i at the previous step,
# plus the score of transitioning from tag i to next_tag.
# We don't include the emission scores here
# because the max does not depend on them (we add them in below)
next_tag_var = forward_var + self.transitions[next_tag]
# 找到此刻最好的状态转入点
best_tag_id = argmax(next_tag_var)
# 记录点
bptrs_t.append(best_tag_id)
viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))
# Now add in the emission scores, and assign forward_var to the set
# of viterbi variables we just computed
forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)
backpointers.append(bptrs_t)
# Transition to STOP_TAG
terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
best_tag_id = argmax(terminal_var)
path_score = terminal_var[0][best_tag_id]
# Follow the back pointers to decode the best path.
best_path = [best_tag_id]
# 回退找路
for bptrs_t in reversed(backpointers):
best_tag_id = bptrs_t[best_tag_id]
best_path.append(best_tag_id)
# Pop off the start tag (we dont want to return that to the caller)
# 去掉start
start = best_path.pop()
assert start == self.tag_to_ix[START_TAG] # Sanity check
best_path.reverse()
return path_score, best_path
def neg_log_likelihood(self, sentence, tags):
feats = self._get_lstm_features(sentence)
# 前向算法分数
forward_score = self._forward_alg(feats)
# 真实分数
gold_score = self._score_sentence(feats, tags)
# log P(y|x) = forward_score - gold_score
return forward_score - gold_score
# don‘t confuse this with _forward_alg above.
# 重写 原module里的 forward
def forward(self, sentence):
# Get the emission scores from the BiLSTM
lstm_feats = self._get_lstm_features(sentence)
# Find the best path, given the features.
score, tag_seq = self._viterbi_decode(lstm_feats)
return score, tag_seq
if __name__ == '__main__':
START_TAG = ""
STOP_TAG = ""
EMBEDDING_DIM = 5
HIDDEN_DIM = 4
# Make up some training data
training_data = [(
"the wall street journal reported today that apple corporation made money".split(),
"B I I I O O O B I O O".split()
), (
"georgia tech is a university in georgia".split(),
"B I O O O O B".split()
)]
word_to_ix = {}
for sentence, tags in training_data:
for word in sentence:
if word not in word_to_ix:
word_to_ix[word] = len(word_to_ix)
tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4}
model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)
# Check predictions before training
with torch.no_grad():
precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long)
# 注意这里打印的是未训练的模型的预测结果
print(model(precheck_sent))
# Make sure prepare_sequence from earlier in the LSTM section is loaded
for epoch in range(
300): # again, normally you would NOT do 300 epochs, it is toy data
for sentence, tags in training_data:
# Step 1. Remember that Pytorch accumulates gradients.
# We need to clear them out before each instance
model.zero_grad()
# Step 2. Get our inputs ready for the network, that is,
# turn them into Tensors of word indices.
sentence_in = prepare_sequence(sentence, word_to_ix)
targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long)
# Step 3. Run our forward pass.
loss = model.neg_log_likelihood(sentence_in, targets)
# Step 4. Compute the loss, gradients, and update the parameters by
# calling optimizer.step()
loss.backward()
optimizer.step()
# Check predictions after training
with torch.no_grad():
precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
print(model(precheck_sent))
# We got it!