Elasticsearch实战(四):Springboot实现Elasticsearch指标聚合与下钻分析open-API

文章目录

  • 系列文章索引
  • 一、指标聚合与分类
    • 1、什么是指标聚合(Metric)
    • 2、Metric聚合分析分为单值分析和多值分析两类
    • 3、概述
  • 二、单值分析API设计
    • 1、Avg(平均值)
      • (1)对所有文档进行avg聚合(DSL)
      • (2)对筛选后的文档聚合
      • (3)根据Script计算平均值
      • (4)总结
    • 2、Max(最大值)
      • (1)统计所有文档
      • (2)统计过滤后的文档
    • 3、Min(最小值)
      • (1)统计所有文档
      • (2)统计筛选后的文档
    • 4、Sum(总和)
      • (1)统计所有文档汇总
    • 5、Cardinality(唯一值)
      • (1)统计所有文档
      • (2)统计筛选后的文档
  • 三、多值分析API设计
    • 1、Stats Aggregation
      • (1)统计所有文档
      • (2)统计筛选文档
    • 2、扩展状态统计
      • (1)统计所有文档
      • (2)统计筛选后的文档
    • 3、百分位度量/百分比统计
      • (1)统计所有文档
      • (2)统计筛选后的文档
    • 4、百分位等级/百分比排名聚合
      • (1)统计所有文档
      • (2)统计过滤后的文档
  • 四、JavaAPI实现

系列文章索引

Elasticsearch实战(一):Springboot实现Elasticsearch统一检索功能
Elasticsearch实战(二):Springboot实现Elasticsearch自动汉字、拼音补全,Springboot实现自动拼写纠错
Elasticsearch实战(三):Springboot实现Elasticsearch搜索推荐
Elasticsearch实战(四):Springboot实现Elasticsearch指标聚合与下钻分析
Elasticsearch实战(五):Springboot实现Elasticsearch电商平台日志埋点与搜索热词

一、指标聚合与分类

1、什么是指标聚合(Metric)

聚合分析是数据库中重要的功能特性,完成对某个查询的数据集中数据的聚合计算,
如:找出某字段(或计算表达式的结果)的最大值、最小值,计算和、平均值等。
ES作为搜索引擎兼数据库,同样提供了强大的聚合分析能力。
对一个数据集求最大值、最小值,计算和、平均值等指标的聚合,在ES中称为指标聚合。

2、Metric聚合分析分为单值分析和多值分析两类

1、单值分析,只输出一个分析结果
min,max,avg,sum,cardinality(cardinality 求唯一值,即不重复的字段有多少(相当于mysql中的distinct)
2、多值分析,输出多个分析结果
stats,extended_stats,percentile,percentile_rank

3、概述

官网:https://www.elastic.co/guide/en/elasticsearch/reference/7.4/search-aggregations-metrics.html
语法:

"aggregations" : {
	"<aggregation_name>" : { 
		"<aggregation_type>" : { 
			<aggregation_body> 
		}
		[,"meta" : { [<meta_data_body>] } ]? 
		[,"aggregations" : { [<sub_aggregation>]+ } ]? 
	}
	[,"<aggregation_name_2>" : { ... } ]* 
}

openAPI设计目标与原则:
1、DSL调用与语法进行高度抽象,参数动态设计
2、Open API通过结果转换器支持上百种组合调用qurey,constant_score,match/matchall/filter/sort/size/frm/higthlight/_source/includes
3、逻辑处理公共调用,提升API业务处理能力
4、保留原生API与参数的用法

二、单值分析API设计

1、Avg(平均值)

从聚合文档中提取的价格的平均值。

(1)对所有文档进行avg聚合(DSL)

POST product_list_info/_search
{
	"size": 0,
	"aggs": {
		"result": {
			"avg": {
				"field": "price"
			}
		}
	}
}

以上汇总计算了所有文档的平均值。
“size”: 0, 表示只查询文档聚合数量,不查文档,如查询50,size=50
aggs:表示是一个聚合
result:可自定义,聚合后的数据将显示在自定义字段中

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 0,
        "aggs": {
            "result": {
                "avg": {
                    "field": "price"
                }
            }
        }
    }
}

(2)对筛选后的文档聚合

POST product_list_info/_search
{
    "size": 0,
    "query": {
        "term": {
            "onelevel": "手机通讯"
        }
    },
    "aggs": {
        "result": {
            "avg": {
                "field": "price"
            }
        }
    }
}

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 0,
        "query": {
            "term": {
                "onelevel": "手机通讯"
            }
        },
        "aggs": {
            "result": {
                "avg": {
                    "field": "price"
                }
            }
        }
    }
}

(3)根据Script计算平均值

es所使用的脚本语言是painless这是一门安全-高效的脚本语言,基于jvm的

#统计所有
POST product_list_info/_search?size=0
{
    "aggs": {
        "result": {
            "avg": {
                "script": {
                    "source": "doc.evalcount.value"
                }
            }
        }
    }
}
结果:"value" : 599929.2282791147
"source": "doc['evalcount']"
"source": "doc.evalcount"
#有条件
POST product_list_info/_search?size=0
{
    "query": {
        "term": {
            "onelevel": "手机通讯"
        }
    },
    "aggs": {
        "czbk": {
            "avg": {
                "script": {
                    "source": "doc.evalcount"
                }
            }
        }
    }
}
结果:"value" : 600055.6935087288

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 0,
        "aggs": {
            "czbk": {
                "avg": {
                    "script": {
                        "source": "doc.evalcount"
                    }
                }
            }
        }
    }
}

(4)总结

avg平均
1、统一avg(所有文档)
2、有条件avg(部分文档)
3、脚本统计(所有)
4、脚本统计(部分)

2、Max(最大值)

计算从聚合文档中提取的数值的最大值。

(1)统计所有文档

POST product_list_info/_search
{
    "size": 0,
    "aggs": {
        "result": {
            "max": {
                "field": "price"
            }
        }
    }
}

结果: “value” : 9.9999999E7

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 0,
        "aggs": {
            "result": {
                "max": {
                    "field": "price"
                }
            }
        }
    }
}

(2)统计过滤后的文档

POST product_list_info/_search
{
    "size": 0,
    "query": {
        "term": {
            "onelevel": "手机通讯"
        }
    },
    "aggs": {
        "result": {
            "max": {
                "field": "price"
            }
        }
    }
}

结果: “value” : 2474000.0

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 0,
        "query": {
            "term": {
                "onelevel": "手机通讯"
            }
        },
        "aggs": {
            "czbk": {
                "max": {
                    "field": "price"
                }
            }
        }
    }
}

结果: “value” : 2474000.0

3、Min(最小值)

计算从聚合文档中提取的数值的最小值。

(1)统计所有文档

POST product_list_info/_search
{
    "size": 0,
    "aggs": {
        "result": {
            "min": {
                "field": "price"
            }
        }
    }
}

结果:“value”: 0.0

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 0,
        "aggs": {
            "result": {
                "min": {
                    "field": "price"
                }
            }
        }
    }
}

(2)统计筛选后的文档

POST product_list_info/_search
{
    "size": 1,
    "query": {
        "term": {
            "onelevel": "手机通讯"
        }
    },
    "aggs": {
        "czbk": {
            "min": {
                "field": "price"
            }
        }
    }
}

结果:“value”: 0.0

参数size=1;可查询出金额为0的数据

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 1,
        "query": {
            "term": {
                "onelevel": "手机通讯"
            }
        },
        "aggs": {
            "result": {
                "min": {
                    "field": "price"
                }
            }
        }
    }
}

4、Sum(总和)

(1)统计所有文档汇总

POST product_list_info/_search
{
    "size": 0,
    "query": {
        "constant_score": {
            "filter": {
                "match": {
                    "threelevel": "手机"
                }
            }
        }
    },
    "aggs": {
        "result": {
            "sum": {
                "field": "price"
            }
        }
    }
}

结果:“value” : 3.433611809E7

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 0,
        "query": {
            "constant_score": {
                "filter": {
                    "match": {
                        "threelevel": "手机"
                    }
                }
            }
        },
        "aggs": {
            "result": {
                "sum": {
                    "field": "price"
                }
            }
        }
    }
}

5、Cardinality(唯一值)

Cardinality Aggregation,基数聚合。它属于multi-value,基于文档的某个值(可以是特定的字段,也可以通过脚本计算而来),计算文档非重复的个数(去重计数),相当于sql中的distinct。

cardinality 求唯一值,即不重复的字段有多少(相当于mysql中的distinct)

(1)统计所有文档

POST product_list_info/_search
{
    "size": 0,
    "aggs": {
        "result": {
            "cardinality": {
                "field": "storename"
            }
        }
    }
}

结果:“value” : 103169

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 0,
        "aggs": {
            "result": {
                "cardinality": {
                    "field": "storename"
                }
            }
        }
    }
}

(2)统计筛选后的文档

POST product_list_info/_search
{
    "size": 0,
    "query": {
        "constant_score": {
            "filter": {
                "match": {
                    "threelevel": "手机"
                }
            }
        }
    },
    "aggs": {
        "result": {
            "cardinality": {
                "field": "storename"
            }
        }
    }
}

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 0,
        "query": {
            "constant_score": {
                "filter": {
                    "match": {
                        "threelevel": "手机"
                    }
                }
            }
        },
        "aggs": {
            "result": {
                "cardinality": {
                    "field": "storename"
                }
            }
        }
    }
}

三、多值分析API设计

1、Stats Aggregation

Stats Aggregation,统计聚合。它属于multi-value,基于文档的某个值(可以是特定的数值型字段,也可以通过脚本计算而来),计算出一些统计信息(min、max、sum、count、avg 5个值)

(1)统计所有文档

POST product_list_info/_search
{
    "size": 0,
    "aggs": {
        "result": {
            "stats": {
                "field": "price"
            }
        }
    }
}

返回
"aggregations" : {
	"result" : {
		"count" : 5072447,
		"min" : 0.0,
		"max" : 9.9999999E7,
		"avg" : 920.1537270512633,
		"sum" : 4.66743101232E9

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 0,
        "aggs": {
            "result": {
                "stats": {
                    "field": "price"
                }
            }
        }
    }
}

(2)统计筛选文档

POST product_list_info/_search
{
    "size": 0,
    "query": {
        "constant_score": {
            "filter": {
                "match": {
                    "threelevel": "手机"
                }
            }
        }
    },
    "aggs": {
        "result": {
            "stats": {
                "field": "price"
            }
        }
    }
}

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 0,
        "query": {
            "constant_score": {
                "filter": {
                    "match": {
                        "threelevel": "手机"
                    }
                }
            }
        },
        "aggs": {
            "result": {
                "stats": {
                    "field": "price"
                }
            }
        }
    }
}

2、扩展状态统计

Extended Stats Aggregation,扩展统计聚合。它属于multi-value,比stats多4个统计结果: 平方和、方差、标准差、平均值加/减两个标准差的区间

(1)统计所有文档

POST product_list_info/_search
{
	"size": 0,
	"aggs": {
		"result": {
			"extended_stats": {
				"field": "price"
			}
		}
	}
}
返回:
aggregations" : {
	"result" : {
		"count" : 5072447,
		"min" : 0.0,
		"max" : 9.9999999E7,
		"avg" : 920.1537270512633,
		"sum" : 4.66743101232E9,
		"sum_of_squares" : 2.0182209054045464E16,
		"variance" : 3.9779448262354884E9,
		"std_deviation" : 63070.950731977144,
		"std_deviation_bounds" : {
			"upper" : 127062.05519100555,
			"lower" : -125221.74773690302
		}

sum_of_squares:平方和
variance:方差
std_deviation:标准差
std_deviation_bounds:标准差的区间

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 0,
        "aggs": {
            "result": {
                "extended_stats": {
                    "field": "price"
                }
            }
        }
    }
}

(2)统计筛选后的文档

POST product_list_info/_search
{
    "size": 1,
    "query": {
        "constant_score": {
            "filter": {
                "match": {
                    "threelevel": "手机"
                }
            }
        }
    },
    "aggs": {
        "result": {
            "extended_stats": {
                "field": "price"
            }
        }
    }
}

结果;
aggregations" : {
	"result" : {
		"count" : 12402,
		"min" : 0.0,
		"max" : 2474000.0,
		"avg" : 2768.595233833253,
		"sum" : 3.433611809E7,
		"sum_of_squares" : 6.445447222627729E12,
		"variance" : 5.120451870452684E8,
		"std_deviation" : 22628.41547800615,
		"std_deviation_bounds" : {
		"upper" : 48025.42618984555,
		"lower" : -42488.23572217905

sum_of_squares:平方和
variance:方差
std_deviation:标准差
std_deviation_bounds:标准差的区间

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 1,
        "query": {
            "constant_score": {
                "filter": {
                    "match": {
                        "threelevel": "手机"
                    }
                }
            }
        },
        "aggs": {
            "czbk": {
                "extended_stats": {
                    "field": "price"
                }
            }
        }
    }
}

3、百分位度量/百分比统计

Percentiles Aggregation,百分比聚合。它属于multi-value,对指定字段(脚本)的值按从小到大累计每个值对应的文档数的占比(占所有命中文档数的百分比),返回指定占比比例对应的值。默认返回[1, 5, 25, 50, 75, 95, 99 ]分位上的值。

它们表示了人们感兴趣的常用百分位数值。

(1)统计所有文档

POST product_list_info/_search
{
    "size": 0,
    "aggs": {
        "result": {
            "percentiles": {
                "field": "price"
            }
        }
    }
}

返回:
aggregations" : {
	"result" : {
		"values" : {
			"1.0" : 0.0,
			"5.0" : 15.021825109603165,
			"25.0" : 58.669333121791,
			"50.0" : 139.7398105623917,
			"75.0" : 388.2363222057536,
			"95.0" : 3630.78148822216,
			"99.0" : 12561.562823894474
		}
	}

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 0,
        "aggs": {
            "result": {
                "percentiles": {
                    "field": "price"
                }
            }
        }
    }
}

(2)统计筛选后的文档

POST product_list_info/_search
{
    "size": 0,
    "query": {
        "constant_score": {
            "filter": {
                "match": {
                    "threelevel": "手机"
                }
            }
        }
    },
    "aggs": {
        "result": {
            "percentiles": {
                "field": "price"
            }
        }
    }
}

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 0,
        "query": {
            "constant_score": {
                "filter": {
                    "match": {
                        "threelevel": "手机"
                    }
                }
            }
        },
        "aggs": {
            "result": {
                "percentiles": {
                    "field": "price"
                }
            }
        }
    }
}

4、百分位等级/百分比排名聚合

百分比排名聚合:这里有另外一个紧密相关的度量叫 percentile_ranks 。 percentiles 度量告诉我们落在某个百分比以下的所有文档的最小值。

(1)统计所有文档

统计价格在15元之内统计价格在30元之内文档数据占有的百分比

tips:
统计数据会变化
这里的15和30;完全可以理解万SLA的200;比较字段不一样而已

POST product_list_info/_search
{
    "size": 0,
    "aggs": {
        "result": {
            "percentile_ranks": {
                "field": "price",
                "values": [
                    15,
                    30
                ]
            }
        }
    }
}

返回:
价格在15元之内的文档数据占比是4.92%
价格在30元之内的文档数据占比是12.72%
aggregations" : {
	"result" : {
		"values" : {
			"15.0" : 4.92128378837021,
			"30.0" : 12.724827959646579
		}
	}
}

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 0,
        "aggs": {
            "result": {
                "percentile_ranks": {
                    "field": "price",
                    "values": [
                        15,
                        30
                    ]
                }
            }
        }
    }
}

(2)统计过滤后的文档

POST product_list_info/_search
{
    "size": 0,
    "query": {
        "constant_score": {
            "filter": {
                "match": {
                    "threelevel": "手机"
                }
            }
        }
    },
    "aggs": {
        "result": {
            "percentile_ranks": {
                "field": "price",
                "values": [
                    15,
                    30
                ]
            }
        }
    }
}

OpenAPI查询参数设计:

{
    "indexName": "product_list_info",
    "map": {
        "size": 0,
        "query": {
            "constant_score": {
                "filter": {
                    "match": {
                        "threelevel": "手机"
                    }
                }
            }
        },
        "aggs": {
            "result": {
                "percentile_ranks": {
                    "field": "price",
                    "values": [
                        15,
                        30
                    ]
                }
            }
        }
    }
}

四、JavaAPI实现

调用metricAgg方法,传参CommonEntity 。

/*
 * @Description: 指标聚合(Open)
 * @Method: metricAgg
 * @Param: [commonEntity]
 * @Update:
 * @since: 1.0.0
 * @Return: java.util.Map
 *
 */
public Map<Object, Object> metricAgg(CommonEntity commonEntity) throws Exception {
    //查询公共调用,将参数模板化
    SearchResponse response = getSearchResponse(commonEntity);
    //定义返回数据
    Map<Object, Object> map = new HashMap<Object, Object>();
    // 此处完全可以返回ParsedAggregation ,不用instance,弊端是返回的数据字段多、get的时候需要写死,下面循环map为的是动态获取key
    Map<String, Aggregation> aggregationMap = response.getAggregations().asMap();
    // 将查询出来的数据放到本地局部线程变量中
    SearchTools.setResponseThreadLocal(response);
    //此处循环一次,目的是动态获取client端传来的【result】
    for (Map.Entry<String, Aggregation> m : aggregationMap.entrySet()) {
        //处理指标聚合
        metricResultConverter(map, m);

    }
    //公共数据处理
    mbCommonConverter(map);
    return map;
}
/*
 * @Description: 查询公共调用,参数模板化
 * @Method: getSearchResponse
 * @Param: [commonEntity]
 * @Update:
 * @since: 1.0.0
 * @Return: org.elasticsearch.action.search.SearchResponse
 *
 */
private SearchResponse getSearchResponse(CommonEntity commonEntity) throws Exception {
    //定义查询请求
    SearchRequest searchRequest = new SearchRequest();
    //指定去哪个索引查询
    searchRequest.indices(commonEntity.getIndexName());
    //构建资源查询构建器,主要用于拼接查询条件
    SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
    //将前端的dsl查询转化为XContentParser
    XContentParser parser = SearchTools.getXContentParser(commonEntity);
    //将parser解析成功查询API
    sourceBuilder.parseXContent(parser);
    //将sourceBuilder赋给searchRequest
    searchRequest.source(sourceBuilder);
    //执行查询
    SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
    return response;
}
/*
 * @Description: 指标聚合结果转化器
 * @Method: metricResultConverter
 * @Param: [map, m]
 * @Update:
 * @since: 1.0.0
 * @Return: void
 *
 */
private void metricResultConverter(Map<Object, Object> map, Map.Entry<String, Aggregation> m) {
    //平均值
    if (m.getValue() instanceof ParsedAvg) {
        map.put("value", ((ParsedAvg) m.getValue()).getValue());
    }
    //最大值
    else if (m.getValue() instanceof ParsedMax) {
        map.put("value", ((ParsedMax) m.getValue()).getValue());
    }
    //最小值
    else if (m.getValue() instanceof ParsedMin) {
        map.put("value", ((ParsedMin) m.getValue()).getValue());
    }
    //求和
    else if (m.getValue() instanceof ParsedSum) {
        map.put("value", ((ParsedSum) m.getValue()).getValue());
    }
    //不重复的值
    else if (m.getValue() instanceof ParsedCardinality) {
        map.put("value", ((ParsedCardinality) m.getValue()).getValue());
    }
    //扩展状态统计
    else if (m.getValue() instanceof ParsedExtendedStats) {
        map.put("count", ((ParsedExtendedStats) m.getValue()).getCount());
        map.put("min", ((ParsedExtendedStats) m.getValue()).getMin());
        map.put("max", ((ParsedExtendedStats) m.getValue()).getMax());
        map.put("avg", ((ParsedExtendedStats) m.getValue()).getAvg());
        map.put("sum", ((ParsedExtendedStats) m.getValue()).getSum());
        map.put("sum_of_squares", ((ParsedExtendedStats) m.getValue()).getSumOfSquares());
        map.put("variance", ((ParsedExtendedStats) m.getValue()).getVariance());
        map.put("std_deviation", ((ParsedExtendedStats) m.getValue()).getStdDeviation());
        map.put("lower", ((ParsedExtendedStats) m.getValue()).getStdDeviationBound(ExtendedStats.Bounds.LOWER));
        map.put("upper", ((ParsedExtendedStats) m.getValue()).getStdDeviationBound(ExtendedStats.Bounds.UPPER));
    }
    //状态统计
    else if (m.getValue() instanceof ParsedStats) {
        map.put("count", ((ParsedStats) m.getValue()).getCount());
        map.put("min", ((ParsedStats) m.getValue()).getMin());
        map.put("max", ((ParsedStats) m.getValue()).getMax());
        map.put("avg", ((ParsedStats) m.getValue()).getAvg());
        map.put("sum", ((ParsedStats) m.getValue()).getSum());
    }

    //百分位等级
    else if (m.getValue() instanceof ParsedTDigestPercentileRanks) {
        for (Iterator<Percentile> iterator = ((ParsedTDigestPercentileRanks) m.getValue()).iterator(); iterator.hasNext(); ) {
            Percentile p = (Percentile) iterator.next();
            map.put(p.getValue(), p.getPercent());
        }
    }
    //百分位度量
    else if (m.getValue() instanceof ParsedTDigestPercentiles) {
        for (Iterator<Percentile> iterator = ((ParsedTDigestPercentiles) m.getValue()).iterator(); iterator.hasNext(); ) {
            Percentile p = (Percentile) iterator.next();
            map.put(p.getPercent(), p.getValue());

        }
    }


}

/*
 * @Description: 公共数据处理(指标聚合、桶聚合)
 * @Method: mbCommonConverter
 * @Param: []
 * @Update:
 * @since: 1.0.0
 * @Return: void
 *
 */
private void mbCommonConverter(Map<Object, Object> map) {
    if (!CollectionUtils.isEmpty(ResponseThreadLocal.get())) {
        //从线程中取出数据
        map.put("list", ResponseThreadLocal.get());
        //清空本地线程局部变量中的数据,防止内存泄露
        ResponseThreadLocal.clear();
    }

}

你可能感兴趣的:(其他数据库,elasticsearch,spring,boot,jenkins)