用C语言实现SGF格式围棋棋谱解析器

  这是本人(liigo)独立实现的SGF格式围棋棋谱文件解析器,本文介绍其实现细节。网络上肯定可以找到完善的开源的SGF解析器,这是毋庸置疑的,我不直接使用它们,也不参考它们的实现代码,而是自己独立编码实现,是有原因的,因为我想自己重复发明轮子,并且认为这样更有助于提高我的编码能力。(关于我的“一定要学会重复发明轮子”的不成熟的论调,今后我将会专门撰文表述。)

  我(liigo)开发的这个SGF解析器,采用基于事件的简单API,类似于XML解析器中的SAX(Simple API for XML)。这种解析器的核心是:由用户事先提供一系列回调函数,解析器在解析的过程中,依次调用相关的回调函数并传入相应参数,用户程序在回调函数中做出相应的处理。此类解析器属于轻量级的解析器,解析速度快,占用内存少,结构清晰易于实现,只是相对来说不如基于DOM的解析器方便使用。

  SGF格式,Smart Game Format,被设计用来记录多种游戏类棋谱的通用格式,在围棋领域被发扬光大,是用于描述围棋棋谱的最重要也最通用的形式。它是纯文本的、基于树(TREE)的结构,便于识别、存储和传输。其格式简洁实用,也非常易于编程解析。SGF格式官方规范网址为:http://www.red-bean.com/sgf/。(说到围棋棋谱,不得不赞叹一下,它只需用一幅图就可以完整还原一盘棋从始至终的风云变幻;作为对比,象棋一幅图只能描述对弈中某一时刻的场景。)

  SGF的主要结构由树(GameTree)、节点序列(Sequence)、节点(Node)、属性(Property)等组成。其中“属性”为最重要的基本单位,它由属性标识(PropIdent)和属性值(PropValue)组成。由分号“;”分隔的多个属性,称为节点。多个节点顺序排列称为节点序列。由括号“(”“)”括起来的节点序列,称为树,树中可包含子树。SGF的EBNF定义如下(参见http://www.red-bean.com/sgf/sgf4.html#ebnf-def):

 

Collection = GameTree { GameTree } GameTree = "(" Sequence { GameTree } ")" Sequence = Node { Node } Node = ";" { Property } Property = PropIdent PropValue { PropValue } PropIdent = UcLetter { UcLetter } PropValue = "[" CValueType "]" CValueType = (ValueType | Compose) ValueType = (None | Number | Real | Double | Color | SimpleText | Text | Point | Move | Stone)

 

  以下是一个简单的有一定代表性的SGF文本,先让大家有一个感性认识:

 

(;FF[4]GM[1]SZ[19]FG[257:Figure 1]PM[1] PB[Takemiya Masaki]BR[9 dan]PW[Cho Chikun] WR[9 dan]RE[W+Resign]KM[5.5]TM[28800]DT[1996-10-18,19] EV[21st Meijin]RO[2 (final)]SO[Go World #78]US[Arno Hollosi] ;B[pd];W[dp];B[pp];W[dd];B[pj];W[nc];B[oe];W[qc];B[pc];W[qd] (;B[qf];W[rf];B[rg];W[re];B[qg];W[pb];B[ob];W[qb] (;B[mp];W[fq];B[ci];W[cg];B[dl];W[cn];B[qo];W[ec];B[jp];W[jd] ;B[ei];W[eg];B[kk]LB[qq:a][dj:b][ck:c][qp:d]N[Figure 1] ;W[me]FG[257:Figure 2];B[kf];W[ke];B[lf];W[jf];B[jg] (;W[mf];B[if];W[je];B[ig];W[mg];B[mj];W[mq];B[lq];W[nq] (;B[lr];W[qq];B[pq];W[pr];B[rq];W[rr];B[rp];W[oq];B[mr];W[oo];B[mn] (;W[nr];B[qp]LB[kd:a][kh:b]N[Figure 2] ;W[pk]FG[257:Figure 3];B[pm];W[oj];B[ok];W[qr];B[os];W[ol];B[nk];W[qj] ;B[pi];W[pl];B[qm];W[ns];B[sr];W[om];B[op];W[qi];B[oi] (;W[rl];B[qh];W[rm];B[rn];W[ri];B[ql];W[qk];B[sm];W[sk];B[sh];W[og] ;B[oh];W[np];B[no];W[mm];B[nn];W[lp];B[kp];W[lo];B[ln];W[ko];B[mo] ;W[jo];B[km]N[Figure 3]) (;W[ql]VW[ja:ss]FG[257:Dia. 6]MN[1];B[rm];W[ph];B[oh];W[pg];B[og];W[pf] ;B[qh];W[qe];B[sh];W[of];B[sj]TR[oe][pd][pc][ob]LB[pe:a][sg:b][si:c] N[Diagram 6])) (;W[no]VW[jj:ss]FG[257:Dia. 5]MN[1];B[pn]N[Diagram 5])) (;B[pr]FG[257:Dia. 4]MN[1];W[kq];B[lp];W[lr];B[jq];W[jr];B[kp];W[kr];B[ir] ;W[hr]LB[is:a][js:b][or:c]N[Diagram 4])) (;W[if]FG[257:Dia. 3]MN[1];B[mf];W[ig];B[jh]LB[ki:a]N[Diagram 3])) (;W[oc]VW[aa:sk]FG[257:Dia. 2]MN[1];B[md];W[mc];B[ld]N[Diagram 2])) (;B[qe]VW[aa:sj]FG[257:Dia. 1]MN[1];W[re];B[qf];W[rf];B[qg];W[pb];B[ob] ;W[qb]LB[rg:a]N[Diagram 1]))

 

  熟悉编写文本解析器的程序员朋友应该都清楚,根据EBNF定义,编写对应的解析器,是相当简单和直观的,貌似只是一项翻译性的工作。本人实现SGF解析器,再次印证了这个观点,大部分情况下,我只是按部就班地将EBNF翻译为C语言代码而已,呵呵。

  我首先设计了“SGFParseContext”结构,用于保存解析器工作期间的相关数据:

 

typedef struct _tagSGFParseContext { void* pUserData; int treeIndex; PFN_ON_TREE pfnOnTree; PFN_ON_TREE_END pfnOnTreeEnd; PFN_ON_NODE pfnOnNode; PFN_ON_NODE_END pfnOnNodeEnd; PFN_ON_PROPERTY pfnOnProperty; char idBuffer[16]; char* valueBuffer; int valueBufferSize; } SGFParseContext;

 

  相应的还有初始化和清理SGFParseContext结构的函数,initSGFParseContext, cleanupSGFParseContext,皆不是本解析器的关键,略过不提。

  接着我(liigo)设计了五个回调函数的函数原形:

typedef void (*PFN_ON_TREE) (SGFParseContext* pContext, const char* szTreeHeader, int treeIndex); typedef void (*PFN_ON_TREE_END) (SGFParseContext* pContext, int treeIndex); typedef void (*PFN_ON_NODE) (SGFParseContext* pContext, const char* szNodeHeader); typedef void (*PFN_ON_NODE_END) (SGFParseContext* pContext); typedef void (*PFN_ON_PROPERTY) (SGFParseContext* pContext, const char* szID, const char* szValue);

 

  这五个回调函数,将分别在解析器解析到“树开始”“树结束”“节点开始”“节点结束”“遇到属性”时,由解析器调用。解析器调用每个回调函数时,都会传入必需的参数,供回调函数即时取用。

 

  下面正式开始解析工作。整个解析器被分为 parseProperty, parseNode, parseNodeSequence, parseGameTree, parseSGF 几大部分顺序解析,属于至底向上的分析实现模式。这几大部分,也分别对应着SGF的EBNF定义中的某一项。所有解析函数都接收参数 const char* szCollection, int fromPos,之前的解析函数将决定后续解析函数的起始解析位置。

 

  第一步,解析属性(parseProperty)。此处关键的是要定位到属性值(szValue)开始和结束符号“[”和“],两者之间的是属性值,“[”之前的则是属性标识(szID)。由于[和]之间可能存在转义字符“/”,不能简单地搜索字符“]”,必须花相当篇幅的代码处理转义字符(我用局部变量in_escape记录转义状态并进行分别处理)。此外要为提取出的属性标识和属性值分配足够的存储空间,以便传递到用户回调函数,前者不会太长使用静态分配,后者变长则使用动态分配(同时自动预分配存储空间,缓存,避免频繁申请内存)。代码如下:

 

//Property: id[value] int parseProperty(SGFParseContext* pContext, const char* szCollection, int fromPos) { const char* szFromPos; int lindex; int nIDBufferSize = sizeof(pContext->idBuffer) - 1; assert(szCollection && fromPos >= 0); szFromPos = szCollection + fromPos; lindex = findchar(szFromPos, -1, '['); assert(lindex > 0 && lindex < nIDBufferSize); if(lindex > 0 && lindex < nIDBufferSize) { memcpy(pContext->idBuffer, szFromPos, lindex); pContext->idBuffer[lindex] = '/0'; if(isTextPropertyID(pContext->idBuffer)) { //parse the text or simple-text value, consider the '/' escape character const char* s = szFromPos + lindex + 1; char c; int in_escape = 0; int valuelen = 0; getEnoughBuffer(pContext, 1024); pContext->valueBuffer[0] = '/0'; while(1) { c = *s; assert(c); if(!in_escape) { if(c == '//') { in_escape = 1; } else if(c == ']') { break; } else { getEnoughBuffer(pContext, valuelen + 1); pContext->valueBuffer[valuelen++] = c; } } else { //ignore the newline after '/' if(c != '/r' && c != '/n') { getEnoughBuffer(pContext, valuelen + 1); pContext->valueBuffer[valuelen++] = c; } else { char nc = *(s+1); if(nc) { if((c=='/r' && nc=='/n') || (c=='/n' && nc=='/r')) s++; } } in_escape = 0; } s++; } getEnoughBuffer(pContext, valuelen + 1); pContext->valueBuffer[valuelen] = '/0'; if(pContext->pfnOnProperty) pContext->pfnOnProperty(pContext, pContext->idBuffer, pContext->valueBuffer); return (s - szCollection + 1); } else { int rindex = findchar(szFromPos, -1, ']'); int nNeedBufferSize = rindex - lindex - 1; assert(rindex >= 0); getEnoughBuffer(pContext, nNeedBufferSize); memcpy(pContext->valueBuffer, szFromPos + lindex + 1, nNeedBufferSize); pContext->valueBuffer[nNeedBufferSize] = '/0'; if(pContext->pfnOnProperty) pContext->pfnOnProperty(pContext, pContext->idBuffer, pContext->valueBuffer); return (fromPos + rindex + 1); } } return -1; }

 

  第二步,解析节点(parseNode)。分号“;”跟后面N个属性,一个while循环调用parseProperty()逐个解析属性即可:

 

//Node: ; {property} int parseNode(SGFParseContext* pContext, const char* szCollection, int fromPos) { const char* szFromPos = szCollection + fromPos; assert(fromPos >= 0); //assert(szFromPos[0] == ';'); if(pContext->pfnOnNode) pContext->pfnOnNode(pContext, szFromPos); if(szFromPos[0] == ';') { fromPos++; szFromPos++; } while(1) { fromPos += skipSpaceChars(szFromPos, NULL); if(szCollection[fromPos] == '/0' || findchar(";)(", -1, szCollection[fromPos]) >= 0) break; fromPos = parseProperty(pContext, szCollection, fromPos); szFromPos = szCollection + fromPos; } return fromPos; }

 

  第三步,解析节点序列(parseNodeSequence)。节点的顺序排列,至少有一个节点,后面可能还有0个或多个节点。仍然是一个while循环搞定:

 

//NodeSequence: node{node} int parseNodeSequence(SGFParseContext* pContext, const char* szCollection, int fromPos) { const char* szFromPos = szCollection + fromPos; assert(fromPos >= 0); //assert(szFromPos[0] == ';'); while(1) { fromPos = parseNode(pContext, szCollection, fromPos); fromPos += skipSpaceChars(szFromPos, NULL); szFromPos = szCollection + fromPos; if(szFromPos[0] != ';') { if(pContext->pfnOnNodeEnd) pContext->pfnOnNodeEnd(pContext); break; } } return fromPos; }

 

  第四步,解析树(parseGameTree)。树是一个嵌套结构,最外层是一对括号“(”“)”,里面是N个节点序列或N个嵌套的子树。仍然用一个while循环搞定,遇到“(”则递归调用parseGameTree()解析树或其子树,否则调用parseNodeSequence()解析节点序列。代码如下:

 

//GameTree: ( {[NodeSequence]|[GameTree]} ) //old GameTree: ( NodeSequence {GameTree} ) int parseGameTree(SGFParseContext* pContext, const char* szCollection, int fromPos) { char c; const char* szFromPos = szCollection + fromPos; assert(fromPos >= 0); assert(szFromPos[0] == '('); pContext->treeIndex++; if(pContext->pfnOnTree) pContext->pfnOnTree(pContext, szFromPos, pContext->treeIndex); fromPos++; szFromPos++; fromPos += skipSpaceChars(szFromPos, NULL); c = szCollection[fromPos]; while(1) { if(c == '(') fromPos = parseGameTree(pContext, szCollection, fromPos); else fromPos = parseNodeSequence(pContext, szCollection, fromPos); szFromPos = szCollection + fromPos; fromPos += skipSpaceChars(szFromPos, NULL); c = szCollection[fromPos]; if(c == ')') { if(pContext->pfnOnTreeEnd) pContext->pfnOnTreeEnd(pContext, pContext->treeIndex); pContext->treeIndex--; break; } } return (fromPos + 1); }

 

  第五步,最后一步了,解析整个SGF文本内容(parseSGF)。这是对外公开的核心接口。N个树的顺序排列,好办呀,循环调用parseGameTree()顺序解析各个树不就OK了?代码如下:

 

//SGFCollection: GameTree {GameTree} int parseSGF(SGFParseContext* pContext, const char* szCollection, int fromPos) { const char* szFromPos = szCollection + fromPos; assert(fromPos >= 0); assert(szFromPos[0] == '('); pContext->treeIndex = -1; while(1) { fromPos = parseGameTree(pContext, szCollection, fromPos); fromPos += skipSpaceChars(szFromPos, NULL); szFromPos = szCollection + fromPos; if(szFromPos[0] != '(') break; } return fromPos; }

 

  测试代码:

 

int main(int argc, char *argv[]) { char* s; int x; SGFParseContext Context; //initSGFParseContext(&Context, onTree, onTreeEnd, onNode, onNodeEnd, onProperty, NULL); initSGFParseContext(&Context, onTree2, onTreeEnd2, onNode2, onNodeEnd2, onProperty2, NULL); //test parse property: { s = "AB[cdef]X[xyz]"; printf("/ntest parse property: ----- /n"); x = parseProperty(&Context, s, 0); x = parseProperty(&Context, s, 8); s = "C[ab//]cd]"; x = parseProperty(&Context, s, 0); } //test parse node: { s = ";A[a]BB[bb]C[]"; printf("/ntest parse node: ----- /n"); x = parseNode(&Context, s, 0); s = ";A[a];BB[bb]C[]"; x = parseNode(&Context, s, 0); x = parseNodeSequence(&Context, s, 0); } //test parse tree: { printf("/ntest parse tree: ----- /n"); s = "(;A[a](;C[c](X[x])Z[z]);D[d](;E[e](F[ff])))"; x = parseGameTree(&Context, s, 0); } #if 1 //parse real sgf file: { int len = 0; void* data = NULL; FILE* pfile = fopen("d://x.txt", "r"); printf("/n---------- test parse real sgf file: -------- /n"); if(pfile) { fseek(pfile, 0, SEEK_END); len = ftell(pfile); assert(len > 0); fseek(pfile, 0, SEEK_SET); data = malloc(len); assert(data); fread(data, 1, len, pfile); parseSGF(&Context, data, 0); fclose(pfile); pfile = NULL; } } #endif { char c; printf("/n----- any key to exit: ----- /n"); fflush(stdout); scanf("%c", &c); } }

 

 

  总结:整个SGF解析器结构比较清晰,只要按照EBNF定义,按部就班地逐步处理即可,不是特别复杂。但由于牵涉到文本、指针、递归,有许多细节需要注意。各位朋友不妨评估一下,自己需要花费多久可以写出类似这样一个SGF解析器?如果时间充裕,也不妨真的动手写一下,看看是否眼高手低呢?所谓的“重复发明轮子”,并非绝对的毫无意义,至少可以锻炼我的动手能力。

  另外,有一个设计上的取舍,不知是较好还是较坏。所有的回调函数,目前都有一个 SGFParseContext* pContext ,而此前相同位置的参数是 void* pUserData。是后来考虑到回调函数可能需要访问SGFParseContext中的相关数据(如在PFN_ON_NODE中读取treeIndex),为了方便用户使用才引入pContext参数(用户也可以通过pUserData自行传入pContext,终究是多了一步)。目前的做法,似乎暴露了解析器内部结构(SGFParseContext),又似乎增强了回调函数的稳定性和扩展性(即使不改变函数原形也能通过pContext提供额外参数)。

  虽然这个SGF解析器已应用到开源软件“M8围棋谱”(http://code.google.com/p/m8weiqipu/)中,并初步达到了实用目的,但并不能保证该解析器已达到工业强度,其实有不少情况尚未测试到,必然会有疏忽错漏之处,诚请各位朋友批评指正。

  另注,考虑到与现有SGF格式文件的兼容性,对SGF规范中的EBNF稍做了一定扩展。

  完整源代码请参见:
http://code.google.com/p/m8weiqipu/source/browse/trunk/sgf.h
http://code.google.com/p/m8weiqipu/source/browse/trunk/sgf.c

你可能感兴趣的:(C/C++,liigo,重复发明轮子,Parser,源代码,围棋,c,语言,tree,null,newline,character)