加工奶制品的生产计划

例1: 加工奶制品的生产计划

问题一:奶制品加工厂用牛奶生产 A 1 A_1 A1, A 2 A_2 A2两种奶制品,1桶牛奶可以在甲类设备上用12 h加工成3 kg A 1 A_1 A1,或者在乙类设备上用8 h加工成4 kg A 2 A_2 A2,.根据市场需求,生产的 A 1 A_1 A1, A 2 A_2 A2、全部能售出,且每千克 A 1 A_1 A1,获利24元,每千克 A 2 A_2 A2获利16元.现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480 h,并且甲类设备每天至多能加工100 kg A 1 A_1 A1,乙类设备的加工能力没有限制.试为该厂制订一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:

1)若用35元可以买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?

2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?

3)由于市场需求变化,每千克 A 1 A_1 A1的获利增加到30元,应否改变生产计划?1

针对原始问题,我们可以假设生产 A 1 . A 2 A_1.A_2 A1.A2所消耗牛奶的桶数分别为 x 1 , x 2 x_1,x_2 x1,x2利润为 y y y那么即可建立模型
M a x y = 24 ∗ 3 ∗ x 1 + 16 ∗ 4 ∗ x 2 S . T . { x 1 + x 2 < = 50 12 ∗ x 1 + 8 ∗ x 2 < = 480 3 ∗ x 1 < = 100 x 1 , x 2 > = 0 Max\quad y = 24*3*x_1 + 16*4*x_2\\ S.T.\left\{ \begin{aligned} x_1+x_2<=50\\ 12*x_1+8*x_2<=480\\ 3*x_1<=100\\ x_1,x_2>=0\\ \end{aligned} \right. Maxy=243x1+164x2S.T.x1+x2<=5012x1+8x2<=4803x1<=100x1,x2>=0

原始问题结果最终由代码求解(代码1-1)得到

目标函数值是: 3360.0
 x_1 = 20.0
 x_2 = 30.0

故原始问题用20桶牛奶生产 A 1 30 桶 牛 奶 生 产 A 2 A_130桶牛奶生产A_2 A130A2即可得到利润的最大值为3360

第一个附加问题将目标函数进行适当改动即可,假设购买了 x 3 x_3 x3桶牛奶
M a x y = 24 ∗ 3 ∗ x 1 + 16 ∗ 4 ∗ x 2 − 35 ∗ x 3 S . T . { x 1 + x 2 < = 50 + x 3 12 ∗ x 1 + 8 ∗ x 2 < = 480 3 ∗ x 1 < = 100 x 1 , x 2 > = 0 Max\qquad y = 24*3*x_1 + 16*4*x_2 - 35*x_3\\ S.T.\left\{ \begin{aligned} x_1+x_2<=50+x_3\\ 12*x_1+8*x_2<=480\\ 3*x_1<=100\\ x_1,x_2>=0\\ \end{aligned} \right. Maxy=243x1+164x235x3S.T.x1+x2<=50+x312x1+8x2<=4803x1<=100x1,x2>=0
由代码1-2重新求解得到

目标函数值是: 3438.0
x_1 = 8.0
x_2 = 48.0
x_3 = 6.0

可得应该做这笔投资,增加6桶牛奶的购买量即可

影子价格

增加了6桶牛奶的量,利润增加了3438-3360=78。每增加1桶牛奶可增加13的利润,在问题中,13即为牛奶的影子价格。为投资购买牛奶时牛奶桶数即为限制利润变的更大的主要因素,为紧约束

gurobipy有相关影子价格求解的相关函数2 因此对于附加问题1不用重新求解,求解影子价格进行分析即可,在代码1-1的基础上进行输出即可,详见代码1-3

  • 结果:Variable X

     x_1           20 
     x_2           30 
  • Slack:当前解的约束松弛

    machine_Time           40 
  • 影子价格

    Milk           48 
    Time            2 

对于Slack

machine_Time为40对应的约束条件为x1*3<=100,这就说明,甲机器在此生产情况下仍有40h的剩余。
表明原料、劳动时间已用完,而甲类设备的能力有余.一般称“资源”剩余为0的约束为紧约束(有效约束).

对于影子价格

目标函数可以看作“效益”,成为紧约束的“资源”一旦增加,“效益”必然跟着增长.输出第影子价格给出这3种资源在最优解下“资源”增加1个单位时“效益”的增量:原料[MILK]增加1个单位(1桶牛奶)时利润增长48元,劳动时间[TIME]增加1个单位( 1h)时利润增长2元,而增加非紧约束[ CPCT]甲类设备的能力显然不会使利润增长.这里,“效益”的增量可以看作“资源”的潜在价值,经济学上称为影子价格,即1桶牛奶的影子价格为48元,1 h劳动的影子价格为2元,甲类设备的影子价格为0.
由此可得若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元。而牛奶的影子价格也与改变模型重新求解得到的结果一致

以下为目标函数中的系数发生变化时最优解条件不变,目标系数的变化范围

x_1为64-96   x_2为48-72   注意:x_1系数的允许范围需要x_2系数64不变,反之亦然.
  • Variable SAObjLow

     x_1           64 
     x_2           48 
  • Variable SAObjUp

     x_1           96 
     x_2           72 

以下为约束条件右端常数项的变化范围

  • Constraint SARHSLow

    Milk      43.3333 
    Time          400 
    machine_Time           60 
  • Constraint SARHSUp

    Milk           60 
    Time      533.333 
    machine_Time          inf 
  • 对于影子价格,也是有限度的。超过了限度及时增加对应的“资源”,收益也不会得到相应的增长。约束条件右端常数项的变化范围就给出了“影子价格”的变化范围

由此可回答上述问题三问

(1)Milk影子价格48 大于一桶牛奶的成本。应该做这项投资,最多可购买10桶牛奶。
(2)Time的影子价格为2,说明每增加1h的工作时间可带来2r的收益。则雇用临时工人的最高工资为2r/h
(3)每千克1的获利增加到30元,那么目标函数中A1的系数就变为了 30*3 = 90 < 96 可不更改原来的生产计划。

代码1-1

import gurobipy as grb

model = grb.Model("Milk_1_1")
# 定义变量
x1 = model.addVar(lb=0,ub=50,vtype=grb.GRB.INTEGER, name='x_1')
x2 = model.addVar(lb=0,ub=50,vtype=grb.GRB.INTEGER, name='x_2')
# 添加约束
model.addConstr(x1+x2<=50)
model.addConstr(12*x1+8*x2<=480)
model.addConstr(x1*3<=100)
# 目标函数
model.setObjective(24*3*x1+16*4*x2, grb.GRB.MAXIMIZE)
# 求解
model.optimize()
print('目标函数值是:', model.objVal)
for v in model.getVars():
    print(v.varName, '=', v.x)

输出:

Gurobi Optimizer version 9.1.2 build v9.1.2rc0 (win64)
Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 3 rows, 2 columns and 5 nonzeros
Model fingerprint: 0x39cf0539
Variable types: 0 continuous, 2 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 1e+01]
  Objective range  [6e+01, 7e+01]
  Bounds range     [5e+01, 5e+01]
  RHS range        [5e+01, 5e+02]
Found heuristic solution: objective 3016.0000000
Presolve removed 1 rows and 0 columns
Presolve time: 0.00s
Presolved: 2 rows, 2 columns, 4 nonzeros
Variable types: 0 continuous, 2 integer (0 binary)

Root relaxation: objective 3.360000e+03, 2 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

*    0     0               0    3360.0000000 3360.00000  0.00%     -    0s

Explored 0 nodes (2 simplex iterations) in 0.04 seconds
Thread count was 8 (of 8 available processors)

Solution count 2: 3360 3016 

Optimal solution found (tolerance 1.00e-04)
Best objective 3.360000000000e+03, best bound 3.360000000000e+03, gap 0.0000%
目标函数值是: 3360.0
x_1 = 20.0
x_2 = 30.0

代码1-2

import gurobipy as grb

model = grb.Model("Milk_1_2")
# 定义变量
x1 = model.addVar(lb=0,ub=50,vtype=grb.GRB.INTEGER, name='x_1')
x2 = model.addVar(lb=0,ub=50,vtype=grb.GRB.INTEGER, name='x_2')
x3 = model.addVar(lb=0,ub=50,vtype=grb.GRB.INTEGER, name='x_3')
# 添加约束
model.addConstr(x1+x2<=50+x3)
model.addConstr(12*x1+8*x2<=480)
model.addConstr(x1*3<=100)
# 目标函数
model.setObjective(24*3*x1+16*4*x2-35*x3, grb.GRB.MAXIMIZE)
# 求解
model.optimize()
print('目标函数值是:', model.objVal)
for v in model.getVars():
    print(v.varName, '=', v.x)

输出

Gurobi Optimizer version 9.1.2 build v9.1.2rc0 (win64)
Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 3 rows, 3 columns and 6 nonzeros
Model fingerprint: 0x990a2b23
Variable types: 0 continuous, 3 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 1e+01]
  Objective range  [4e+01, 7e+01]
  Bounds range     [5e+01, 5e+01]
  RHS range        [5e+01, 5e+02]
Found heuristic solution: objective 3016.0000000
Presolve removed 1 rows and 0 columns
Presolve time: 0.00s
Presolved: 2 rows, 3 columns, 5 nonzeros
Variable types: 0 continuous, 3 integer (0 binary)

Root relaxation: objective 3.446667e+03, 1 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0 3446.66667    0    2 3016.00000 3446.66667  14.3%     -    0s
H    0     0                    3430.0000000 3446.66667  0.49%     -    0s
H    0     0                    3438.0000000 3446.66667  0.25%     -    0s
     0     0 3446.66667    0    2 3438.00000 3446.66667  0.25%     -    0s

Explored 1 nodes (1 simplex iterations) in 0.04 seconds
Thread count was 8 (of 8 available processors)

Solution count 3: 3438 3430 3016 

Optimal solution found (tolerance 1.00e-04)
Best objective 3.438000000000e+03, best bound 3.438000000000e+03, gap 0.0000%
目标函数值是: 3438.0
x_1 = 8.0
x_2 = 48.0
x_3 = 6.0

代码1-3

import gurobipy as grb
from gurobipy import *

model = grb.Model("Milk_1_1")
# 定义变量
x1 = model.addVar( name='x_1')
x2 = model.addVar( name='x_2')
# 添加约束
model.addConstr(x1+x2<=50,"Milk")
model.addConstr(12*x1+8*x2<=480,"Time")
model.addConstr(x1*3<=100,"machine_Time")
# 目标函数
model.setObjective(24*3*x1+16*4*x2, grb.GRB.MAXIMIZE)
# 求解
model.optimize()
print('目标函数值是:', model.objVal)
for v in model.getVars():
    print(v.varName, '=', v.x)
#print("影子价格:",model.Pi)
if model.status == GRB.OPTIMAL:
    model.printAttr('X')
    model.printAttr('Slack')
    model.printAttr('Pi')
    model.printAttr('SAObjLow')
    model.printAttr('SAObjUp')
    model.printAttr('SARHSLow')
    model.printAttr('SARHSUp')
    
#注意:vtype=grb.GRB.INTEGER, vtype=grb.GRB.INTEGER,在固定变量类型之后,求解Pi会报错
#

输出:

Using license file C:\Users\mzq\gurobi.lic
Gurobi Optimizer version 9.1.2 build v9.1.2rc0 (win64)
Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 3 rows, 2 columns and 5 nonzeros
Model fingerprint: 0x31f8b533
Coefficient statistics:
  Matrix range     [1e+00, 1e+01]
  Objective range  [6e+01, 7e+01]
  Bounds range     [0e+00, 0e+00]
  RHS range        [5e+01, 5e+02]
Presolve removed 1 rows and 0 columns
Presolve time: 0.02s
Presolved: 2 rows, 2 columns, 4 nonzeros

Iteration    Objective       Primal Inf.    Dual Inf.      Time
       0    3.6000000e+03   2.416667e+01   0.000000e+00      0s
       2    3.3600000e+03   0.000000e+00   0.000000e+00      0s

Solved in 2 iterations and 0.04 seconds
Optimal objective  3.360000000e+03
目标函数值是: 3360.0
x_1 = 20.0
x_2 = 30.0

    Variable            X 
-------------------------
         x_1           20 
         x_2           30 

  Constraint        Slack 
-------------------------
machine_Time           40 

  Constraint           Pi 
-------------------------
        Milk           48 
        Time            2 

    Variable     SAObjLow 
-------------------------
         x_1           64 
         x_2           48 

    Variable      SAObjUp 
-------------------------
         x_1           96 
         x_2           72 

  Constraint     SARHSLow 
-------------------------
        Milk      43.3333 
        Time          400 
machine_Time           60 

  Constraint      SARHSUp 
-------------------------
        Milk           60 
        Time      533.333 
machine_Time          inf 

例2

奶制品的生产销售计划

例1:给出的 A 1 A_1 A1, A 2 A_2 A2两种奶制品的生产条件、利润及工厂的“资源”限制全都不变.为增加工厂的获利,开发了奶制品的深加工技术:用2 h和3元加工费,可将1kg A 1 A_1 A1加工成0.8 kg高级奶制品 B 1 B_1 B1,也可将1 kg A 2 A_2 A2加工成0.75 kg高级奶制品 B 2 B_2 B2,每千克 B 1 B_1 B1能获利44元,每千克 B 2 B_2 B2能获利32元.试为该厂制订一个生产销售计划,使每天的净利润最大,并讨论以下问题:

(1)若投资30元可以增加供应1桶牛奶,投资3元可以增加1 h劳动时间,应否作这些投资?若每天投资150元,可赚回多少?
(2)每千克高级奶制品$B_1$,$B_2$,的获利经常有10%的波动,对制订的生产销售计划有无影响?若每千克$B_1$的获利下降10% ,计划应该变化吗?
(3)若公司已经签订了每天销售10 kg $A_1$的合同并且必须满足,该合同对公司的利润有什么影响?

在原来的模型基础上进行改动,假设变量 x 1 , x 2 , x 3 , x 4 , x 5 , x 6 x_1,x_2,x_3,x_4,x_5,x_6 x1,x2,x3,x4,x5,x6

x 1 , x 2 , x 3 , x 4 x_1,x_2,x_3,x_4 x1,x2,x3,x4对应 A 1 , A 2 , B 1 , B 2 A_1,A_2,B_1,B_2 A1,A2,B1,B2的产量,其中 x 5 x_5 x5 A 1 A_1 A1用来生产 B 1 B_1 B1 x 6 x_6 x6 A 2 A_2 A2用来生产 B 2 B_2 B2那么可建立模型如下

M a x q q u a d y = 24 ∗ x 1 + 16 ∗ x 2 + 44 ∗ x 3 + 32 ∗ x 4 − 3 ∗ ( x 5 + x 6 ) S . T . { x 1 + x 5 3 + x 2 + x 6 4 < = 50 12 ∗ x 1 + x 5 3 + 8 ∗ x 2 + x 6 4 + 2 ∗ ( x 5 + x 6 ) < = 480 x 1 + x 5 < = 100 0.8 ∗ x 5 = x 3 0.75 ∗ x 6 = x 4 x 1 , x 2 , x 3 , x 4 , x 5 , x 6 > = 0 Max \\qquad y = 24*x_1 + 16*x_2 + 44*x_3 + 32*x_4 - 3*(x_5+x_6)\\ S.T.\left\{ \begin{aligned} \frac{x_1+x_5}{3}+\frac{x_2+x_6}{4}<=50\\ 12*\frac{x_1+x_5}{3}+8*\frac{x_2+x_6}{4} + 2*(x_5+x_6)<=480\\ x_1+x_5<=100\\ 0.8 * x_5 = x_3\\ 0.75 * x_6 = x_4\\ x_1,x_2,x_3,x_4,x_5,x_6>=0\\ \end{aligned} \right. Maxqquady=24x1+16x2+44x3+32x43(x5+x6)S.T.3x1+x5+4x2+x6<=50123x1+x5+84x2+x6+2(x5+x6)<=480x1+x5<=1000.8x5=x30.75x6=x4x1,x2,x3,x4,x5,x6>=0

目标函数值是: 3460.8

  • Variable X

     x_2          168 
     x_3         19.2 
     x_5           24 
  • Constraint Slack

  Machine_Time           76 
  • Constraint Pi

  Milk_Num        37.92 
  Worker_Time         3.26 
  bound1          -44 
  bound2          -32 
  • Variable SAObjLow

     x_1         -inf 
     x_2         13.9 
     x_3      40.8333 
     x_4         -inf 
     x_5     -5.53333 
     x_6         -inf 
  • Variable SAObjUp

     x_1        25.68 
     x_2        24.15 
     x_3        63.75 
     x_4      34.0267 
     x_5         12.8 
     x_6        -1.48 
  • Constraint SARHSLow

Milk_Num      26.6667 
Worker_Time          400 
Machine_Time           24 
bound1         -inf 
bound2         -inf 
  • Constraint SARHSUp

Milk_Num           60 
Worker_Time      733.333 
Machine_Time          inf 
bound1         19.2 

最终求解得到结果:

目标函数值:3460.8
 x_2          168 
 x_3         19.2 
 x_5           24 

而第一问:

(1)若投资30元可以增加供应1桶牛奶,投资3元可以增加1 h劳动时间,应否作这些投资?若每天投资150元,可赚回多少?

  根据求解得到的影子价格,一桶牛奶的影子价格为37.92 > 30 1h工作时间的影子价格为 3.26 > 3故应该做这些投资。而若拥有150元,根据灵敏性分析中的SARHSLow(约束条件右端常数最小值)SARHSUp (约束条件右端常数最大值)可得,影子价格有效的范围为
  Milk_Num:[26.6667,60]    Worker_Time:[400,733.333]。
  故在150r的范围内,影子价格均有效。故可用来增加5桶牛奶增加189.6的收益

而第二问:

(2)每千克高级奶制品$B_1$,$B_2$,的获利经常有10%的波动,对制订的生产销售计划有无影响?若每千克$B_1$的获利下降10% ,计划应该变化吗?

    根据灵敏性分析中的SAObj,x_3.x_4 的在计划不变的情况下系数变化范围分别为[40.8333,63.75],[0,34.0267],而原来 x_3,x_4 的系数分别为44和32。 所以当 B_1 的获利向下波动 10% ,或B_2的获利向上波动10%时,上面得到的生产销售计划将不再一定是最优的,应该重新制订.如若每千克B,的获利下降10% ,应将原模型式中x_3,的系数改为39.6,重新计算,见代码2-2 得到的最优解。可见计划变化很大,这就是说,(最优)生产计划对B_1或B_2,获利的波动是很敏感的.
    新计划:
    目标函数值是: 3400.0
  • Variable X

     x_2          160 
     x_4           30 
     x_6           40          

而第三问:

(3)若公司已经签订了每天销售10 kg $A_1$的合同并且必须满足,该合同对公司的利润有什么影响?
(Reduce Cost 的意义以及应用  列出最优单纯形表中判别数所在行的变量的系数,表示当变量有微小变动时,目标函数的变化率。)
可重新求解,也可利用 Reduce Cost 直接得出结果,此部分有待完善

代码2-1

import gurobipy as grb
from gurobipy import *

model = grb.Model("Milk_2_1")
# 定义变量
x1 = model.addVar(lb=0, name='x_1')
x2 = model.addVar(lb=0, name='x_2')
x3 = model.addVar(lb=0, name='x_3')
x4 = model.addVar(lb=0, name='x_4')
x5 = model.addVar(lb=0, name='x_5')
x6 = model.addVar(lb=0, name='x_6')
# 添加约束
model.addConstr((x1+x5)/3 + (x2+x6)/4 <= 50,"Milk_Num")
model.addConstr(12*(x1+x5)/3 + 8*(x2+x6)/4 + 2*(x5+x6)<= 480,"Worker_Time")
model.addConstr((x1+x5)<=100,"Machine_Time")
model.addConstr(0.8*x5 == x3,"bound1")
model.addConstr(0.75*x6 == x4,"bound2")
# 目标函数
model.setObjective(24*x1 + 16*x2 + 44*x3 + 32*x4 -3*(x5+x6), grb.GRB.MAXIMIZE)
# 求解
model.optimize()
print('目标函数值是:', model.objVal)
#for v in model.getVars():
#    print(v.varName, '=', v.x)
if model.status == GRB.OPTIMAL:
    model.printAttr('X')
    model.printAttr('Slack')
    model.printAttr('Pi')
    model.printAttr('SAObjLow')
    model.printAttr('SAObjUp')
    model.printAttr('SARHSLow')
    model.printAttr('SARHSUp')
    model.printAttr('RC')
#注意:vtype=grb.GRB.INTEGER, vtype=grb.GRB.INTEGER,在固定变量类型之后,求解Pi会报错
#

输出

Gurobi Optimizer version 9.1.2 build v9.1.2rc0 (win64)
Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 5 rows, 6 columns and 14 nonzeros
Model fingerprint: 0xec6a1c4f
Coefficient statistics:
  Matrix range     [3e-01, 6e+00]
  Objective range  [3e+00, 4e+01]
  Bounds range     [0e+00, 0e+00]
  RHS range        [5e+01, 5e+02]
Presolve removed 2 rows and 2 columns
Presolve time: 0.01s
Presolved: 3 rows, 4 columns, 10 nonzeros

Iteration    Objective       Primal Inf.    Dual Inf.      Time
       0    4.8300000e+03   7.370950e+01   0.000000e+00      0s
       3    3.4608000e+03   0.000000e+00   0.000000e+00      0s

Solved in 3 iterations and 0.01 seconds
Optimal objective  3.460800000e+03
目标函数值是: 3460.8

    Variable            X 
-------------------------
         x_2          168 
         x_3         19.2 
         x_5           24 

  Constraint        Slack 
-------------------------
Machine_Time           76 

  Constraint           Pi 
-------------------------
    Milk_Num        37.92 
 Worker_Time         3.26 
      bound1          -44 
      bound2          -32 

    Variable     SAObjLow 
-------------------------
         x_1         -inf 
         x_2         13.9 
         x_3      40.8333 
         x_4         -inf 
         x_5     -5.53333 
         x_6         -inf 

    Variable      SAObjUp 
-------------------------
         x_1        25.68 
         x_2        24.15 
         x_3        63.75 
         x_4      34.0267 
         x_5         12.8 
         x_6        -1.48 

  Constraint     SARHSLow 
-------------------------
    Milk_Num      26.6667 
 Worker_Time          400 
Machine_Time           24 
      bound1         -inf 
      bound2         -inf 

  Constraint      SARHSUp 
-------------------------
    Milk_Num           60 
 Worker_Time      733.333 
Machine_Time          inf 
      bound1         19.2 

    Variable           RC 
-------------------------
         x_1        -1.68 
         x_6        -1.52 

代码2-2

import gurobipy as grb
from gurobipy import *

model = grb.Model("Milk_2_2")
# 定义变量
x1 = model.addVar(lb=0, name='x_1')
x2 = model.addVar(lb=0, name='x_2')
x3 = model.addVar(lb=0, name='x_3')
x4 = model.addVar(lb=0, name='x_4')
x5 = model.addVar(lb=0, name='x_5')
x6 = model.addVar(lb=0, name='x_6')
# 添加约束
model.addConstr((x1+x5)/3 + (x2+x6)/4 <= 50,"Milk_Num")
model.addConstr(12*(x1+x5)/3 + 8*(x2+x6)/4 + 2*(x5+x6)<= 480,"Worker_Time")
model.addConstr((x1+x5)<=100,"Machine_Time")
model.addConstr(0.8*x5 == x3,"bound1")
model.addConstr(0.75*x6 == x4,"bound2")
# 目标函数
model.setObjective(24*x1 + 16*x2 + 39.6*x3 + 32*x4 -3*(x5+x6), grb.GRB.MAXIMIZE)
# 求解
model.optimize()
print('目标函数值是:', model.objVal)
#for v in model.getVars():
#    print(v.varName, '=', v.x)
if model.status == GRB.OPTIMAL:
    model.printAttr('X')

输出

Using license file C:\Users\mzq\gurobi.lic
Gurobi Optimizer version 9.1.2 build v9.1.2rc0 (win64)
Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 5 rows, 6 columns and 14 nonzeros
Model fingerprint: 0x06e710c1
Coefficient statistics:
  Matrix range     [3e-01, 6e+00]
  Objective range  [3e+00, 4e+01]
  Bounds range     [0e+00, 0e+00]
  RHS range        [5e+01, 5e+02]
Presolve removed 2 rows and 2 columns
Presolve time: 0.01s
Presolved: 3 rows, 4 columns, 10 nonzeros

Iteration    Objective       Primal Inf.    Dual Inf.      Time
       0    4.3020000e+03   7.370950e+01   0.000000e+00      0s
       2    3.4000000e+03   0.000000e+00   0.000000e+00      0s

Solved in 2 iterations and 0.03 seconds
Optimal objective  3.400000000e+03
目标函数值是: 3400.0

    Variable            X 
-------------------------
         x_2          160 
         x_4           30 
         x_6           40 
​

参考文献


  1. 数学模型(第五版) .高等教育出版社 --姜启源、谢金星、叶俊 ↩︎

  2. Python最优化算法实战 北京大学出版社 --苏振裕 ↩︎

你可能感兴趣的:(数学建模,Gruobi,算法,python)