MySQL 全局锁、表级锁、行锁详解

MySQL 全局锁、表级锁、行锁详解_第1张图片


前言

MySQL 里面的锁大致可以分成全局锁、表级锁和行锁三类,全局锁和表级锁是在server层实现的。


全局锁

全局锁就是对整个数据库实例加锁。MySQL 提供了一个加全局读锁的方法,命令是 Flush tables with read lock (FTWRL)。当你需要让整个库处于只读状态的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句。

获取全局锁:FLUSH TABLES WITH READ LOCK;

释放全局锁:UNLOCK TABLES;

全局锁的典型使用场景是,做全库逻辑备份。也就是把整库每个表都 select 出来存成文本。以前有一种做法,是通过 FTWRL 确保不会有其他线程对数据库做更新,然后对整个库做备份。注意,在备份过程中整个库完全处于只读状态。

但是让整库都只读:

如果你在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆;

如果你在从库上备份,那么备份期间从库不能执行主库同步过来的 binlog,会导致主从延迟。

官方自带的逻辑备份工具是 mysqldump。当 mysqldump 使用参数–single-transaction 的时候,导数据之前就会启动一个事务,来确保拿到一致性视图。而由于 MVCC 的支持,这个过程中数据是可以正常更新的。

mysqldump -h127.0.0.1 -uroot -p123456 --single-transaction --default-character-set=utf8 accounting_global zg_tenant_entity > /tmp/ccc.sql

为什么还需要 FTWRL 呢?一致性读是好,但前提是引擎要支持这个隔离级别。

比如,对于 MyISAM 这种不支持事务的引擎,如果备份过程中有更新,总是只能取到最新的数据,那么就破坏了备份的一致性。这时,我们就需要使用 FTWRL 命令了。

所以,single-transaction 方法只适用于所有的表使用事务引擎的库。如果有的表使用了不支持事务的引擎,那么备份就只能通过 FTWRL 方法。这往往是 DBA 要求业务开发人员使用 InnoDB 替代 MyISAM 的原因之一。

既然要全库只读,为什么不使用 set global readonly=true 的方式呢?确实 readonly 方式也可以让全库进入只读状态,但我还是会建议你用 FTWRL 方式,主要有两个原因:

一是,在有些系统中,readonly 的值会被用来做其他逻辑,比如用来判断一个库是主库还是备库。因此,修改 global 变量的方式影响面更大,我不建议你使用。

二是,在异常处理机制上有差异。如果执行 FTWRL 命令之后由于客户端发生异常断开,那么 MySQL 会自动释放这个全局锁,整个库回到可以正常更新的状态。而将整个库设置为 readonly 之后,如果客户端发生异常,则数据库就会一直保持 readonly 状态,这样会导致整个库长时间处于不可写状态,风险较高。

业务的更新不只是增删改数据(DML),还有可能是加字段等修改表结构的操作(DDL)。不论是哪种方法,一个库被全局锁上以后,你要对里面任何一个表做加字段操作,都是会被锁住的。

表级锁

MySQL 里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lock,MDL)。

表锁的语法是 lock tables … read/write。与 FTWRL 类似,可以用 unlock tables 主动释放锁,也可以在客户端断开的时候自动释放。需要注意,lock tables 语法除了会限制别的线程的读写外,也限定了本线程接下来的操作对象。

举个例子, 如果在某个线程 A 中执行 lock tables t1 read, t2 write; 这个语句,则其他线程写 t1、读写 t2 的语句都会被阻塞。同时,线程 A 在执行 unlock tables 之前,也只能执行读 t1、读写 t2 的操作。连写 t1 都不允许,自然也不能访问其他表。在还没有出现更细粒度的锁的时候,表锁是最常用的处理并发的方式。而对于 InnoDB 这种支持行锁的引擎,一般不使用 lock tables 命令来控制并发,毕竟锁住整个表的影响面还是太大。

另一类表级的锁是 MDL(metadata lock)。MDL 不需要显式使用,在访问一个表的时候会被自动加上。MDL 的作用是,保证读写的正确性。你可以想象一下,如果一个查询正在遍历一个表中的数据,而执行期间另一个线程对这个表结构做变更,删了一列,那么查询线程拿到的结果跟表结构对不上,肯定是不行的。

因此,在 MySQL 5.5 版本中引入了 MDL,当对一个表做增删改查操作的时候,加 MDL 读锁;当要对表做结构变更操作的时候,加 MDL 写锁。

读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查。

读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性。因此,如果有两个线程要同时给一个表加字段,其中一个要等另一个执行完才能开始执行。

虽然 MDL 锁是系统默认会加的,但却是你不能忽略的一个机制。比如下面这个例子,我经常看到有人掉到这个坑里:给一个小表加个字段,导致整个库挂了。

你肯定知道,给一个表加字段,或者修改字段,或者加索引,需要扫描全表的数据。在对大表操作的时候,你肯定会特别小心,以免对线上服务造成影响。而实际上,即使是小表,操作不慎也会出问题。我们来看一下下面的操作序列,假设表 t 是一个小表。

sessionA sessionB sessionC sessionD
begin; select * from T
select * from T
alter table T add F int (blocked)
select * from T (blocked)

我们可以看到 session A 先启动,这时候会对表 t 加一个 MDL 读锁。由于 session B 需要的也是 MDL 读锁,因此可以正常执行。

之后 session C 会被 blocked,是因为 session A 的 MDL 读锁还没有释放,而 session C 需要 MDL 写锁,因此只能被阻塞。如果只有 session C 自己被阻塞还没什么关系,但是之后所有要在表 t 上新申请 MDL 读锁的请求也会被 session C 阻塞。

如果某个表上的查询语句频繁,而且客户端有重试机制,也就是说超时后会再起一个新 session 再请求的话,这个库的线程很快就会爆满。

申请MDL锁的操作会形成一个队列,队列中写锁获取优先级高于读锁。一旦出现写锁等待,不但当前操作会被阻塞,同时还会阻塞后续该表的所有操作。

事务一旦申请到MDL锁后,直到事务执行完才会将锁释放。(这里有种特殊情况如果事务中包含DDL操作,mysql会在DDL操作语句执行前,隐式提交commit,以保证该DDL语句操作作为一个单独的事务存在,同时也保证元数据排他锁的释放

事务中的 MDL 锁,在语句执行开始时申请,但是语句结束后并不会马上释放,而会等到整个事务提交后再释放。

如何安全地给小表加字段?

1、首先我们要解决长事务,事务不提交,就会一直占着 MDL 锁。在 MySQL 的 information_schema 库的 innodb_trx 表中,你可以查到当前执行中的事务。如果你要做 DDL 变更的表刚好有长事务在执行,要考虑先暂停 DDL,或者 kill 掉这个长事务。

2、比较理想的机制是,在 alter table 语句里面设定等待时间,如果在这个指定的等待时间里面能够拿到 MDL 写锁最好,拿不到也不要阻塞后面的业务语句,先放弃。之后开发人员或者 DBA 再通过重试命令重复这个过程。

3、这里可以看出涉及到多线程,锁相关的部分,不管是java还是mysql,解决的办法都差不多,即为了防止死锁或者长时间卡顿,通过加入超时时间的方法来解决。

ALTER TABLE tbl_name NOWAIT add column ... ALTER TABLE tbl_name WAIT N add column ...

Online DDL的过程是这样的:

  1. 拿MDL写锁

  2. 降级成MDL读锁

  3. 真正做DDL

  4. 升级成MDL写锁

  5. 释放MDL锁

1、2、4、5如果没有锁冲突,执行时间非常短。第3步占用了DDL绝大部分时间,这期间这个表可以正常读写数据,是因此称为“online ”

行锁

MySQL 的行锁是在引擎层由各个引擎自己实现的。但并不是所有的引擎都支持行锁,比如 MyISAM 引擎就不支持行锁。不支持行锁意味着并发控制只能使用表锁,对于这种引擎的表,同一张表上任何时刻只能有一个更新在执行,这就会影响到业务并发度。InnoDB 是支持行锁的,这也是 MyISAM 被 InnoDB 替代的重要原因之一。

锁粒度越大,开销越小,锁冲突的概率越小,安全性也就越高,但业务并发度以及性能越差;反之锁粒度越小,开销也就越大,锁冲突的概率越大(易导致死锁),安全性也就越低,但业务并发度以及性能越好。

两阶段锁

在 InnoDB 事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。

如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。

假设你负责实现一个电影票在线交易业务,顾客 A 要在影院 B 购买电影票。我们简化一点,这个业务需要涉及到以下操作:

1、从顾客 A 账户余额中扣除电影票价;

2、给影院 B 的账户余额增加这张电影票价;

3、记录一条交易日志。

也就是说,要完成这个交易,我们需要 update 两条记录,并 insert 一条记录。当然,为了保证交易的原子性,我们要把这三个操作放在一个事务中。那么,你会怎样安排这三个语句在事务中的顺序呢?

根据两阶段锁协议,不论你怎样安排语句顺序,所有的操作需要的行锁都是在事务提交的时候才释放的。所以,如果你把语句 2 安排在最后,比如按照 3、1、2 这样的顺序,那么影院账户余额这一行的锁时间就最少。这就最大程度地减少了事务之间的锁等待,提升了并发度。

如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁的申请时机尽量往后放。

lnnoDB存储引擎有3种行锁的算法,其分别是:

  • Record Lock:单个行记录上的锁

  • Gap Lock:间隙锁,锁定一个范围,但不包含记录本身

  • Next-Key Lock : Gap Lock+Record Lock,锁定一个范围,并且锁定记录本身

Record Lock总是会去锁住索引记录,如果InnoDB存储引擎表在建立的时候没有设置任何一个索引,那么这时InnoDB存储引擎会使用隐式的主键来进行锁定。

Next-Key Lock是结合了Gap Lock和Record Lock的一种锁定算法,在Next-Key Lock算法下,lnnoDB对于行的查询都是采用这种锁定算法。

当查询的索引含有唯一属性时,InnoDB存储引擎会对Next-Key Lock进行优化,将其降级为Record Lock,即仅锁住索引本身,而不是范围。

你可能感兴趣的:(mysql,数据库)