Android 浅谈屏幕绘制机制

之前我们说到handler的同步屏障在屏幕刷新机制里面有用到,今天我们就来看看这个屏幕刷新机制

Android屏幕在很多时候都会进行刷新,来保证使用的流畅度。

比较常见的就是调用invalidate()方法,但这个invalidate方法是不是立刻会刷新屏幕呢,那又未必。

    void invalidate() {
        mDirty.set(0, 0, mWidth, mHeight);
        if (!mWillDrawSoon) {
            scheduleTraversals();
        }
    }

这里的dirty其实就是需要刷新的区域,不仅是android,在flutter里,需要刷新的view也叫dirty,因为屏幕刷新是局部的,如果每次刷新都要重新绘制整个页面,那开销未免太大,所以这里是用dirty来存储需要刷新的区域。

接下来就走到了scheduleTraversals()方法,其实任何刷新请求都会走到这个方法,不仅仅是invalidate这个方法。

    void scheduleTraversals() {
        if (!mTraversalScheduled) {  // 注释1
            mTraversalScheduled = true;
            mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();  // 注释2
            mChoreographer.postCallback(
                    Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);  // 注释3
            if (!mUnbufferedInputDispatch) {// 注释1
                scheduleConsumeBatchedInput();
            }
            notifyRendererOfFramePending();//底层渲染的方法,暂时不讨论这个
            pokeDrawLockIfNeeded();//一个window相关的方法,获取drawLock的,有兴趣的可以自己了解
        }
    }

scheduleTraversals()方法中,需要注意的点我已经写上注释了。

首先来看注释一:注释1有两处,主要的作用就是防止多次刷新请求。相当于一次Vsnyc信号发出后,在这16ms里面,我只需要刷新一次就行了,其他的请求等到下个16ms再说,这样保证了有序执行。

mTraversalScheduled在unscheduleTraversals和doTraversal方法中会置为false,意思就是我开始刷新了,你(scheduleTraversals)可以着手计算下一个16ms需要刷新的view了

    void unscheduleTraversals() {
        if (mTraversalScheduled) {
            mTraversalScheduled = false;
            mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);
            mChoreographer.removeCallbacks(
                    Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
        }
    }

    void doTraversal() {
        if (mTraversalScheduled) {
            mTraversalScheduled = false;
            mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);

            if (mProfile) {
                Debug.startMethodTracing("ViewAncestor");
            }

            performTraversals();

            if (mProfile) {
                Debug.stopMethodTracing();
                mProfile = false;
            }
        }
    }

然后看注释二:这里就是发出同步屏障的地方,用来保证这个屏幕刷新事件优先执行。

最后是注释三:准备好前期工作后,注释三这里就是实际执行刷新的地方,会把这个刷新的事件封装到runnable里,然后postCallBack发出去。

先来看看postCallBack里面。

/**
     * Posts a callback to run on the next frame.
     * 

* The callback runs once then is automatically removed. *

* * @param callbackType The callback type. * @param action The callback action to run during the next frame. * @param token The callback token, or null if none. * * @see #removeCallbacks * @hide */ @TestApi public void postCallback(int callbackType, Runnable action, Object token) { postCallbackDelayed(callbackType, action, token, 0);//这里进去 } /** * Posts a callback to run on the next frame after the specified delay. *

* The callback runs once then is automatically removed. *

* * @param callbackType The callback type. * @param action The callback action to run during the next frame after the specified delay. * @param token The callback token, or null if none. * @param delayMillis The delay time in milliseconds. * * @see #removeCallback * @hide */ @TestApi public void postCallbackDelayed(int callbackType, Runnable action, Object token, long delayMillis) { if (action == null) { throw new IllegalArgumentException("action must not be null"); } if (callbackType < 0 || callbackType > CALLBACK_LAST) { throw new IllegalArgumentException("callbackType is invalid"); } postCallbackDelayedInternal(callbackType, action, token, delayMillis); //这里进去 } private void postCallbackDelayedInternal(int callbackType, Object action, Object token, long delayMillis) { if (DEBUG_FRAMES) { Log.d(TAG, "PostCallback: type=" + callbackType + ", action=" + action + ", token=" + token + ", delayMillis=" + delayMillis); } synchronized (mLock) { final long now = SystemClock.uptimeMillis(); final long dueTime = now + delayMillis; mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token); if (dueTime <= now) { scheduleFrameLocked(now); } else { Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action); msg.arg1 = callbackType; msg.setAsynchronous(true); mHandler.sendMessageAtTime(msg, dueTime); } } }

这里先看scheduleFrameLocked(now),前面postCallback传进来一个delayMillis为0的参数,所以这里dueTime是==now的,会走到这个方法里面。

    private void scheduleFrameLocked(long now) {
        if (!mFrameScheduled) {
            mFrameScheduled = true;
            if (USE_VSYNC) {
                if (DEBUG_FRAMES) {
                    Log.d(TAG, "Scheduling next frame on vsync.");
                }

                // If running on the Looper thread, then schedule the vsync immediately,
                // otherwise post a message to schedule the vsync from the UI thread
                // as soon as possible.
                if (isRunningOnLooperThreadLocked()) {
                    scheduleVsyncLocked();
                } else {
                    Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC);
                    msg.setAsynchronous(true);
                    mHandler.sendMessageAtFrontOfQueue(msg);
                }
            } else {
                final long nextFrameTime = Math.max(
                        mLastFrameTimeNanos / TimeUtils.NANOS_PER_MS + sFrameDelay, now);
                if (DEBUG_FRAMES) {
                    Log.d(TAG, "Scheduling next frame in " + (nextFrameTime - now) + " ms.");
                }
                Message msg = mHandler.obtainMessage(MSG_DO_FRAME);
                msg.setAsynchronous(true);
                mHandler.sendMessageAtTime(msg, nextFrameTime);
            }
        }
    }

先看有vsync垂直同步信号的时候的刷新情况。里面有个英文注释大概的就是如果当前在有looper的线程(一般是主线程)里就直接执行,如果不在,就post一个message到UI线程里执行。



所以我们直接看执行的方法scheduleVsyncLocked()

    private void scheduleVsyncLocked() {
        mDisplayEventReceiver.scheduleVsync();
    }
    
        /**
     * Schedules a single vertical sync pulse to be delivered when the next
     * display frame begins.
     */
    public void scheduleVsync() {
        if (mReceiverPtr == 0) {
            Log.w(TAG, "Attempted to schedule a vertical sync pulse but the display event "
                    + "receiver has already been disposed.");
        } else {
            nativeScheduleVsync(mReceiverPtr);
        }
    }

    // Called from native code.
    @SuppressWarnings("unused")
    private void dispatchVsync(long timestampNanos, int builtInDisplayId, int frame) {
        onVsync(timestampNanos, builtInDisplayId, frame);
    }
    
        /**
     * Called when a vertical sync pulse is received.
     * The recipient should render a frame and then call {@link #scheduleVsync}
     * to schedule the next vertical sync pulse.
     *
     * @param timestampNanos The timestamp of the pulse, in the {@link System#nanoTime()}
     * timebase.
     * @param builtInDisplayId The surface flinger built-in display id such as
     * {@link SurfaceControl#BUILT_IN_DISPLAY_ID_MAIN}.
     * @param frame The frame number.  Increases by one for each vertical sync interval.
     */
    public void onVsync(long timestampNanos, int builtInDisplayId, int frame) {
    }

看注释说是在下一个垂直同步信号到来的时候刷新,那这个native方法就是注册监听这个垂直同步信号的方法了,下面的called from native code也看得出来,native方法监听到信号后返回到java层。这个onVsync方法在choreographer中被重写了

  private final class FrameDisplayEventReceiver extends DisplayEventReceiver
            implements Runnable {
        private boolean mHavePendingVsync;
        private long mTimestampNanos;
        private int mFrame;

        public FrameDisplayEventReceiver(Looper looper, int vsyncSource) {
            super(looper, vsyncSource);
        }

        @Override
        public void onVsync(long timestampNanos, int builtInDisplayId, int frame) {
            // Ignore vsync from secondary display.
            // This can be problematic because the call to scheduleVsync() is a one-shot.
            // We need to ensure that we will still receive the vsync from the primary
            // display which is the one we really care about.  Ideally we should schedule
            // vsync for a particular display.
            // At this time Surface Flinger won't send us vsyncs for secondary displays
            // but that could change in the future so let's log a message to help us remember
            // that we need to fix this.
            if (builtInDisplayId != SurfaceControl.BUILT_IN_DISPLAY_ID_MAIN) {
                Log.d(TAG, "Received vsync from secondary display, but we don't support "
                        + "this case yet.  Choreographer needs a way to explicitly request "
                        + "vsync for a specific display to ensure it doesn't lose track "
                        + "of its scheduled vsync.");
                scheduleVsync();
                return;
            }

            // Post the vsync event to the Handler.
            // The idea is to prevent incoming vsync events from completely starving
            // the message queue.  If there are no messages in the queue with timestamps
            // earlier than the frame time, then the vsync event will be processed immediately.
            // Otherwise, messages that predate the vsync event will be handled first.
            long now = System.nanoTime();
            if (timestampNanos > now) {
                Log.w(TAG, "Frame time is " + ((timestampNanos - now) * 0.000001f)
                        + " ms in the future!  Check that graphics HAL is generating vsync "
                        + "timestamps using the correct timebase.");
                timestampNanos = now;
            }

            if (mHavePendingVsync) {
                Log.w(TAG, "Already have a pending vsync event.  There should only be "
                        + "one at a time.");
            } else {
                mHavePendingVsync = true;
            }

            mTimestampNanos = timestampNanos;
            mFrame = frame;
            Message msg = Message.obtain(mHandler, this);
            msg.setAsynchronous(true);
            mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);//这里
        }

        @Override
        public void run() {
            mHavePendingVsync = false;
            doFrame(mTimestampNanos, mFrame); //这里
        }
    }

重点看中文注释的部分,收到vsync信号后,会发一个异步消息用来优先执行doFrame方法。

上面scheduleFrameLocked方法里面,不用vsync机制的话,也是直接发消息到doFrame方法里面,所以说这个方法就是实际刷新页面的方法。(这个用不用垂直同步信号的区别就自己上网查了,这里就不深入讲了)

    void doFrame(long frameTimeNanos, int frame) {
        …………省略…………

        try {
            Trace.traceBegin(Trace.TRACE_TAG_VIEW, "Choreographer#doFrame");
            AnimationUtils.lockAnimationClock(frameTimeNanos / TimeUtils.NANOS_PER_MS);

            mFrameInfo.markInputHandlingStart();
            doCallbacks(Choreographer.CALLBACK_INPUT, frameTimeNanos);

            mFrameInfo.markAnimationsStart();
            doCallbacks(Choreographer.CALLBACK_ANIMATION, frameTimeNanos);

            mFrameInfo.markPerformTraversalsStart();
            doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos); //看这里

            doCallbacks(Choreographer.CALLBACK_COMMIT, frameTimeNanos);
        } finally {
            AnimationUtils.unlockAnimationClock();
            Trace.traceEnd(Trace.TRACE_TAG_VIEW);
        }
        
        
        以下省略

这个方法有点长,我们看重要的地方。还记得在viewRootImpl发过来的那个callBack吗

mChoreographer.postCallback(
                    Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
                    
doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos);

在这里就doCallBack了,终于执行了这个runnable了。也就是说Choreographer这里主要做的就是调用底层方法监听垂直同步信号,等到下一个信号来的时候告诉viewRootImpl可以开始刷新了。

回到viewRootImpl这里

final TraversalRunnable mTraversalRunnable = new TraversalRunnable(); //就是这个runnable

final class TraversalRunnable implements Runnable {
        @Override
        public void run() {
            doTraversal();
        }
    }
    
       void doTraversal() {
        if (mTraversalScheduled) {
            mTraversalScheduled = false;
            mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);

            if (mProfile) {
                Debug.startMethodTracing("ViewAncestor");
            }

            performTraversals(); //就是这里

            if (mProfile) {
                Debug.stopMethodTracing();
                mProfile = false;
            }
        }
    }

终于来到了熟悉的方法了,performTraversals这个方法大家估计都听过了,代码比较长,这里就不贴了。他里面会遍历全部的view,根据状态来调用performMeasure() 测量、perfromLayout() 布局、performDraw() 绘制这些流程,分别对应一个view的三个方法。

好了,这就是android一次屏幕刷新大概的流程。

仅供参考,欢迎指正

你可能感兴趣的:(Android 浅谈屏幕绘制机制)