- Linux下QT开发的动态库界面弹出操作(SDL2)
13jjyao
QT类qt开发语言sdl2linux
需求:操作系统为linux,开发框架为qt,做成需带界面的qt动态库,调用方为java等非qt程序难点:调用方为java等非qt程序,也就是说调用方肯定不带QApplication::exec(),缺少了这个,QTimer等事件和QT创建的窗口将不能弹出(包括opencv也是不能弹出);这与qt调用本身qt库是有本质的区别的思路:1.调用方缺QApplication::exec(),那么我们在接口
- LLM 词汇表
落难Coder
LLMsNLP大语言模型大模型llama人工智能
Contextwindow“上下文窗口”是指语言模型在生成新文本时能够回溯和参考的文本量。这不同于语言模型训练时所使用的大量数据集,而是代表了模型的“工作记忆”。较大的上下文窗口可以让模型理解和响应更复杂和更长的提示,而较小的上下文窗口可能会限制模型处理较长提示或在长时间对话中保持连贯性的能力。Fine-tuning微调是使用额外的数据进一步训练预训练语言模型的过程。这使得模型开始表示和模仿微调数
- 探索OpenAI和LangChain的适配器集成:轻松切换模型提供商
nseejrukjhad
langchaineasyui前端python
#探索OpenAI和LangChain的适配器集成:轻松切换模型提供商##引言在人工智能和自然语言处理的世界中,OpenAI的模型提供了强大的能力。然而,随着技术的发展,许多人开始探索其他模型以满足特定需求。LangChain作为一个强大的工具,集成了多种模型提供商,通过提供适配器,简化了不同模型之间的转换。本篇文章将介绍如何使用LangChain的适配器与OpenAI集成,以便轻松切换模型提供商
- 利用LangChain的StackExchange组件实现智能问答系统
nseejrukjhad
langchainmicrosoft数据库python
利用LangChain的StackExchange组件实现智能问答系统引言在当今的软件开发世界中,StackOverflow已经成为程序员解决问题的首选平台之一。而LangChain作为一个强大的AI应用开发框架,提供了StackExchange组件,使我们能够轻松地将StackOverflow的海量知识库集成到我们的应用中。本文将详细介绍如何使用LangChain的StackExchange组件
- 如何部分格式化提示模板:LangChain中的高级技巧
nseejrukjhad
langchainjava服务器python
标题:如何部分格式化提示模板:LangChain中的高级技巧内容:如何部分格式化提示模板:LangChain中的高级技巧引言在使用大型语言模型(LLM)时,提示工程是一个关键环节。LangChain提供了强大的提示模板功能,让我们能更灵活地构建和管理提示。本文将介绍LangChain中一个高级特性-部分格式化提示模板,这个技巧可以让你的提示管理更加高效和灵活。什么是部分格式化提示模板?部分格式化提
- 人工智能时代,程序员如何保持核心竞争力?
jmoych
人工智能
随着AIGC(如chatgpt、midjourney、claude等)大语言模型接二连三的涌现,AI辅助编程工具日益普及,程序员的工作方式正在发生深刻变革。有人担心AI可能取代部分编程工作,也有人认为AI是提高效率的得力助手。面对这一趋势,程序员应该如何应对?是专注于某个领域深耕细作,还是广泛学习以适应快速变化的技术环境?又或者,我们是否应该将重点转向AI无法轻易替代的软技能?让我们一起探讨程序员
- BART&BERT
Ambition_LAO
深度学习
BART和BERT都是基于Transformer架构的预训练语言模型。模型架构:BERT(BidirectionalEncoderRepresentationsfromTransformers)主要是一个编码器(Encoder)模型,它使用了Transformer的编码器部分来处理输入的文本,并生成文本的表示。BERT特别擅长理解语言的上下文,因为它在预训练阶段使用了掩码语言模型(MLM)任务,即
- 02-Cesium聚合分析EntityCluster完整代码
fxshy
htmlcssjavascript
1.完整代码Document-->-->Cesium.Ion.defaultAccessToken='eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJqdGkiOiJhZjZkZDAwZC1mNTFhLTRhOTEtOGExNi00MzRhNGIzMDdlNDQiLCJpZCI6MTA1MTUzLCJpYXQiOjE2NjA4MDg0Njd9.qajeJtc4-kp
- 程序员如何在AI时代保持核心竞争力
nfgo
chatgpt人工智能
程序员如何在AI时代保持核心竞争力随着AIGC(如ChatGPT、MidJourney、Claude等)大语言模型的相继涌现,AI辅助编程工具逐渐普及,程序员的工作方式正在发生深刻的变革。AI不仅能够自动生成代码,还能优化、调试、甚至提出解决方案。这一趋势让许多人担心:AI会不会最终取代部分编程工作?然而,也有人认为AI是提升效率的得力助手。那么,程序员在这个AI崛起的时代该如何应对?是专注某个领
- CentOS7 安装MySQL5.7.44
不要Null了
javacentosmysql
1.下载mysql安装包,我放在百度网盘里(下方链接)链接:https://pan.baidu.com/s/1_Mn1XW_1mWdTV4mhnLG66A提取码:s31n2.首先看看以前是否安装过mysqlrpm-qa|grep-imysql如果已经安装过mysql会提示卸载mysqlrpm-emysql-…3.使用FinallShell或者Xftp进行上传放到/usr/local/mysql,没
- 腾讯发表多模态综述,一文详解多模态大模型
存内计算开发者社区
多模态大模型人工智能chatgptAIGC量子计算AI-nativegptagi
多模态大语言模型(MLLM)是近年来兴起的一个新的研究热点,它利用强大的大语言模型作为大脑来执行多模态任务。MLLM令人惊讶的新兴能力,如基于图像写故事和无OCR的数学推理,在传统方法中是罕见的,这表明了一条通往人工通用智能的潜在道路。在本文中,追踪多模态大模型最新热点,讨论多模态关键技术以及现有在情绪识别上的应用。腾讯AILab发表了一篇关于多模态大模型的最新综述《MM-LLMs:RecentA
- linux挂载文件夹
小码快撩
linux
1.使用NFS(NetworkFileSystem)NFS是一种分布式文件系统协议,允许一个系统将其文件系统的一部分共享给其他系统。检查是否安装NFSrpm-qa|grepnfs2.启动和启用NFS服务假设服务名称为nfs-server.service,你可以使用以下命令启动和启用它:sudosystemctlstartnfs-server.servicesudosystemctlenablenf
- 【有啥问啥】刷爆各大榜单的Reflection 70B模型背后的错误自我纠正(Reflection-Tuning)技术解析:一种革新AI模型的方法
Chauvin912
大模型行业调研人工智能算法
刷爆各大榜单的Reflection70B模型背后的错误自我纠正(Reflection-Tuning)技术解析:一种革新AI模型的方法在快速发展的AI领域,尤其是大型语言模型(LLM)的竞争中,错误自我纠正技术(Reflection-Tuning)正逐步成为提升模型性能的关键突破。该技术通过赋予模型自我检测和纠正错误的能力,显著提高了输出的准确性和可靠性。本文将深入解析Reflection-Tunn
- HALTT4LLM:大型语言模型的幻觉检测指标
谢忻含Norma
HALTT4LLM:大型语言模型的幻觉检测指标haltt4llmThisprojectisanattempttocreateacommonmetrictotestLLM'sforprogressineliminatinghallucinationswhichisthemostseriouscurrentprobleminwidespreadadoptionofLLM'sformanyrealpur
- Reflection 70B——HyperWrite推出的大型语言模型
新加坡内哥谈技术
语言模型人工智能自然语言处理
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/在AI技术飞速发展的过程中,我们已经见证了可以写作、编程,甚至创造艺术的模型问世。但有一
- 处理绿盟科技安全评估的系统漏洞
自我修炼的小石头
数据库运维开发工具
如下图一次扫描,中度风险39个,这个是必须要处理的.其中mysql占了36个,一看这个感觉整个人都不好了.但是最后解决的办法也很简单,就是升级.系统版本Redhat7.31.telnet因为要升级openssh,openssl,为了避免意外,首先要开启telnet服务,并把所有相关的包上传到服务器.1.1确认是否安装了telnet和xinetd(默认是没有安装)rpm-qatelnet*rpm-q
- 深度解析:如何使用输出解析器将大型语言模型(LLM)的响应解析为结构化JSON格式
m0_57781768
语言模型json人工智能
深度解析:如何使用输出解析器将大型语言模型(LLM)的响应解析为结构化JSON格式在现代自然语言处理(NLP)的应用中,大型语言模型(LLM)已经成为了重要的工具。这些模型能够生成丰富的自然语言文本,适用于各种应用场景。然而,在某些应用中,开发者不仅仅需要生成文本,还需要将这些生成的文本转换为结构化的数据格式,例如JSON。这种结构化的数据格式在数据传输、存储以及进一步处理时具有显著优势。本文将深
- 深入探讨:如何在Python中通过LangChain技术精准追踪大型语言模型(LLM)的Token使用情况
m0_57781768
pythonlangchain语言模型
深入探讨:如何在Python中通过LangChain技术精准追踪大型语言模型(LLM)的Token使用情况在现代的人工智能开发中,大型语言模型(LLM)已经成为了不可或缺的工具,无论是用于自然语言处理、对话生成,还是其他复杂的文本生成任务。然而,随着这些模型的广泛应用,开发者面临的一个重要挑战是如何有效地追踪和管理Token的使用情况,特别是在生产环境中,Token的使用直接影响着API调用的成本
- 使用You.com API进行LLM输出的事实性增强
aehrutktrjk
python开发语言
使用You.comAPI进行LLM输出的事实性增强引言大型语言模型(LLM)在生成人类可读的文本方面表现出色,但它们可能会产生过时或不准确的信息。You.comAPI是一套工具,旨在帮助开发者将LLM的输出与最新、最准确、最相关的信息相结合,这些信息可能不包含在LLM的训练数据集中。本文将介绍如何使用You.comAPI来增强LLM的输出,提高其事实性和时效性。You.comAPI的设置和使用安装
- 深入理解LangChain中的Callback机制:如何为Runnable添加回调函数
aehrutktrjk
langchainpython
深入理解LangChain中的Callback机制:如何为Runnable添加回调函数引言在LangChain中,回调(Callbacks)是一种强大的机制,允许开发者在运行过程中监控和干预各种操作。本文将深入探讨如何为Runnable对象添加回调函数,这对于调试、日志记录和性能监控等任务至关重要。我们将通过实际的代码示例来演示这一过程,并讨论一些常见的应用场景和最佳实践。理解Callback机制
- LangChain集成指南:如何利用多样化的AI提供商
aehrutktrjk
人工智能langchainpython
LangChain集成指南:如何利用多样化的AI提供商引言在人工智能和机器学习领域,LangChain已成为一个强大而灵活的框架,允许开发者轻松集成各种AI服务提供商。本文将深入探讨LangChain的集成能力,介绍如何利用不同的AI提供商来增强你的应用程序,并提供实用的代码示例。LangChain集成概览LangChain支持多种AI提供商的集成,这些集成可以分为两类:独立包集成:这些提供商有独
- 使用LangChain和OpenAI实现高效文本标注
aehrutktrjk
langchainpython
使用LangChain和OpenAI实现高效文本标注引言在自然语言处理(NLP)领域,文本标注是一项重要且常见的任务。它涉及为文本分配标签,如情感、语言、风格等。本文将介绍如何使用LangChain和OpenAI的API来实现高效的文本标注系统。我们将探讨如何设置环境、定义标注模式,以及如何使用OpenAI的模型来执行标注任务。环境准备首先,我们需要安装必要的库并设置API密钥:%pipinsta
- 使用 LangChain 和 Neo4j 构建智能图数据库查询系统
aehrutktrjk
langchainneo4j数据库python
使用LangChain和Neo4j构建智能图数据库查询系统引言在本文中,我们将探讨如何结合LangChain和Neo4j图数据库来构建一个智能的图数据库查询系统。这个系统能够将用户的自然语言问题转换为准确的Cypher查询,并生成易于理解的回答。我们将重点关注如何通过实体映射来提高查询的准确性,这对于处理复杂的图数据尤为重要。主要内容1.环境设置首先,我们需要安装必要的包并设置环境变量:#安装必要
- 如何从大型语言模型(LLM)流式响应
aehrutktrjk
语言模型microsoftajaxpython
引言随着大型语言模型(LLM)的不断发展,我们不仅能够获得高质量的文本生成结果,还可以实时观察模型生成文本的过程。流式响应允许我们以一种更加交互和动态的方式与LLM进行交互,这在某些应用场景中非常有用。在本文中,我们将探讨如何从LLM流式获取响应。基础知识在开始之前,我们需要了解一些基础概念。所有的LLM都实现了Runnable接口,该接口提供了一些默认实现的标准方法,如invoke、batch、
- Hexo框架Ayer主题搭建我的博客
@HZY
giteehexoayerblog个人网站
关于Hexoayer主题搭建Blog我的博客链接,欢迎来访:[RainのBlog](https://hzyqaqgitee.gitee.io/raining).https://hzyqaqgitee.gitee.io/raining使用的框架、插件Hexo常用命令页面展示我的博客链接,欢迎来访:RainのBlog.https://hzyqaqgitee.gitee.io/raining使用Hexo
- 深度学习-13-小语言模型之SmolLM的使用
皮皮冰燃
深度学习深度学习
文章附录1SmolLM概述1.1SmolLM简介1.2下载模型2运行2.1在CPU/GPU/多GPU上运行模型2.2使用torch.bfloat162.3通过位和字节的量化版本3应用示例4问题及解决4.1attention_mask和pad_token_id报错4.2max_new_tokens=205参考附录1SmolLM概述1.1SmolLM简介SmolLM是一系列尖端小型语言模型,提供三种规
- 报错 | pydantic.v1.error_wrappers.ValidationError ... subclass of BaseModel expected
程序猿林仔
报错pythonpythonlangchain
文章目录01问题情景02分析问题03阅读源码04解决方案4.1方案1-指定版本安装4.2(通用)方案2-指定v1版本4.3(推荐)方案3-参考源码01问题情景最近在做Langchain的开发,可能是因为我更新了依赖库的版本,在执行下面这部分代码的时候出现了该异常:#出现该异常的代码(仅保留核心逻辑)fromlangchain.output_parsersimportPydanticOutputPa
- LLM 进展和前进道路
晨曦_子画
人工智能学习人工智能
近年来,语言模型取得了重大进展。这一进步是对数十亿个参数进行广泛训练和调整的结果,也是商业用途基准测试的结果。这项工作的起源可以追溯到1950年代,当时自然语言理解和处理的研究开始了。本文旨在概述过去70年语言模型的历史和演变。它还将检查当前可用的大型语言模型(LLM),包括其架构、调优参数、企业就绪情况、系统配置等,以深入了解其训练和推理过程。这种探索将使我们能够了解该领域的进展,并评估可用于商
- udp的广播,多播,单播 demo
mengzhi啊
udp网络
enumclassEMsgType:uint8_t{EMSGT_SINGLE,//单播EMSGT_MULTICAST,//多播EMSGT_BROADCAST,//广播};sendSocket=newQUdpSocket(this);sendSocket->setSocketOption(QAbstractSocket::MulticastTtlOption,1);sendSocket->bind(
- 基于 LangChain 开发应用程序第三章-储存
明志刘明
大模型学习手册langchain
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统本部分之前的章节可以查看基于LangChain开发应用程序第一章-简介基于LangChain开发应用程序第二章-提示和输出第三章储存在与语言模型交互时,你可能已经注意到一个关键问题:它们并不记忆你之前的交流内容,这在我们构建一些应用程序(如聊天机器人)的时候,带来了很大的挑战,使得对
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。