一、我这个板子的WIFI蓝牙模块是RTL8821CU,这里简单分析一下系统识别模块和驱动加载的过程。主机控制接口(Host Controller Interface) HCI,即主机控制接口,属于蓝牙协议栈的一部分。
二、使用 cat /sys/kernel/debug/usb/devices 命令查看USB 设备信息,请注意有这么一行Cls=e0(wlcon) Sub=01 Prot=01,分别代表:bInterfaceClass : 类型代码(由USB组织分配)。 bInterfaceSunClass : 子类型代码(由USB组织分配)。 bInterfaceProtocol : 协议代码(由USB组织分配)
三、驱动的idtable匹配方法有2种类型来匹配:
3.1 方法一:通过接口描述:USB_INTERFACE_INFO(类,子类,协议) 完成device匹配
3.2 方法二:通过厂家ID 和device ID:USB_DEVICE(厂家ID ,device ID) 完成device匹配
四、方法一:通过接口描述完成驱动匹配实例。
4.1 usb 蓝牙驱动 kernel\drivers\bluetooth\btusb.c
/*
*
* Generic Bluetooth USB driver
*
* Copyright (C) 2005-2008 Marcel Holtmann
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include
#include
#include
#include
#include
#include
#include
#include "btintel.h"
#include "btbcm.h"
#include "btrtl.h"
#define VERSION "0.8"
static bool disable_scofix;
static bool force_scofix;
static bool reset = true;
static struct usb_driver btusb_driver;
#define BTUSB_IGNORE 0x01
#define BTUSB_DIGIANSWER 0x02
#define BTUSB_CSR 0x04
#define BTUSB_SNIFFER 0x08
#define BTUSB_BCM92035 0x10
#define BTUSB_BROKEN_ISOC 0x20
#define BTUSB_WRONG_SCO_MTU 0x40
#define BTUSB_ATH3012 0x80
#define BTUSB_INTEL 0x100
#define BTUSB_INTEL_BOOT 0x200
#define BTUSB_BCM_PATCHRAM 0x400
#define BTUSB_MARVELL 0x800
#define BTUSB_SWAVE 0x1000
#define BTUSB_INTEL_NEW 0x2000
#define BTUSB_AMP 0x4000
#define BTUSB_QCA_ROME 0x8000
#define BTUSB_BCM_APPLE 0x10000
#define BTUSB_REALTEK 0x20000
#define BTUSB_BCM2045 0x40000
#define BTUSB_IFNUM_2 0x80000
static const struct usb_device_id btusb_table[] = {
/* Generic Bluetooth USB device */
{ USB_DEVICE_INFO(0xe0, 0x01, 0x01) },
/* Generic Bluetooth AMP device */
{ USB_DEVICE_INFO(0xe0, 0x01, 0x04), .driver_info = BTUSB_AMP },
/* Generic Bluetooth USB interface */
{ USB_INTERFACE_INFO(0xe0, 0x01, 0x01) },
/* Apple-specific (Broadcom) devices */
{ USB_VENDOR_AND_INTERFACE_INFO(0x05ac, 0xff, 0x01, 0x01),
.driver_info = BTUSB_BCM_APPLE | BTUSB_IFNUM_2 },
/* MediaTek MT76x0E */
{ USB_DEVICE(0x0e8d, 0x763f) },
/* Broadcom SoftSailing reporting vendor specific */
{ USB_DEVICE(0x0a5c, 0x21e1) },
/* Apple MacBookPro 7,1 */
{ USB_DEVICE(0x05ac, 0x8213) },
/* Apple iMac11,1 */
{ USB_DEVICE(0x05ac, 0x8215) },
/* Apple MacBookPro6,2 */
{ USB_DEVICE(0x05ac, 0x8218) },
/* Apple MacBookAir3,1, MacBookAir3,2 */
{ USB_DEVICE(0x05ac, 0x821b) },
/* Apple MacBookAir4,1 */
{ USB_DEVICE(0x05ac, 0x821f) },
/* Apple MacBookPro8,2 */
{ USB_DEVICE(0x05ac, 0x821a) },
/* Apple MacMini5,1 */
{ USB_DEVICE(0x05ac, 0x8281) },
/* AVM BlueFRITZ! USB v2.0 */
{ USB_DEVICE(0x057c, 0x3800), .driver_info = BTUSB_SWAVE },
/* Bluetooth Ultraport Module from IBM */
{ USB_DEVICE(0x04bf, 0x030a) },
/* ALPS Modules with non-standard id */
{ USB_DEVICE(0x044e, 0x3001) },
{ USB_DEVICE(0x044e, 0x3002) },
/* Ericsson with non-standard id */
{ USB_DEVICE(0x0bdb, 0x1002) },
/* Canyon CN-BTU1 with HID interfaces */
{ USB_DEVICE(0x0c10, 0x0000) },
/* Broadcom BCM20702A0 */
{ USB_DEVICE(0x413c, 0x8197) },
/* Broadcom BCM20702B0 (Dynex/Insignia) */
{ USB_DEVICE(0x19ff, 0x0239), .driver_info = BTUSB_BCM_PATCHRAM },
/* Broadcom BCM43142A0 (Foxconn/Lenovo) */
{ USB_DEVICE(0x105b, 0xe065), .driver_info = BTUSB_BCM_PATCHRAM },
/* Foxconn - Hon Hai */
{ USB_VENDOR_AND_INTERFACE_INFO(0x0489, 0xff, 0x01, 0x01),
.driver_info = BTUSB_BCM_PATCHRAM },
/* Lite-On Technology - Broadcom based */
{ USB_VENDOR_AND_INTERFACE_INFO(0x04ca, 0xff, 0x01, 0x01),
.driver_info = BTUSB_BCM_PATCHRAM },
/* Broadcom devices with vendor specific id */
{ USB_VENDOR_AND_INTERFACE_INFO(0x0a5c, 0xff, 0x01, 0x01),
.driver_info = BTUSB_BCM_PATCHRAM },
/* ASUSTek Computer - Broadcom based */
{ USB_VENDOR_AND_INTERFACE_INFO(0x0b05, 0xff, 0x01, 0x01),
.driver_info = BTUSB_BCM_PATCHRAM },
/* Belkin F8065bf - Broadcom based */
{ USB_VENDOR_AND_INTERFACE_INFO(0x050d, 0xff, 0x01, 0x01),
.driver_info = BTUSB_BCM_PATCHRAM },
/* IMC Networks - Broadcom based */
{ USB_VENDOR_AND_INTERFACE_INFO(0x13d3, 0xff, 0x01, 0x01),
.driver_info = BTUSB_BCM_PATCHRAM },
/* Toshiba Corp - Broadcom based */
{ USB_VENDOR_AND_INTERFACE_INFO(0x0930, 0xff, 0x01, 0x01),
.driver_info = BTUSB_BCM_PATCHRAM },
/* Intel Bluetooth USB Bootloader (RAM module) */
{ USB_DEVICE(0x8087, 0x0a5a),
.driver_info = BTUSB_INTEL_BOOT | BTUSB_BROKEN_ISOC },
{ } /* Terminating entry */
};
MODULE_DEVICE_TABLE(usb, btusb_table);
static const struct usb_device_id blacklist_table[] = {
/* CSR BlueCore devices */
{ USB_DEVICE(0x0a12, 0x0001), .driver_info = BTUSB_CSR },
/* Broadcom BCM2033 without firmware */
{ USB_DEVICE(0x0a5c, 0x2033), .driver_info = BTUSB_IGNORE },
/* Broadcom BCM2045 devices */
{ USB_DEVICE(0x0a5c, 0x2045), .driver_info = BTUSB_BCM2045 },
/* Atheros 3011 with sflash firmware */
{ USB_DEVICE(0x0489, 0xe027), .driver_info = BTUSB_IGNORE },
{ USB_DEVICE(0x0489, 0xe03d), .driver_info = BTUSB_IGNORE },
{ USB_DEVICE(0x04f2, 0xaff1), .driver_info = BTUSB_IGNORE },
{ USB_DEVICE(0x0930, 0x0215), .driver_info = BTUSB_IGNORE },
{ USB_DEVICE(0x0cf3, 0x3002), .driver_info = BTUSB_IGNORE },
{ USB_DEVICE(0x0cf3, 0xe019), .driver_info = BTUSB_IGNORE },
{ USB_DEVICE(0x13d3, 0x3304), .driver_info = BTUSB_IGNORE },
/* Atheros AR9285 Malbec with sflash firmware */
{ USB_DEVICE(0x03f0, 0x311d), .driver_info = BTUSB_IGNORE },
/* Atheros 3012 with sflash firmware */
{ USB_DEVICE(0x0489, 0xe04d), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0489, 0xe04e), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0489, 0xe056), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0489, 0xe057), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0489, 0xe05f), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0489, 0xe076), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0489, 0xe078), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0489, 0xe095), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04c5, 0x1330), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x3004), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x3005), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x3006), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x3007), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x3008), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x300b), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x300d), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x300f), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x3010), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x3014), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x3018), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0930, 0x0219), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0930, 0x021c), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0930, 0x0220), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0930, 0x0227), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0b05, 0x17d0), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0cf3, 0x0036), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0cf3, 0x3004), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0cf3, 0x3008), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0cf3, 0x311d), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0cf3, 0x311e), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0cf3, 0x311f), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0cf3, 0x3121), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0cf3, 0x817a), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0cf3, 0x817b), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0cf3, 0xe003), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0cf3, 0xe004), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0cf3, 0xe005), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0cf3, 0xe006), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x13d3, 0x3362), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x13d3, 0x3375), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x13d3, 0x3393), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x13d3, 0x3395), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x13d3, 0x3402), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x13d3, 0x3408), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x13d3, 0x3423), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x13d3, 0x3432), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x13d3, 0x3472), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x13d3, 0x3474), .driver_info = BTUSB_ATH3012 },
/* Atheros AR5BBU12 with sflash firmware */
{ USB_DEVICE(0x0489, 0xe02c), .driver_info = BTUSB_IGNORE },
/* Atheros AR5BBU12 with sflash firmware */
{ USB_DEVICE(0x0489, 0xe036), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0489, 0xe03c), .driver_info = BTUSB_ATH3012 },
/* QCA ROME chipset */
{ USB_DEVICE(0x0cf3, 0xe007), .driver_info = BTUSB_QCA_ROME },
{ USB_DEVICE(0x0cf3, 0xe300), .driver_info = BTUSB_QCA_ROME },
{ USB_DEVICE(0x0cf3, 0xe360), .driver_info = BTUSB_QCA_ROME },
/* Broadcom BCM2035 */
{ USB_DEVICE(0x0a5c, 0x2009), .driver_info = BTUSB_BCM92035 },
{ USB_DEVICE(0x0a5c, 0x200a), .driver_info = BTUSB_WRONG_SCO_MTU },
{ USB_DEVICE(0x0a5c, 0x2035), .driver_info = BTUSB_WRONG_SCO_MTU },
/* Broadcom BCM2045 */
{ USB_DEVICE(0x0a5c, 0x2039), .driver_info = BTUSB_WRONG_SCO_MTU },
{ USB_DEVICE(0x0a5c, 0x2101), .driver_info = BTUSB_WRONG_SCO_MTU },
/* IBM/Lenovo ThinkPad with Broadcom chip */
{ USB_DEVICE(0x0a5c, 0x201e), .driver_info = BTUSB_WRONG_SCO_MTU },
{ USB_DEVICE(0x0a5c, 0x2110), .driver_info = BTUSB_WRONG_SCO_MTU },
/* HP laptop with Broadcom chip */
{ USB_DEVICE(0x03f0, 0x171d), .driver_info = BTUSB_WRONG_SCO_MTU },
/* Dell laptop with Broadcom chip */
{ USB_DEVICE(0x413c, 0x8126), .driver_info = BTUSB_WRONG_SCO_MTU },
/* Dell Wireless 370 and 410 devices */
{ USB_DEVICE(0x413c, 0x8152), .driver_info = BTUSB_WRONG_SCO_MTU },
{ USB_DEVICE(0x413c, 0x8156), .driver_info = BTUSB_WRONG_SCO_MTU },
/* Belkin F8T012 and F8T013 devices */
{ USB_DEVICE(0x050d, 0x0012), .driver_info = BTUSB_WRONG_SCO_MTU },
{ USB_DEVICE(0x050d, 0x0013), .driver_info = BTUSB_WRONG_SCO_MTU },
/* Asus WL-BTD202 device */
{ USB_DEVICE(0x0b05, 0x1715), .driver_info = BTUSB_WRONG_SCO_MTU },
/* Kensington Bluetooth USB adapter */
{ USB_DEVICE(0x047d, 0x105e), .driver_info = BTUSB_WRONG_SCO_MTU },
/* RTX Telecom based adapters with buggy SCO support */
{ USB_DEVICE(0x0400, 0x0807), .driver_info = BTUSB_BROKEN_ISOC },
{ USB_DEVICE(0x0400, 0x080a), .driver_info = BTUSB_BROKEN_ISOC },
/* CONWISE Technology based adapters with buggy SCO support */
{ USB_DEVICE(0x0e5e, 0x6622), .driver_info = BTUSB_BROKEN_ISOC },
/* Roper Class 1 Bluetooth Dongle (Silicon Wave based) */
{ USB_DEVICE(0x1310, 0x0001), .driver_info = BTUSB_SWAVE },
/* Digianswer devices */
{ USB_DEVICE(0x08fd, 0x0001), .driver_info = BTUSB_DIGIANSWER },
{ USB_DEVICE(0x08fd, 0x0002), .driver_info = BTUSB_IGNORE },
/* CSR BlueCore Bluetooth Sniffer */
{ USB_DEVICE(0x0a12, 0x0002),
.driver_info = BTUSB_SNIFFER | BTUSB_BROKEN_ISOC },
/* Frontline ComProbe Bluetooth Sniffer */
{ USB_DEVICE(0x16d3, 0x0002),
.driver_info = BTUSB_SNIFFER | BTUSB_BROKEN_ISOC },
/* Marvell Bluetooth devices */
{ USB_DEVICE(0x1286, 0x2044), .driver_info = BTUSB_MARVELL },
{ USB_DEVICE(0x1286, 0x2046), .driver_info = BTUSB_MARVELL },
/* Intel Bluetooth devices */
{ USB_DEVICE(0x8087, 0x07da), .driver_info = BTUSB_CSR },
{ USB_DEVICE(0x8087, 0x07dc), .driver_info = BTUSB_INTEL },
{ USB_DEVICE(0x8087, 0x0a2a), .driver_info = BTUSB_INTEL },
{ USB_DEVICE(0x8087, 0x0a2b), .driver_info = BTUSB_INTEL_NEW },
/* Other Intel Bluetooth devices */
{ USB_VENDOR_AND_INTERFACE_INFO(0x8087, 0xe0, 0x01, 0x01),
.driver_info = BTUSB_IGNORE },
/* Realtek Bluetooth devices */
{ USB_VENDOR_AND_INTERFACE_INFO(0x0bda, 0xe0, 0x01, 0x01),
.driver_info = BTUSB_REALTEK },
/* Additional Realtek 8723AE Bluetooth devices */
{ USB_DEVICE(0x0930, 0x021d), .driver_info = BTUSB_REALTEK },
{ USB_DEVICE(0x13d3, 0x3394), .driver_info = BTUSB_REALTEK },
/* Additional Realtek 8723BE Bluetooth devices */
{ USB_DEVICE(0x0489, 0xe085), .driver_info = BTUSB_REALTEK },
{ USB_DEVICE(0x0489, 0xe08b), .driver_info = BTUSB_REALTEK },
{ USB_DEVICE(0x13d3, 0x3410), .driver_info = BTUSB_REALTEK },
{ USB_DEVICE(0x13d3, 0x3416), .driver_info = BTUSB_REALTEK },
{ USB_DEVICE(0x13d3, 0x3459), .driver_info = BTUSB_REALTEK },
{ USB_DEVICE(0x13d3, 0x3494), .driver_info = BTUSB_REALTEK },
/* Additional Realtek 8723BU Bluetooth devices */
{ USB_DEVICE(0x7392, 0xa611), .driver_info = BTUSB_REALTEK },
/* Additional Realtek 8723DE Bluetooth devices */
{ USB_DEVICE(0x0bda, 0xb009), .driver_info = BTUSB_REALTEK },
{ USB_DEVICE(0x2ff8, 0xb011), .driver_info = BTUSB_REALTEK },
/* Additional Realtek 8821AE Bluetooth devices */
{ USB_DEVICE(0x0b05, 0x17dc), .driver_info = BTUSB_REALTEK },
{ USB_DEVICE(0x13d3, 0x3414), .driver_info = BTUSB_REALTEK },
{ USB_DEVICE(0x13d3, 0x3458), .driver_info = BTUSB_REALTEK },
{ USB_DEVICE(0x13d3, 0x3461), .driver_info = BTUSB_REALTEK },
{ USB_DEVICE(0x13d3, 0x3462), .driver_info = BTUSB_REALTEK },
/* Additional Realtek 8822BE Bluetooth devices */
{ USB_DEVICE(0x0b05, 0x185c), .driver_info = BTUSB_REALTEK },
/* Silicon Wave based devices */
{ USB_DEVICE(0x0c10, 0x0000), .driver_info = BTUSB_SWAVE },
{ } /* Terminating entry */
};
#define BTUSB_MAX_ISOC_FRAMES 10
#define BTUSB_INTR_RUNNING 0
#define BTUSB_BULK_RUNNING 1
#define BTUSB_ISOC_RUNNING 2
#define BTUSB_SUSPENDING 3
#define BTUSB_DID_ISO_RESUME 4
#define BTUSB_BOOTLOADER 5
#define BTUSB_DOWNLOADING 6
#define BTUSB_FIRMWARE_LOADED 7
#define BTUSB_FIRMWARE_FAILED 8
#define BTUSB_BOOTING 9
#define BTUSB_DIAG_RUNNING 10
#define BTUSB_OOB_WAKE_ENABLED 11
struct btusb_data {
struct hci_dev *hdev;
struct usb_device *udev;
struct usb_interface *intf;
struct usb_interface *isoc;
struct usb_interface *diag;
unsigned long flags;
struct work_struct work;
struct work_struct waker;
struct usb_anchor deferred;
struct usb_anchor tx_anchor;
int tx_in_flight;
spinlock_t txlock;
struct usb_anchor intr_anchor;
struct usb_anchor bulk_anchor;
struct usb_anchor isoc_anchor;
struct usb_anchor diag_anchor;
spinlock_t rxlock;
struct sk_buff *evt_skb;
struct sk_buff *acl_skb;
struct sk_buff *sco_skb;
struct usb_endpoint_descriptor *intr_ep;
struct usb_endpoint_descriptor *bulk_tx_ep;
struct usb_endpoint_descriptor *bulk_rx_ep;
struct usb_endpoint_descriptor *isoc_tx_ep;
struct usb_endpoint_descriptor *isoc_rx_ep;
struct usb_endpoint_descriptor *diag_tx_ep;
struct usb_endpoint_descriptor *diag_rx_ep;
__u8 cmdreq_type;
__u8 cmdreq;
unsigned int sco_num;
int isoc_altsetting;
int suspend_count;
int (*recv_event)(struct hci_dev *hdev, struct sk_buff *skb);
int (*recv_bulk)(struct btusb_data *data, void *buffer, int count);
int (*setup_on_usb)(struct hci_dev *hdev);
};
static inline void btusb_free_frags(struct btusb_data *data)
{
unsigned long flags;
spin_lock_irqsave(&data->rxlock, flags);
kfree_skb(data->evt_skb);
data->evt_skb = NULL;
kfree_skb(data->acl_skb);
data->acl_skb = NULL;
kfree_skb(data->sco_skb);
data->sco_skb = NULL;
spin_unlock_irqrestore(&data->rxlock, flags);
}
static int btusb_recv_intr(struct btusb_data *data, void *buffer, int count)
{
struct sk_buff *skb;
int err = 0;
spin_lock(&data->rxlock);
skb = data->evt_skb;
while (count) {
int len;
if (!skb) {
skb = bt_skb_alloc(HCI_MAX_EVENT_SIZE, GFP_ATOMIC);
if (!skb) {
err = -ENOMEM;
break;
}
bt_cb(skb)->pkt_type = HCI_EVENT_PKT;
bt_cb(skb)->expect = HCI_EVENT_HDR_SIZE;
}
len = min_t(uint, bt_cb(skb)->expect, count);
memcpy(skb_put(skb, len), buffer, len);
count -= len;
buffer += len;
bt_cb(skb)->expect -= len;
if (skb->len == HCI_EVENT_HDR_SIZE) {
/* Complete event header */
bt_cb(skb)->expect = hci_event_hdr(skb)->plen;
if (skb_tailroom(skb) < bt_cb(skb)->expect) {
kfree_skb(skb);
skb = NULL;
err = -EILSEQ;
break;
}
}
if (bt_cb(skb)->expect == 0) {
/* Complete frame */
data->recv_event(data->hdev, skb);
skb = NULL;
}
}
data->evt_skb = skb;
spin_unlock(&data->rxlock);
return err;
}
static int btusb_recv_bulk(struct btusb_data *data, void *buffer, int count)
{
struct sk_buff *skb;
int err = 0;
spin_lock(&data->rxlock);
skb = data->acl_skb;
while (count) {
int len;
if (!skb) {
skb = bt_skb_alloc(HCI_MAX_FRAME_SIZE, GFP_ATOMIC);
if (!skb) {
err = -ENOMEM;
break;
}
bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
bt_cb(skb)->expect = HCI_ACL_HDR_SIZE;
}
len = min_t(uint, bt_cb(skb)->expect, count);
memcpy(skb_put(skb, len), buffer, len);
count -= len;
buffer += len;
bt_cb(skb)->expect -= len;
if (skb->len == HCI_ACL_HDR_SIZE) {
__le16 dlen = hci_acl_hdr(skb)->dlen;
/* Complete ACL header */
bt_cb(skb)->expect = __le16_to_cpu(dlen);
if (skb_tailroom(skb) < bt_cb(skb)->expect) {
kfree_skb(skb);
skb = NULL;
err = -EILSEQ;
break;
}
}
if (bt_cb(skb)->expect == 0) {
/* Complete frame */
hci_recv_frame(data->hdev, skb);
skb = NULL;
}
}
data->acl_skb = skb;
spin_unlock(&data->rxlock);
return err;
}
static int btusb_recv_isoc(struct btusb_data *data, void *buffer, int count)
{
struct sk_buff *skb;
int err = 0;
spin_lock(&data->rxlock);
skb = data->sco_skb;
while (count) {
int len;
if (!skb) {
skb = bt_skb_alloc(HCI_MAX_SCO_SIZE, GFP_ATOMIC);
if (!skb) {
err = -ENOMEM;
break;
}
bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
bt_cb(skb)->expect = HCI_SCO_HDR_SIZE;
}
len = min_t(uint, bt_cb(skb)->expect, count);
memcpy(skb_put(skb, len), buffer, len);
count -= len;
buffer += len;
bt_cb(skb)->expect -= len;
if (skb->len == HCI_SCO_HDR_SIZE) {
/* Complete SCO header */
bt_cb(skb)->expect = hci_sco_hdr(skb)->dlen;
if (skb_tailroom(skb) < bt_cb(skb)->expect) {
kfree_skb(skb);
skb = NULL;
err = -EILSEQ;
break;
}
}
if (bt_cb(skb)->expect == 0) {
/* Complete frame */
hci_recv_frame(data->hdev, skb);
skb = NULL;
}
}
data->sco_skb = skb;
spin_unlock(&data->rxlock);
return err;
}
static void btusb_intr_complete(struct urb *urb)
{
struct hci_dev *hdev = urb->context;
struct btusb_data *data = hci_get_drvdata(hdev);
int err;
BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
urb->actual_length);
if (!test_bit(HCI_RUNNING, &hdev->flags))
return;
if (urb->status == 0) {
hdev->stat.byte_rx += urb->actual_length;
if (btusb_recv_intr(data, urb->transfer_buffer,
urb->actual_length) < 0) {
BT_ERR("%s corrupted event packet", hdev->name);
hdev->stat.err_rx++;
}
} else if (urb->status == -ENOENT) {
/* Avoid suspend failed when usb_kill_urb */
return;
}
if (!test_bit(BTUSB_INTR_RUNNING, &data->flags))
return;
usb_mark_last_busy(data->udev);
usb_anchor_urb(urb, &data->intr_anchor);
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err < 0) {
/* -EPERM: urb is being killed;
* -ENODEV: device got disconnected */
if (err != -EPERM && err != -ENODEV)
BT_ERR("%s urb %p failed to resubmit (%d)",
hdev->name, urb, -err);
usb_unanchor_urb(urb);
}
}
static int btusb_submit_intr_urb(struct hci_dev *hdev, gfp_t mem_flags)
{
struct btusb_data *data = hci_get_drvdata(hdev);
struct urb *urb;
unsigned char *buf;
unsigned int pipe;
int err, size;
BT_DBG("%s", hdev->name);
if (!data->intr_ep)
return -ENODEV;
urb = usb_alloc_urb(0, mem_flags);
if (!urb)
return -ENOMEM;
size = le16_to_cpu(data->intr_ep->wMaxPacketSize);
buf = kmalloc(size, mem_flags);
if (!buf) {
usb_free_urb(urb);
return -ENOMEM;
}
pipe = usb_rcvintpipe(data->udev, data->intr_ep->bEndpointAddress);
usb_fill_int_urb(urb, data->udev, pipe, buf, size,
btusb_intr_complete, hdev, data->intr_ep->bInterval);
urb->transfer_flags |= URB_FREE_BUFFER;
usb_anchor_urb(urb, &data->intr_anchor);
err = usb_submit_urb(urb, mem_flags);
if (err < 0) {
if (err != -EPERM && err != -ENODEV)
BT_ERR("%s urb %p submission failed (%d)",
hdev->name, urb, -err);
usb_unanchor_urb(urb);
}
usb_free_urb(urb);
return err;
}
static void btusb_bulk_complete(struct urb *urb)
{
struct hci_dev *hdev = urb->context;
struct btusb_data *data = hci_get_drvdata(hdev);
int err;
BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
urb->actual_length);
if (!test_bit(HCI_RUNNING, &hdev->flags))
return;
if (urb->status == 0) {
hdev->stat.byte_rx += urb->actual_length;
if (data->recv_bulk(data, urb->transfer_buffer,
urb->actual_length) < 0) {
BT_ERR("%s corrupted ACL packet", hdev->name);
hdev->stat.err_rx++;
}
} else if (urb->status == -ENOENT) {
/* Avoid suspend failed when usb_kill_urb */
return;
}
if (!test_bit(BTUSB_BULK_RUNNING, &data->flags))
return;
usb_anchor_urb(urb, &data->bulk_anchor);
usb_mark_last_busy(data->udev);
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err < 0) {
/* -EPERM: urb is being killed;
* -ENODEV: device got disconnected */
if (err != -EPERM && err != -ENODEV)
BT_ERR("%s urb %p failed to resubmit (%d)",
hdev->name, urb, -err);
usb_unanchor_urb(urb);
}
}
static int btusb_submit_bulk_urb(struct hci_dev *hdev, gfp_t mem_flags)
{
struct btusb_data *data = hci_get_drvdata(hdev);
struct urb *urb;
unsigned char *buf;
unsigned int pipe;
int err, size = HCI_MAX_FRAME_SIZE;
BT_DBG("%s", hdev->name);
if (!data->bulk_rx_ep)
return -ENODEV;
urb = usb_alloc_urb(0, mem_flags);
if (!urb)
return -ENOMEM;
buf = kmalloc(size, mem_flags);
if (!buf) {
usb_free_urb(urb);
return -ENOMEM;
}
pipe = usb_rcvbulkpipe(data->udev, data->bulk_rx_ep->bEndpointAddress);
usb_fill_bulk_urb(urb, data->udev, pipe, buf, size,
btusb_bulk_complete, hdev);
urb->transfer_flags |= URB_FREE_BUFFER;
usb_mark_last_busy(data->udev);
usb_anchor_urb(urb, &data->bulk_anchor);
err = usb_submit_urb(urb, mem_flags);
if (err < 0) {
if (err != -EPERM && err != -ENODEV)
BT_ERR("%s urb %p submission failed (%d)",
hdev->name, urb, -err);
usb_unanchor_urb(urb);
}
usb_free_urb(urb);
return err;
}
static void btusb_isoc_complete(struct urb *urb)
{
struct hci_dev *hdev = urb->context;
struct btusb_data *data = hci_get_drvdata(hdev);
int i, err;
BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
urb->actual_length);
if (!test_bit(HCI_RUNNING, &hdev->flags))
return;
if (urb->status == 0) {
for (i = 0; i < urb->number_of_packets; i++) {
unsigned int offset = urb->iso_frame_desc[i].offset;
unsigned int length = urb->iso_frame_desc[i].actual_length;
if (urb->iso_frame_desc[i].status)
continue;
hdev->stat.byte_rx += length;
if (btusb_recv_isoc(data, urb->transfer_buffer + offset,
length) < 0) {
BT_ERR("%s corrupted SCO packet", hdev->name);
hdev->stat.err_rx++;
}
}
} else if (urb->status == -ENOENT) {
/* Avoid suspend failed when usb_kill_urb */
return;
}
if (!test_bit(BTUSB_ISOC_RUNNING, &data->flags))
return;
usb_anchor_urb(urb, &data->isoc_anchor);
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err < 0) {
/* -EPERM: urb is being killed;
* -ENODEV: device got disconnected */
if (err != -EPERM && err != -ENODEV)
BT_ERR("%s urb %p failed to resubmit (%d)",
hdev->name, urb, -err);
usb_unanchor_urb(urb);
}
}
static inline void __fill_isoc_descriptor(struct urb *urb, int len, int mtu)
{
int i, offset = 0;
BT_DBG("len %d mtu %d", len, mtu);
for (i = 0; i < BTUSB_MAX_ISOC_FRAMES && len >= mtu;
i++, offset += mtu, len -= mtu) {
urb->iso_frame_desc[i].offset = offset;
urb->iso_frame_desc[i].length = mtu;
}
if (len && i < BTUSB_MAX_ISOC_FRAMES) {
urb->iso_frame_desc[i].offset = offset;
urb->iso_frame_desc[i].length = len;
i++;
}
urb->number_of_packets = i;
}
static int btusb_submit_isoc_urb(struct hci_dev *hdev, gfp_t mem_flags)
{
struct btusb_data *data = hci_get_drvdata(hdev);
struct urb *urb;
unsigned char *buf;
unsigned int pipe;
int err, size;
BT_DBG("%s", hdev->name);
if (!data->isoc_rx_ep)
return -ENODEV;
urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, mem_flags);
if (!urb)
return -ENOMEM;
size = le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize) *
BTUSB_MAX_ISOC_FRAMES;
buf = kmalloc(size, mem_flags);
if (!buf) {
usb_free_urb(urb);
return -ENOMEM;
}
pipe = usb_rcvisocpipe(data->udev, data->isoc_rx_ep->bEndpointAddress);
usb_fill_int_urb(urb, data->udev, pipe, buf, size, btusb_isoc_complete,
hdev, data->isoc_rx_ep->bInterval);
urb->transfer_flags = URB_FREE_BUFFER | URB_ISO_ASAP;
__fill_isoc_descriptor(urb, size,
le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize));
usb_anchor_urb(urb, &data->isoc_anchor);
err = usb_submit_urb(urb, mem_flags);
if (err < 0) {
if (err != -EPERM && err != -ENODEV)
BT_ERR("%s urb %p submission failed (%d)",
hdev->name, urb, -err);
usb_unanchor_urb(urb);
}
usb_free_urb(urb);
return err;
}
static void btusb_diag_complete(struct urb *urb)
{
struct hci_dev *hdev = urb->context;
struct btusb_data *data = hci_get_drvdata(hdev);
int err;
BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
urb->actual_length);
if (urb->status == 0) {
struct sk_buff *skb;
skb = bt_skb_alloc(urb->actual_length, GFP_ATOMIC);
if (skb) {
memcpy(skb_put(skb, urb->actual_length),
urb->transfer_buffer, urb->actual_length);
hci_recv_diag(hdev, skb);
}
} else if (urb->status == -ENOENT) {
/* Avoid suspend failed when usb_kill_urb */
return;
}
if (!test_bit(BTUSB_DIAG_RUNNING, &data->flags))
return;
usb_anchor_urb(urb, &data->diag_anchor);
usb_mark_last_busy(data->udev);
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err < 0) {
/* -EPERM: urb is being killed;
* -ENODEV: device got disconnected */
if (err != -EPERM && err != -ENODEV)
BT_ERR("%s urb %p failed to resubmit (%d)",
hdev->name, urb, -err);
usb_unanchor_urb(urb);
}
}
static int btusb_submit_diag_urb(struct hci_dev *hdev, gfp_t mem_flags)
{
struct btusb_data *data = hci_get_drvdata(hdev);
struct urb *urb;
unsigned char *buf;
unsigned int pipe;
int err, size = HCI_MAX_FRAME_SIZE;
BT_DBG("%s", hdev->name);
if (!data->diag_rx_ep)
return -ENODEV;
urb = usb_alloc_urb(0, mem_flags);
if (!urb)
return -ENOMEM;
buf = kmalloc(size, mem_flags);
if (!buf) {
usb_free_urb(urb);
return -ENOMEM;
}
pipe = usb_rcvbulkpipe(data->udev, data->diag_rx_ep->bEndpointAddress);
usb_fill_bulk_urb(urb, data->udev, pipe, buf, size,
btusb_diag_complete, hdev);
urb->transfer_flags |= URB_FREE_BUFFER;
usb_mark_last_busy(data->udev);
usb_anchor_urb(urb, &data->diag_anchor);
err = usb_submit_urb(urb, mem_flags);
if (err < 0) {
if (err != -EPERM && err != -ENODEV)
BT_ERR("%s urb %p submission failed (%d)",
hdev->name, urb, -err);
usb_unanchor_urb(urb);
}
usb_free_urb(urb);
return err;
}
static void btusb_tx_complete(struct urb *urb)
{
struct sk_buff *skb = urb->context;
struct hci_dev *hdev = (struct hci_dev *)skb->dev;
struct btusb_data *data = hci_get_drvdata(hdev);
BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
urb->actual_length);
if (!test_bit(HCI_RUNNING, &hdev->flags))
goto done;
if (!urb->status)
hdev->stat.byte_tx += urb->transfer_buffer_length;
else
hdev->stat.err_tx++;
done:
spin_lock(&data->txlock);
data->tx_in_flight--;
spin_unlock(&data->txlock);
kfree(urb->setup_packet);
kfree_skb(skb);
}
static void btusb_isoc_tx_complete(struct urb *urb)
{
struct sk_buff *skb = urb->context;
struct hci_dev *hdev = (struct hci_dev *)skb->dev;
BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
urb->actual_length);
if (!test_bit(HCI_RUNNING, &hdev->flags))
goto done;
if (!urb->status)
hdev->stat.byte_tx += urb->transfer_buffer_length;
else
hdev->stat.err_tx++;
done:
kfree(urb->setup_packet);
kfree_skb(skb);
}
static int btusb_open(struct hci_dev *hdev)
{
struct btusb_data *data = hci_get_drvdata(hdev);
int err;
BT_DBG("%s", hdev->name);
/* Patching USB firmware files prior to starting any URBs of HCI path
* It is more safe to use USB bulk channel for downloading USB patch
*/
if (data->setup_on_usb) {
err = data->setup_on_usb(hdev);
if (err < 0)
return err;
}
err = usb_autopm_get_interface(data->intf);
if (err < 0)
return err;
data->intf->needs_remote_wakeup = 1;
if (test_and_set_bit(BTUSB_INTR_RUNNING, &data->flags))
goto done;
err = btusb_submit_intr_urb(hdev, GFP_KERNEL);
if (err < 0)
goto failed;
err = btusb_submit_bulk_urb(hdev, GFP_KERNEL);
if (err < 0) {
usb_kill_anchored_urbs(&data->intr_anchor);
goto failed;
}
set_bit(BTUSB_BULK_RUNNING, &data->flags);
btusb_submit_bulk_urb(hdev, GFP_KERNEL);
if (data->diag) {
if (!btusb_submit_diag_urb(hdev, GFP_KERNEL))
set_bit(BTUSB_DIAG_RUNNING, &data->flags);
}
done:
usb_autopm_put_interface(data->intf);
return 0;
failed:
clear_bit(BTUSB_INTR_RUNNING, &data->flags);
usb_autopm_put_interface(data->intf);
return err;
}
static void btusb_stop_traffic(struct btusb_data *data)
{
usb_kill_anchored_urbs(&data->intr_anchor);
usb_kill_anchored_urbs(&data->bulk_anchor);
usb_kill_anchored_urbs(&data->isoc_anchor);
usb_kill_anchored_urbs(&data->diag_anchor);
}
static int btusb_close(struct hci_dev *hdev)
{
struct btusb_data *data = hci_get_drvdata(hdev);
int err;
BT_DBG("%s", hdev->name);
cancel_work_sync(&data->work);
cancel_work_sync(&data->waker);
clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
clear_bit(BTUSB_BULK_RUNNING, &data->flags);
clear_bit(BTUSB_INTR_RUNNING, &data->flags);
clear_bit(BTUSB_DIAG_RUNNING, &data->flags);
btusb_stop_traffic(data);
btusb_free_frags(data);
err = usb_autopm_get_interface(data->intf);
if (err < 0)
goto failed;
data->intf->needs_remote_wakeup = 0;
usb_autopm_put_interface(data->intf);
failed:
usb_scuttle_anchored_urbs(&data->deferred);
return 0;
}
static int btusb_flush(struct hci_dev *hdev)
{
struct btusb_data *data = hci_get_drvdata(hdev);
BT_DBG("%s", hdev->name);
usb_kill_anchored_urbs(&data->tx_anchor);
btusb_free_frags(data);
return 0;
}
static struct urb *alloc_ctrl_urb(struct hci_dev *hdev, struct sk_buff *skb)
{
struct btusb_data *data = hci_get_drvdata(hdev);
struct usb_ctrlrequest *dr;
struct urb *urb;
unsigned int pipe;
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb)
return ERR_PTR(-ENOMEM);
dr = kmalloc(sizeof(*dr), GFP_KERNEL);
if (!dr) {
usb_free_urb(urb);
return ERR_PTR(-ENOMEM);
}
dr->bRequestType = data->cmdreq_type;
dr->bRequest = data->cmdreq;
dr->wIndex = 0;
dr->wValue = 0;
dr->wLength = __cpu_to_le16(skb->len);
pipe = usb_sndctrlpipe(data->udev, 0x00);
usb_fill_control_urb(urb, data->udev, pipe, (void *)dr,
skb->data, skb->len, btusb_tx_complete, skb);
skb->dev = (void *)hdev;
return urb;
}
static struct urb *alloc_bulk_urb(struct hci_dev *hdev, struct sk_buff *skb)
{
struct btusb_data *data = hci_get_drvdata(hdev);
struct urb *urb;
unsigned int pipe;
if (!data->bulk_tx_ep)
return ERR_PTR(-ENODEV);
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb)
return ERR_PTR(-ENOMEM);
pipe = usb_sndbulkpipe(data->udev, data->bulk_tx_ep->bEndpointAddress);
usb_fill_bulk_urb(urb, data->udev, pipe,
skb->data, skb->len, btusb_tx_complete, skb);
skb->dev = (void *)hdev;
return urb;
}
static struct urb *alloc_isoc_urb(struct hci_dev *hdev, struct sk_buff *skb)
{
struct btusb_data *data = hci_get_drvdata(hdev);
struct urb *urb;
unsigned int pipe;
if (!data->isoc_tx_ep)
return ERR_PTR(-ENODEV);
urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, GFP_KERNEL);
if (!urb)
return ERR_PTR(-ENOMEM);
pipe = usb_sndisocpipe(data->udev, data->isoc_tx_ep->bEndpointAddress);
usb_fill_int_urb(urb, data->udev, pipe,
skb->data, skb->len, btusb_isoc_tx_complete,
skb, data->isoc_tx_ep->bInterval);
urb->transfer_flags = URB_ISO_ASAP;
__fill_isoc_descriptor(urb, skb->len,
le16_to_cpu(data->isoc_tx_ep->wMaxPacketSize));
skb->dev = (void *)hdev;
return urb;
}
static int submit_tx_urb(struct hci_dev *hdev, struct urb *urb)
{
struct btusb_data *data = hci_get_drvdata(hdev);
int err;
usb_anchor_urb(urb, &data->tx_anchor);
err = usb_submit_urb(urb, GFP_KERNEL);
if (err < 0) {
if (err != -EPERM && err != -ENODEV)
BT_ERR("%s urb %p submission failed (%d)",
hdev->name, urb, -err);
kfree(urb->setup_packet);
usb_unanchor_urb(urb);
} else {
usb_mark_last_busy(data->udev);
}
usb_free_urb(urb);
return err;
}
static int submit_or_queue_tx_urb(struct hci_dev *hdev, struct urb *urb)
{
struct btusb_data *data = hci_get_drvdata(hdev);
unsigned long flags;
bool suspending;
spin_lock_irqsave(&data->txlock, flags);
suspending = test_bit(BTUSB_SUSPENDING, &data->flags);
if (!suspending)
data->tx_in_flight++;
spin_unlock_irqrestore(&data->txlock, flags);
if (!suspending)
return submit_tx_urb(hdev, urb);
usb_anchor_urb(urb, &data->deferred);
schedule_work(&data->waker);
usb_free_urb(urb);
return 0;
}
static int btusb_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
{
struct urb *urb;
BT_DBG("%s", hdev->name);
switch (bt_cb(skb)->pkt_type) {
case HCI_COMMAND_PKT:
urb = alloc_ctrl_urb(hdev, skb);
if (IS_ERR(urb))
return PTR_ERR(urb);
hdev->stat.cmd_tx++;
return submit_or_queue_tx_urb(hdev, urb);
case HCI_ACLDATA_PKT:
urb = alloc_bulk_urb(hdev, skb);
if (IS_ERR(urb))
return PTR_ERR(urb);
hdev->stat.acl_tx++;
return submit_or_queue_tx_urb(hdev, urb);
case HCI_SCODATA_PKT:
if (hci_conn_num(hdev, SCO_LINK) < 1)
return -ENODEV;
urb = alloc_isoc_urb(hdev, skb);
if (IS_ERR(urb))
return PTR_ERR(urb);
hdev->stat.sco_tx++;
return submit_tx_urb(hdev, urb);
}
return -EILSEQ;
}
static void btusb_notify(struct hci_dev *hdev, unsigned int evt)
{
struct btusb_data *data = hci_get_drvdata(hdev);
BT_DBG("%s evt %d", hdev->name, evt);
if (hci_conn_num(hdev, SCO_LINK) != data->sco_num) {
data->sco_num = hci_conn_num(hdev, SCO_LINK);
schedule_work(&data->work);
}
}
static inline int __set_isoc_interface(struct hci_dev *hdev, int altsetting)
{
struct btusb_data *data = hci_get_drvdata(hdev);
struct usb_interface *intf = data->isoc;
struct usb_endpoint_descriptor *ep_desc;
int i, err;
if (!data->isoc)
return -ENODEV;
err = usb_set_interface(data->udev, 1, altsetting);
if (err < 0) {
BT_ERR("%s setting interface failed (%d)", hdev->name, -err);
return err;
}
data->isoc_altsetting = altsetting;
data->isoc_tx_ep = NULL;
data->isoc_rx_ep = NULL;
for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
ep_desc = &intf->cur_altsetting->endpoint[i].desc;
if (!data->isoc_tx_ep && usb_endpoint_is_isoc_out(ep_desc)) {
data->isoc_tx_ep = ep_desc;
continue;
}
if (!data->isoc_rx_ep && usb_endpoint_is_isoc_in(ep_desc)) {
data->isoc_rx_ep = ep_desc;
continue;
}
}
if (!data->isoc_tx_ep || !data->isoc_rx_ep) {
BT_ERR("%s invalid SCO descriptors", hdev->name);
return -ENODEV;
}
return 0;
}
static void btusb_work(struct work_struct *work)
{
struct btusb_data *data = container_of(work, struct btusb_data, work);
struct hci_dev *hdev = data->hdev;
int new_alts;
int err;
if (data->sco_num > 0) {
if (!test_bit(BTUSB_DID_ISO_RESUME, &data->flags)) {
err = usb_autopm_get_interface(data->isoc ? data->isoc : data->intf);
if (err < 0) {
clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
usb_kill_anchored_urbs(&data->isoc_anchor);
return;
}
set_bit(BTUSB_DID_ISO_RESUME, &data->flags);
}
if (hdev->voice_setting & 0x0020) {
static const int alts[3] = { 2, 4, 5 };
new_alts = alts[data->sco_num - 1];
} else {
new_alts = data->sco_num;
}
if (data->isoc_altsetting != new_alts) {
unsigned long flags;
clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
usb_kill_anchored_urbs(&data->isoc_anchor);
/* When isochronous alternate setting needs to be
* changed, because SCO connection has been added
* or removed, a packet fragment may be left in the
* reassembling state. This could lead to wrongly
* assembled fragments.
*
* Clear outstanding fragment when selecting a new
* alternate setting.
*/
spin_lock_irqsave(&data->rxlock, flags);
kfree_skb(data->sco_skb);
data->sco_skb = NULL;
spin_unlock_irqrestore(&data->rxlock, flags);
if (__set_isoc_interface(hdev, new_alts) < 0)
return;
}
if (!test_and_set_bit(BTUSB_ISOC_RUNNING, &data->flags)) {
if (btusb_submit_isoc_urb(hdev, GFP_KERNEL) < 0)
clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
else
btusb_submit_isoc_urb(hdev, GFP_KERNEL);
}
} else {
clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
usb_kill_anchored_urbs(&data->isoc_anchor);
__set_isoc_interface(hdev, 0);
if (test_and_clear_bit(BTUSB_DID_ISO_RESUME, &data->flags))
usb_autopm_put_interface(data->isoc ? data->isoc : data->intf);
}
}
static void btusb_waker(struct work_struct *work)
{
struct btusb_data *data = container_of(work, struct btusb_data, waker);
int err;
err = usb_autopm_get_interface(data->intf);
if (err < 0)
return;
usb_autopm_put_interface(data->intf);
}
static int btusb_setup_bcm92035(struct hci_dev *hdev)
{
struct sk_buff *skb;
u8 val = 0x00;
BT_DBG("%s", hdev->name);
skb = __hci_cmd_sync(hdev, 0xfc3b, 1, &val, HCI_INIT_TIMEOUT);
if (IS_ERR(skb))
BT_ERR("BCM92035 command failed (%ld)", -PTR_ERR(skb));
else
kfree_skb(skb);
return 0;
}
static int btusb_setup_csr(struct hci_dev *hdev)
{
struct hci_rp_read_local_version *rp;
struct sk_buff *skb;
BT_DBG("%s", hdev->name);
skb = __hci_cmd_sync(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
int err = PTR_ERR(skb);
BT_ERR("%s: CSR: Local version failed (%d)", hdev->name, err);
return err;
}
if (skb->len != sizeof(struct hci_rp_read_local_version)) {
BT_ERR("%s: CSR: Local version length mismatch", hdev->name);
kfree_skb(skb);
return -EIO;
}
rp = (struct hci_rp_read_local_version *)skb->data;
/* Detect controllers which aren't real CSR ones. */
if (le16_to_cpu(rp->manufacturer) != 10 ||
le16_to_cpu(rp->lmp_subver) == 0x0c5c) {
/* Clear the reset quirk since this is not an actual
* early Bluetooth 1.1 device from CSR.
*/
clear_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
/* These fake CSR controllers have all a broken
* stored link key handling and so just disable it.
*/
set_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks);
}
kfree_skb(skb);
return 0;
}
static const struct firmware *btusb_setup_intel_get_fw(struct hci_dev *hdev,
struct intel_version *ver)
{
const struct firmware *fw;
char fwname[64];
int ret;
snprintf(fwname, sizeof(fwname),
"intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
ver->hw_platform, ver->hw_variant, ver->hw_revision,
ver->fw_variant, ver->fw_revision, ver->fw_build_num,
ver->fw_build_ww, ver->fw_build_yy);
ret = request_firmware(&fw, fwname, &hdev->dev);
if (ret < 0) {
if (ret == -EINVAL) {
BT_ERR("%s Intel firmware file request failed (%d)",
hdev->name, ret);
return NULL;
}
BT_ERR("%s failed to open Intel firmware file: %s(%d)",
hdev->name, fwname, ret);
/* If the correct firmware patch file is not found, use the
* default firmware patch file instead
*/
snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
ver->hw_platform, ver->hw_variant);
if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
BT_ERR("%s failed to open default Intel fw file: %s",
hdev->name, fwname);
return NULL;
}
}
BT_INFO("%s: Intel Bluetooth firmware file: %s", hdev->name, fwname);
return fw;
}
static int btusb_setup_intel_patching(struct hci_dev *hdev,
const struct firmware *fw,
const u8 **fw_ptr, int *disable_patch)
{
struct sk_buff *skb;
struct hci_command_hdr *cmd;
const u8 *cmd_param;
struct hci_event_hdr *evt = NULL;
const u8 *evt_param = NULL;
int remain = fw->size - (*fw_ptr - fw->data);
/* The first byte indicates the types of the patch command or event.
* 0x01 means HCI command and 0x02 is HCI event. If the first bytes
* in the current firmware buffer doesn't start with 0x01 or
* the size of remain buffer is smaller than HCI command header,
* the firmware file is corrupted and it should stop the patching
* process.
*/
if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
BT_ERR("%s Intel fw corrupted: invalid cmd read", hdev->name);
return -EINVAL;
}
(*fw_ptr)++;
remain--;
cmd = (struct hci_command_hdr *)(*fw_ptr);
*fw_ptr += sizeof(*cmd);
remain -= sizeof(*cmd);
/* Ensure that the remain firmware data is long enough than the length
* of command parameter. If not, the firmware file is corrupted.
*/
if (remain < cmd->plen) {
BT_ERR("%s Intel fw corrupted: invalid cmd len", hdev->name);
return -EFAULT;
}
/* If there is a command that loads a patch in the firmware
* file, then enable the patch upon success, otherwise just
* disable the manufacturer mode, for example patch activation
* is not required when the default firmware patch file is used
* because there are no patch data to load.
*/
if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
*disable_patch = 0;
cmd_param = *fw_ptr;
*fw_ptr += cmd->plen;
remain -= cmd->plen;
/* This reads the expected events when the above command is sent to the
* device. Some vendor commands expects more than one events, for
* example command status event followed by vendor specific event.
* For this case, it only keeps the last expected event. so the command
* can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
* last expected event.
*/
while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
(*fw_ptr)++;
remain--;
evt = (struct hci_event_hdr *)(*fw_ptr);
*fw_ptr += sizeof(*evt);
remain -= sizeof(*evt);
if (remain < evt->plen) {
BT_ERR("%s Intel fw corrupted: invalid evt len",
hdev->name);
return -EFAULT;
}
evt_param = *fw_ptr;
*fw_ptr += evt->plen;
remain -= evt->plen;
}
/* Every HCI commands in the firmware file has its correspond event.
* If event is not found or remain is smaller than zero, the firmware
* file is corrupted.
*/
if (!evt || !evt_param || remain < 0) {
BT_ERR("%s Intel fw corrupted: invalid evt read", hdev->name);
return -EFAULT;
}
skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
cmd_param, evt->evt, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
BT_ERR("%s sending Intel patch command (0x%4.4x) failed (%ld)",
hdev->name, cmd->opcode, PTR_ERR(skb));
return PTR_ERR(skb);
}
/* It ensures that the returned event matches the event data read from
* the firmware file. At fist, it checks the length and then
* the contents of the event.
*/
if (skb->len != evt->plen) {
BT_ERR("%s mismatch event length (opcode 0x%4.4x)", hdev->name,
le16_to_cpu(cmd->opcode));
kfree_skb(skb);
return -EFAULT;
}
if (memcmp(skb->data, evt_param, evt->plen)) {
BT_ERR("%s mismatch event parameter (opcode 0x%4.4x)",
hdev->name, le16_to_cpu(cmd->opcode));
kfree_skb(skb);
return -EFAULT;
}
kfree_skb(skb);
return 0;
}
static int btusb_setup_intel(struct hci_dev *hdev)
{
struct sk_buff *skb;
const struct firmware *fw;
const u8 *fw_ptr;
int disable_patch;
struct intel_version *ver;
const u8 mfg_enable[] = { 0x01, 0x00 };
const u8 mfg_disable[] = { 0x00, 0x00 };
const u8 mfg_reset_deactivate[] = { 0x00, 0x01 };
const u8 mfg_reset_activate[] = { 0x00, 0x02 };
BT_DBG("%s", hdev->name);
/* The controller has a bug with the first HCI command sent to it
* returning number of completed commands as zero. This would stall the
* command processing in the Bluetooth core.
*
* As a workaround, send HCI Reset command first which will reset the
* number of completed commands and allow normal command processing
* from now on.
*/
skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
BT_ERR("%s sending initial HCI reset command failed (%ld)",
hdev->name, PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
/* Read Intel specific controller version first to allow selection of
* which firmware file to load.
*
* The returned information are hardware variant and revision plus
* firmware variant, revision and build number.
*/
skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
BT_ERR("%s reading Intel fw version command failed (%ld)",
hdev->name, PTR_ERR(skb));
return PTR_ERR(skb);
}
if (skb->len != sizeof(*ver)) {
BT_ERR("%s Intel version event length mismatch", hdev->name);
kfree_skb(skb);
return -EIO;
}
ver = (struct intel_version *)skb->data;
BT_INFO("%s: read Intel version: %02x%02x%02x%02x%02x%02x%02x%02x%02x",
hdev->name, ver->hw_platform, ver->hw_variant,
ver->hw_revision, ver->fw_variant, ver->fw_revision,
ver->fw_build_num, ver->fw_build_ww, ver->fw_build_yy,
ver->fw_patch_num);
/* fw_patch_num indicates the version of patch the device currently
* have. If there is no patch data in the device, it is always 0x00.
* So, if it is other than 0x00, no need to patch the device again.
*/
if (ver->fw_patch_num) {
BT_INFO("%s: Intel device is already patched. patch num: %02x",
hdev->name, ver->fw_patch_num);
kfree_skb(skb);
goto complete;
}
/* Opens the firmware patch file based on the firmware version read
* from the controller. If it fails to open the matching firmware
* patch file, it tries to open the default firmware patch file.
* If no patch file is found, allow the device to operate without
* a patch.
*/
fw = btusb_setup_intel_get_fw(hdev, ver);
if (!fw) {
kfree_skb(skb);
goto complete;
}
fw_ptr = fw->data;
kfree_skb(skb);
/* This Intel specific command enables the manufacturer mode of the
* controller.
*
* Only while this mode is enabled, the driver can download the
* firmware patch data and configuration parameters.
*/
skb = __hci_cmd_sync(hdev, 0xfc11, 2, mfg_enable, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
BT_ERR("%s entering Intel manufacturer mode failed (%ld)",
hdev->name, PTR_ERR(skb));
release_firmware(fw);
return PTR_ERR(skb);
}
kfree_skb(skb);
disable_patch = 1;
/* The firmware data file consists of list of Intel specific HCI
* commands and its expected events. The first byte indicates the
* type of the message, either HCI command or HCI event.
*
* It reads the command and its expected event from the firmware file,
* and send to the controller. Once __hci_cmd_sync_ev() returns,
* the returned event is compared with the event read from the firmware
* file and it will continue until all the messages are downloaded to
* the controller.
*
* Once the firmware patching is completed successfully,
* the manufacturer mode is disabled with reset and activating the
* downloaded patch.
*
* If the firmware patching fails, the manufacturer mode is
* disabled with reset and deactivating the patch.
*
* If the default patch file is used, no reset is done when disabling
* the manufacturer.
*/
while (fw->size > fw_ptr - fw->data) {
int ret;
ret = btusb_setup_intel_patching(hdev, fw, &fw_ptr,
&disable_patch);
if (ret < 0)
goto exit_mfg_deactivate;
}
release_firmware(fw);
if (disable_patch)
goto exit_mfg_disable;
/* Patching completed successfully and disable the manufacturer mode
* with reset and activate the downloaded firmware patches.
*/
skb = __hci_cmd_sync(hdev, 0xfc11, sizeof(mfg_reset_activate),
mfg_reset_activate, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
BT_ERR("%s exiting Intel manufacturer mode failed (%ld)",
hdev->name, PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
BT_INFO("%s: Intel Bluetooth firmware patch completed and activated",
hdev->name);
goto complete;
exit_mfg_disable:
/* Disable the manufacturer mode without reset */
skb = __hci_cmd_sync(hdev, 0xfc11, sizeof(mfg_disable), mfg_disable,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
BT_ERR("%s exiting Intel manufacturer mode failed (%ld)",
hdev->name, PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
BT_INFO("%s: Intel Bluetooth firmware patch completed", hdev->name);
goto complete;
exit_mfg_deactivate:
release_firmware(fw);
/* Patching failed. Disable the manufacturer mode with reset and
* deactivate the downloaded firmware patches.
*/
skb = __hci_cmd_sync(hdev, 0xfc11, sizeof(mfg_reset_deactivate),
mfg_reset_deactivate, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
BT_ERR("%s exiting Intel manufacturer mode failed (%ld)",
hdev->name, PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
BT_INFO("%s: Intel Bluetooth firmware patch completed and deactivated",
hdev->name);
complete:
/* Set the event mask for Intel specific vendor events. This enables
* a few extra events that are useful during general operation.
*/
btintel_set_event_mask_mfg(hdev, false);
btintel_check_bdaddr(hdev);
return 0;
}
static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
{
struct sk_buff *skb;
struct hci_event_hdr *hdr;
struct hci_ev_cmd_complete *evt;
skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
if (!skb)
return -ENOMEM;
hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
hdr->evt = HCI_EV_CMD_COMPLETE;
hdr->plen = sizeof(*evt) + 1;
evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
evt->ncmd = 0x01;
evt->opcode = cpu_to_le16(opcode);
*skb_put(skb, 1) = 0x00;
bt_cb(skb)->pkt_type = HCI_EVENT_PKT;
return hci_recv_frame(hdev, skb);
}
static int btusb_recv_bulk_intel(struct btusb_data *data, void *buffer,
int count)
{
/* When the device is in bootloader mode, then it can send
* events via the bulk endpoint. These events are treated the
* same way as the ones received from the interrupt endpoint.
*/
if (test_bit(BTUSB_BOOTLOADER, &data->flags))
return btusb_recv_intr(data, buffer, count);
return btusb_recv_bulk(data, buffer, count);
}
static void btusb_intel_bootup(struct btusb_data *data, const void *ptr,
unsigned int len)
{
const struct intel_bootup *evt = ptr;
if (len != sizeof(*evt))
return;
if (test_and_clear_bit(BTUSB_BOOTING, &data->flags)) {
smp_mb__after_atomic();
wake_up_bit(&data->flags, BTUSB_BOOTING);
}
}
static void btusb_intel_secure_send_result(struct btusb_data *data,
const void *ptr, unsigned int len)
{
const struct intel_secure_send_result *evt = ptr;
if (len != sizeof(*evt))
return;
if (evt->result)
set_bit(BTUSB_FIRMWARE_FAILED, &data->flags);
if (test_and_clear_bit(BTUSB_DOWNLOADING, &data->flags) &&
test_bit(BTUSB_FIRMWARE_LOADED, &data->flags)) {
smp_mb__after_atomic();
wake_up_bit(&data->flags, BTUSB_DOWNLOADING);
}
}
static int btusb_recv_event_intel(struct hci_dev *hdev, struct sk_buff *skb)
{
struct btusb_data *data = hci_get_drvdata(hdev);
if (test_bit(BTUSB_BOOTLOADER, &data->flags)) {
struct hci_event_hdr *hdr = (void *)skb->data;
if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
hdr->plen > 0) {
const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
switch (skb->data[2]) {
case 0x02:
/* When switching to the operational firmware
* the device sends a vendor specific event
* indicating that the bootup completed.
*/
btusb_intel_bootup(data, ptr, len);
break;
case 0x06:
/* When the firmware loading completes the
* device sends out a vendor specific event
* indicating the result of the firmware
* loading.
*/
btusb_intel_secure_send_result(data, ptr, len);
break;
}
}
}
return hci_recv_frame(hdev, skb);
}
static int btusb_send_frame_intel(struct hci_dev *hdev, struct sk_buff *skb)
{
struct btusb_data *data = hci_get_drvdata(hdev);
struct urb *urb;
BT_DBG("%s", hdev->name);
switch (bt_cb(skb)->pkt_type) {
case HCI_COMMAND_PKT:
if (test_bit(BTUSB_BOOTLOADER, &data->flags)) {
struct hci_command_hdr *cmd = (void *)skb->data;
__u16 opcode = le16_to_cpu(cmd->opcode);
/* When in bootloader mode and the command 0xfc09
* is received, it needs to be send down the
* bulk endpoint. So allocate a bulk URB instead.
*/
if (opcode == 0xfc09)
urb = alloc_bulk_urb(hdev, skb);
else
urb = alloc_ctrl_urb(hdev, skb);
/* When the 0xfc01 command is issued to boot into
* the operational firmware, it will actually not
* send a command complete event. To keep the flow
* control working inject that event here.
*/
if (opcode == 0xfc01)
inject_cmd_complete(hdev, opcode);
} else {
urb = alloc_ctrl_urb(hdev, skb);
}
if (IS_ERR(urb))
return PTR_ERR(urb);
hdev->stat.cmd_tx++;
return submit_or_queue_tx_urb(hdev, urb);
case HCI_ACLDATA_PKT:
urb = alloc_bulk_urb(hdev, skb);
if (IS_ERR(urb))
return PTR_ERR(urb);
hdev->stat.acl_tx++;
return submit_or_queue_tx_urb(hdev, urb);
case HCI_SCODATA_PKT:
if (hci_conn_num(hdev, SCO_LINK) < 1)
return -ENODEV;
urb = alloc_isoc_urb(hdev, skb);
if (IS_ERR(urb))
return PTR_ERR(urb);
hdev->stat.sco_tx++;
return submit_tx_urb(hdev, urb);
}
return -EILSEQ;
}
static int btusb_setup_intel_new(struct hci_dev *hdev)
{
static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
0x00, 0x08, 0x04, 0x00 };
struct btusb_data *data = hci_get_drvdata(hdev);
struct sk_buff *skb;
struct intel_version *ver;
struct intel_boot_params *params;
const struct firmware *fw;
const u8 *fw_ptr;
u32 frag_len;
char fwname[64];
ktime_t calltime, delta, rettime;
unsigned long long duration;
int err;
BT_DBG("%s", hdev->name);
calltime = ktime_get();
/* Read the Intel version information to determine if the device
* is in bootloader mode or if it already has operational firmware
* loaded.
*/
skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
BT_ERR("%s: Reading Intel version information failed (%ld)",
hdev->name, PTR_ERR(skb));
return PTR_ERR(skb);
}
if (skb->len != sizeof(*ver)) {
BT_ERR("%s: Intel version event size mismatch", hdev->name);
kfree_skb(skb);
return -EILSEQ;
}
ver = (struct intel_version *)skb->data;
/* The hardware platform number has a fixed value of 0x37 and
* for now only accept this single value.
*/
if (ver->hw_platform != 0x37) {
BT_ERR("%s: Unsupported Intel hardware platform (%u)",
hdev->name, ver->hw_platform);
kfree_skb(skb);
return -EINVAL;
}
/* At the moment the iBT 3.0 hardware variants 0x0b (LnP/SfP)
* and 0x0c (WsP) are supported by this firmware loading method.
*
* This check has been put in place to ensure correct forward
* compatibility options when newer hardware variants come along.
*/
if (ver->hw_variant != 0x0b && ver->hw_variant != 0x0c) {
BT_ERR("%s: Unsupported Intel hardware variant (%u)",
hdev->name, ver->hw_variant);
kfree_skb(skb);
return -EINVAL;
}
btintel_version_info(hdev, ver);
/* The firmware variant determines if the device is in bootloader
* mode or is running operational firmware. The value 0x06 identifies
* the bootloader and the value 0x23 identifies the operational
* firmware.
*
* When the operational firmware is already present, then only
* the check for valid Bluetooth device address is needed. This
* determines if the device will be added as configured or
* unconfigured controller.
*
* It is not possible to use the Secure Boot Parameters in this
* case since that command is only available in bootloader mode.
*/
if (ver->fw_variant == 0x23) {
kfree_skb(skb);
clear_bit(BTUSB_BOOTLOADER, &data->flags);
btintel_check_bdaddr(hdev);
return 0;
}
/* If the device is not in bootloader mode, then the only possible
* choice is to return an error and abort the device initialization.
*/
if (ver->fw_variant != 0x06) {
BT_ERR("%s: Unsupported Intel firmware variant (%u)",
hdev->name, ver->fw_variant);
kfree_skb(skb);
return -ENODEV;
}
kfree_skb(skb);
/* Read the secure boot parameters to identify the operating
* details of the bootloader.
*/
skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
BT_ERR("%s: Reading Intel boot parameters failed (%ld)",
hdev->name, PTR_ERR(skb));
return PTR_ERR(skb);
}
if (skb->len != sizeof(*params)) {
BT_ERR("%s: Intel boot parameters size mismatch", hdev->name);
kfree_skb(skb);
return -EILSEQ;
}
params = (struct intel_boot_params *)skb->data;
BT_INFO("%s: Device revision is %u", hdev->name,
le16_to_cpu(params->dev_revid));
BT_INFO("%s: Secure boot is %s", hdev->name,
params->secure_boot ? "enabled" : "disabled");
BT_INFO("%s: OTP lock is %s", hdev->name,
params->otp_lock ? "enabled" : "disabled");
BT_INFO("%s: API lock is %s", hdev->name,
params->api_lock ? "enabled" : "disabled");
BT_INFO("%s: Debug lock is %s", hdev->name,
params->debug_lock ? "enabled" : "disabled");
BT_INFO("%s: Minimum firmware build %u week %u %u", hdev->name,
params->min_fw_build_nn, params->min_fw_build_cw,
2000 + params->min_fw_build_yy);
/* It is required that every single firmware fragment is acknowledged
* with a command complete event. If the boot parameters indicate
* that this bootloader does not send them, then abort the setup.
*/
if (params->limited_cce != 0x00) {
BT_ERR("%s: Unsupported Intel firmware loading method (%u)",
hdev->name, params->limited_cce);
kfree_skb(skb);
return -EINVAL;
}
/* If the OTP has no valid Bluetooth device address, then there will
* also be no valid address for the operational firmware.
*/
if (!bacmp(¶ms->otp_bdaddr, BDADDR_ANY)) {
BT_INFO("%s: No device address configured", hdev->name);
set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
}
/* With this Intel bootloader only the hardware variant and device
* revision information are used to select the right firmware.
*
* Currently this bootloader support is limited to hardware variant
* iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
*/
snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
le16_to_cpu(params->dev_revid));
err = request_firmware(&fw, fwname, &hdev->dev);
if (err < 0) {
BT_ERR("%s: Failed to load Intel firmware file (%d)",
hdev->name, err);
kfree_skb(skb);
return err;
}
BT_INFO("%s: Found device firmware: %s", hdev->name, fwname);
/* Save the DDC file name for later use to apply once the firmware
* downloading is done.
*/
snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
le16_to_cpu(params->dev_revid));
kfree_skb(skb);
if (fw->size < 644) {
BT_ERR("%s: Invalid size of firmware file (%zu)",
hdev->name, fw->size);
err = -EBADF;
goto done;
}
set_bit(BTUSB_DOWNLOADING, &data->flags);
/* Start the firmware download transaction with the Init fragment
* represented by the 128 bytes of CSS header.
*/
err = btintel_secure_send(hdev, 0x00, 128, fw->data);
if (err < 0) {
BT_ERR("%s: Failed to send firmware header (%d)",
hdev->name, err);
goto done;
}
/* Send the 256 bytes of public key information from the firmware
* as the PKey fragment.
*/
err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
if (err < 0) {
BT_ERR("%s: Failed to send firmware public key (%d)",
hdev->name, err);
goto done;
}
/* Send the 256 bytes of signature information from the firmware
* as the Sign fragment.
*/
err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
if (err < 0) {
BT_ERR("%s: Failed to send firmware signature (%d)",
hdev->name, err);
goto done;
}
fw_ptr = fw->data + 644;
frag_len = 0;
while (fw_ptr - fw->data < fw->size) {
struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
frag_len += sizeof(*cmd) + cmd->plen;
/* The parameter length of the secure send command requires
* a 4 byte alignment. It happens so that the firmware file
* contains proper Intel_NOP commands to align the fragments
* as needed.
*
* Send set of commands with 4 byte alignment from the
* firmware data buffer as a single Data fragement.
*/
if (!(frag_len % 4)) {
err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
if (err < 0) {
BT_ERR("%s: Failed to send firmware data (%d)",
hdev->name, err);
goto done;
}
fw_ptr += frag_len;
frag_len = 0;
}
}
set_bit(BTUSB_FIRMWARE_LOADED, &data->flags);
BT_INFO("%s: Waiting for firmware download to complete", hdev->name);
/* Before switching the device into operational mode and with that
* booting the loaded firmware, wait for the bootloader notification
* that all fragments have been successfully received.
*
* When the event processing receives the notification, then the
* BTUSB_DOWNLOADING flag will be cleared.
*
* The firmware loading should not take longer than 5 seconds
* and thus just timeout if that happens and fail the setup
* of this device.
*/
err = wait_on_bit_timeout(&data->flags, BTUSB_DOWNLOADING,
TASK_INTERRUPTIBLE,
msecs_to_jiffies(5000));
if (err == 1) {
BT_ERR("%s: Firmware loading interrupted", hdev->name);
err = -EINTR;
goto done;
}
if (err) {
BT_ERR("%s: Firmware loading timeout", hdev->name);
err = -ETIMEDOUT;
goto done;
}
if (test_bit(BTUSB_FIRMWARE_FAILED, &data->flags)) {
BT_ERR("%s: Firmware loading failed", hdev->name);
err = -ENOEXEC;
goto done;
}
rettime = ktime_get();
delta = ktime_sub(rettime, calltime);
duration = (unsigned long long) ktime_to_ns(delta) >> 10;
BT_INFO("%s: Firmware loaded in %llu usecs", hdev->name, duration);
done:
release_firmware(fw);
if (err < 0)
return err;
calltime = ktime_get();
set_bit(BTUSB_BOOTING, &data->flags);
skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb))
return PTR_ERR(skb);
kfree_skb(skb);
/* The bootloader will not indicate when the device is ready. This
* is done by the operational firmware sending bootup notification.
*
* Booting into operational firmware should not take longer than
* 1 second. However if that happens, then just fail the setup
* since something went wrong.
*/
BT_INFO("%s: Waiting for device to boot", hdev->name);
err = wait_on_bit_timeout(&data->flags, BTUSB_BOOTING,
TASK_INTERRUPTIBLE,
msecs_to_jiffies(1000));
if (err == 1) {
BT_ERR("%s: Device boot interrupted", hdev->name);
return -EINTR;
}
if (err) {
BT_ERR("%s: Device boot timeout", hdev->name);
return -ETIMEDOUT;
}
rettime = ktime_get();
delta = ktime_sub(rettime, calltime);
duration = (unsigned long long) ktime_to_ns(delta) >> 10;
BT_INFO("%s: Device booted in %llu usecs", hdev->name, duration);
clear_bit(BTUSB_BOOTLOADER, &data->flags);
/* Once the device is running in operational mode, it needs to apply
* the device configuration (DDC) parameters.
*
* The device can work without DDC parameters, so even if it fails
* to load the file, no need to fail the setup.
*/
btintel_load_ddc_config(hdev, fwname);
/* Set the event mask for Intel specific vendor events. This enables
* a few extra events that are useful during general operation. It
* does not enable any debugging related events.
*
* The device will function correctly without these events enabled
* and thus no need to fail the setup.
*/
btintel_set_event_mask(hdev, false);
return 0;
}
static int btusb_shutdown_intel(struct hci_dev *hdev)
{
struct sk_buff *skb;
long ret;
/* Some platforms have an issue with BT LED when the interface is
* down or BT radio is turned off, which takes 5 seconds to BT LED
* goes off. This command turns off the BT LED immediately.
*/
skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
ret = PTR_ERR(skb);
BT_ERR("%s: turning off Intel device LED failed (%ld)",
hdev->name, ret);
return ret;
}
kfree_skb(skb);
return 0;
}
static int btusb_set_bdaddr_marvell(struct hci_dev *hdev,
const bdaddr_t *bdaddr)
{
struct sk_buff *skb;
u8 buf[8];
long ret;
buf[0] = 0xfe;
buf[1] = sizeof(bdaddr_t);
memcpy(buf + 2, bdaddr, sizeof(bdaddr_t));
skb = __hci_cmd_sync(hdev, 0xfc22, sizeof(buf), buf, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
ret = PTR_ERR(skb);
BT_ERR("%s: changing Marvell device address failed (%ld)",
hdev->name, ret);
return ret;
}
kfree_skb(skb);
return 0;
}
static int btusb_set_bdaddr_ath3012(struct hci_dev *hdev,
const bdaddr_t *bdaddr)
{
struct sk_buff *skb;
u8 buf[10];
long ret;
buf[0] = 0x01;
buf[1] = 0x01;
buf[2] = 0x00;
buf[3] = sizeof(bdaddr_t);
memcpy(buf + 4, bdaddr, sizeof(bdaddr_t));
skb = __hci_cmd_sync(hdev, 0xfc0b, sizeof(buf), buf, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
ret = PTR_ERR(skb);
BT_ERR("%s: Change address command failed (%ld)",
hdev->name, ret);
return ret;
}
kfree_skb(skb);
return 0;
}
#define QCA_DFU_PACKET_LEN 4096
#define QCA_GET_TARGET_VERSION 0x09
#define QCA_CHECK_STATUS 0x05
#define QCA_DFU_DOWNLOAD 0x01
#define QCA_SYSCFG_UPDATED 0x40
#define QCA_PATCH_UPDATED 0x80
#define QCA_DFU_TIMEOUT 3000
struct qca_version {
__le32 rom_version;
__le32 patch_version;
__le32 ram_version;
__le32 ref_clock;
__u8 reserved[4];
} __packed;
struct qca_rampatch_version {
__le16 rom_version;
__le16 patch_version;
} __packed;
struct qca_device_info {
u32 rom_version;
u8 rampatch_hdr; /* length of header in rampatch */
u8 nvm_hdr; /* length of header in NVM */
u8 ver_offset; /* offset of version structure in rampatch */
};
static const struct qca_device_info qca_devices_table[] = {
{ 0x00000100, 20, 4, 10 }, /* Rome 1.0 */
{ 0x00000101, 20, 4, 10 }, /* Rome 1.1 */
{ 0x00000200, 28, 4, 18 }, /* Rome 2.0 */
{ 0x00000201, 28, 4, 18 }, /* Rome 2.1 */
{ 0x00000300, 28, 4, 18 }, /* Rome 3.0 */
{ 0x00000302, 28, 4, 18 }, /* Rome 3.2 */
};
static int btusb_qca_send_vendor_req(struct hci_dev *hdev, u8 request,
void *data, u16 size)
{
struct btusb_data *btdata = hci_get_drvdata(hdev);
struct usb_device *udev = btdata->udev;
int pipe, err;
u8 *buf;
buf = kmalloc(size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* Found some of USB hosts have IOT issues with ours so that we should
* not wait until HCI layer is ready.
*/
pipe = usb_rcvctrlpipe(udev, 0);
err = usb_control_msg(udev, pipe, request, USB_TYPE_VENDOR | USB_DIR_IN,
0, 0, buf, size, USB_CTRL_SET_TIMEOUT);
if (err < 0) {
BT_ERR("%s: Failed to access otp area (%d)", hdev->name, err);
goto done;
}
memcpy(data, buf, size);
done:
kfree(buf);
return err;
}
static int btusb_setup_qca_download_fw(struct hci_dev *hdev,
const struct firmware *firmware,
size_t hdr_size)
{
struct btusb_data *btdata = hci_get_drvdata(hdev);
struct usb_device *udev = btdata->udev;
size_t count, size, sent = 0;
int pipe, len, err;
u8 *buf;
buf = kmalloc(QCA_DFU_PACKET_LEN, GFP_KERNEL);
if (!buf)
return -ENOMEM;
count = firmware->size;
size = min_t(size_t, count, hdr_size);
memcpy(buf, firmware->data, size);
/* USB patches should go down to controller through USB path
* because binary format fits to go down through USB channel.
* USB control path is for patching headers and USB bulk is for
* patch body.
*/
pipe = usb_sndctrlpipe(udev, 0);
err = usb_control_msg(udev, pipe, QCA_DFU_DOWNLOAD, USB_TYPE_VENDOR,
0, 0, buf, size, USB_CTRL_SET_TIMEOUT);
if (err < 0) {
BT_ERR("%s: Failed to send headers (%d)", hdev->name, err);
goto done;
}
sent += size;
count -= size;
while (count) {
size = min_t(size_t, count, QCA_DFU_PACKET_LEN);
memcpy(buf, firmware->data + sent, size);
pipe = usb_sndbulkpipe(udev, 0x02);
err = usb_bulk_msg(udev, pipe, buf, size, &len,
QCA_DFU_TIMEOUT);
if (err < 0) {
BT_ERR("%s: Failed to send body at %zd of %zd (%d)",
hdev->name, sent, firmware->size, err);
break;
}
if (size != len) {
BT_ERR("%s: Failed to get bulk buffer", hdev->name);
err = -EILSEQ;
break;
}
sent += size;
count -= size;
}
done:
kfree(buf);
return err;
}
static int btusb_setup_qca_load_rampatch(struct hci_dev *hdev,
struct qca_version *ver,
const struct qca_device_info *info)
{
struct qca_rampatch_version *rver;
const struct firmware *fw;
u32 ver_rom, ver_patch;
u16 rver_rom, rver_patch;
char fwname[64];
int err;
ver_rom = le32_to_cpu(ver->rom_version);
ver_patch = le32_to_cpu(ver->patch_version);
snprintf(fwname, sizeof(fwname), "qca/rampatch_usb_%08x.bin", ver_rom);
err = request_firmware(&fw, fwname, &hdev->dev);
if (err) {
BT_ERR("%s: failed to request rampatch file: %s (%d)",
hdev->name, fwname, err);
return err;
}
BT_INFO("%s: using rampatch file: %s", hdev->name, fwname);
rver = (struct qca_rampatch_version *)(fw->data + info->ver_offset);
rver_rom = le16_to_cpu(rver->rom_version);
rver_patch = le16_to_cpu(rver->patch_version);
BT_INFO("%s: QCA: patch rome 0x%x build 0x%x, firmware rome 0x%x "
"build 0x%x", hdev->name, rver_rom, rver_patch, ver_rom,
ver_patch);
if (rver_rom != ver_rom || rver_patch <= ver_patch) {
BT_ERR("%s: rampatch file version did not match with firmware",
hdev->name);
err = -EINVAL;
goto done;
}
err = btusb_setup_qca_download_fw(hdev, fw, info->rampatch_hdr);
done:
release_firmware(fw);
return err;
}
static int btusb_setup_qca_load_nvm(struct hci_dev *hdev,
struct qca_version *ver,
const struct qca_device_info *info)
{
const struct firmware *fw;
char fwname[64];
int err;
snprintf(fwname, sizeof(fwname), "qca/nvm_usb_%08x.bin",
le32_to_cpu(ver->rom_version));
err = request_firmware(&fw, fwname, &hdev->dev);
if (err) {
BT_ERR("%s: failed to request NVM file: %s (%d)",
hdev->name, fwname, err);
return err;
}
BT_INFO("%s: using NVM file: %s", hdev->name, fwname);
err = btusb_setup_qca_download_fw(hdev, fw, info->nvm_hdr);
release_firmware(fw);
return err;
}
static int btusb_setup_qca(struct hci_dev *hdev)
{
const struct qca_device_info *info = NULL;
struct qca_version ver;
u32 ver_rom;
u8 status;
int i, err;
err = btusb_qca_send_vendor_req(hdev, QCA_GET_TARGET_VERSION, &ver,
sizeof(ver));
if (err < 0)
return err;
ver_rom = le32_to_cpu(ver.rom_version);
for (i = 0; i < ARRAY_SIZE(qca_devices_table); i++) {
if (ver_rom == qca_devices_table[i].rom_version)
info = &qca_devices_table[i];
}
if (!info) {
BT_ERR("%s: don't support firmware rome 0x%x", hdev->name,
ver_rom);
return -ENODEV;
}
err = btusb_qca_send_vendor_req(hdev, QCA_CHECK_STATUS, &status,
sizeof(status));
if (err < 0)
return err;
if (!(status & QCA_PATCH_UPDATED)) {
err = btusb_setup_qca_load_rampatch(hdev, &ver, info);
if (err < 0)
return err;
}
if (!(status & QCA_SYSCFG_UPDATED)) {
err = btusb_setup_qca_load_nvm(hdev, &ver, info);
if (err < 0)
return err;
}
return 0;
}
#ifdef CONFIG_BT_HCIBTUSB_BCM
static inline int __set_diag_interface(struct hci_dev *hdev)
{
struct btusb_data *data = hci_get_drvdata(hdev);
struct usb_interface *intf = data->diag;
int i;
if (!data->diag)
return -ENODEV;
data->diag_tx_ep = NULL;
data->diag_rx_ep = NULL;
for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
struct usb_endpoint_descriptor *ep_desc;
ep_desc = &intf->cur_altsetting->endpoint[i].desc;
if (!data->diag_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) {
data->diag_tx_ep = ep_desc;
continue;
}
if (!data->diag_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) {
data->diag_rx_ep = ep_desc;
continue;
}
}
if (!data->diag_tx_ep || !data->diag_rx_ep) {
BT_ERR("%s invalid diagnostic descriptors", hdev->name);
return -ENODEV;
}
return 0;
}
static struct urb *alloc_diag_urb(struct hci_dev *hdev, bool enable)
{
struct btusb_data *data = hci_get_drvdata(hdev);
struct sk_buff *skb;
struct urb *urb;
unsigned int pipe;
if (!data->diag_tx_ep)
return ERR_PTR(-ENODEV);
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb)
return ERR_PTR(-ENOMEM);
skb = bt_skb_alloc(2, GFP_KERNEL);
if (!skb) {
usb_free_urb(urb);
return ERR_PTR(-ENOMEM);
}
*skb_put(skb, 1) = 0xf0;
*skb_put(skb, 1) = enable;
pipe = usb_sndbulkpipe(data->udev, data->diag_tx_ep->bEndpointAddress);
usb_fill_bulk_urb(urb, data->udev, pipe,
skb->data, skb->len, btusb_tx_complete, skb);
skb->dev = (void *)hdev;
return urb;
}
static int btusb_bcm_set_diag(struct hci_dev *hdev, bool enable)
{
struct btusb_data *data = hci_get_drvdata(hdev);
struct urb *urb;
if (!data->diag)
return -ENODEV;
if (!test_bit(HCI_RUNNING, &hdev->flags))
return -ENETDOWN;
urb = alloc_diag_urb(hdev, enable);
if (IS_ERR(urb))
return PTR_ERR(urb);
return submit_or_queue_tx_urb(hdev, urb);
}
#endif
static int btusb_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_endpoint_descriptor *ep_desc;
struct btusb_data *data;
struct hci_dev *hdev;
unsigned ifnum_base;
int i, err;
BT_DBG("intf %p id %p", intf, id);
printk("btusb_probe995522\n");
/* interface numbers are hardcoded in the spec */
if (intf->cur_altsetting->desc.bInterfaceNumber != 0) {
if (!(id->driver_info & BTUSB_IFNUM_2))
return -ENODEV;
if (intf->cur_altsetting->desc.bInterfaceNumber != 2)
return -ENODEV;
}
ifnum_base = intf->cur_altsetting->desc.bInterfaceNumber;
if (!id->driver_info) {
const struct usb_device_id *match;
match = usb_match_id(intf, blacklist_table);
if (match)
id = match;
}
if (id->driver_info == BTUSB_IGNORE)
return -ENODEV;
if (id->driver_info & BTUSB_ATH3012) {
struct usb_device *udev = interface_to_usbdev(intf);
/* Old firmware would otherwise let ath3k driver load
* patch and sysconfig files */
if (le16_to_cpu(udev->descriptor.bcdDevice) <= 0x0001)
return -ENODEV;
}
data = devm_kzalloc(&intf->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
ep_desc = &intf->cur_altsetting->endpoint[i].desc;
if (!data->intr_ep && usb_endpoint_is_int_in(ep_desc)) {
data->intr_ep = ep_desc;
continue;
}
if (!data->bulk_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) {
data->bulk_tx_ep = ep_desc;
continue;
}
if (!data->bulk_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) {
data->bulk_rx_ep = ep_desc;
continue;
}
}
if (!data->intr_ep || !data->bulk_tx_ep || !data->bulk_rx_ep)
return -ENODEV;
if (id->driver_info & BTUSB_AMP) {
data->cmdreq_type = USB_TYPE_CLASS | 0x01;
data->cmdreq = 0x2b;
} else {
data->cmdreq_type = USB_TYPE_CLASS;
data->cmdreq = 0x00;
}
data->udev = interface_to_usbdev(intf);
data->intf = intf;
INIT_WORK(&data->work, btusb_work);
INIT_WORK(&data->waker, btusb_waker);
init_usb_anchor(&data->deferred);
init_usb_anchor(&data->tx_anchor);
spin_lock_init(&data->txlock);
init_usb_anchor(&data->intr_anchor);
init_usb_anchor(&data->bulk_anchor);
init_usb_anchor(&data->isoc_anchor);
init_usb_anchor(&data->diag_anchor);
spin_lock_init(&data->rxlock);
if (id->driver_info & BTUSB_INTEL_NEW) {
data->recv_event = btusb_recv_event_intel;
data->recv_bulk = btusb_recv_bulk_intel;
set_bit(BTUSB_BOOTLOADER, &data->flags);
} else {
data->recv_event = hci_recv_frame;
data->recv_bulk = btusb_recv_bulk;
}
hdev = hci_alloc_dev();
if (!hdev)
return -ENOMEM;
hdev->bus = HCI_USB;
hci_set_drvdata(hdev, data);
if (id->driver_info & BTUSB_AMP)
hdev->dev_type = HCI_AMP;
else
hdev->dev_type = HCI_BREDR;
data->hdev = hdev;
SET_HCIDEV_DEV(hdev, &intf->dev);
hdev->open = btusb_open;
hdev->close = btusb_close;
hdev->flush = btusb_flush;
hdev->send = btusb_send_frame;
hdev->notify = btusb_notify;
if (id->driver_info & BTUSB_BCM2045)
set_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks);
if (id->driver_info & BTUSB_BCM92035)
hdev->setup = btusb_setup_bcm92035;
#ifdef CONFIG_BT_HCIBTUSB_BCM
if (id->driver_info & BTUSB_BCM_PATCHRAM) {
hdev->manufacturer = 15;
hdev->setup = btbcm_setup_patchram;
hdev->set_diag = btusb_bcm_set_diag;
hdev->set_bdaddr = btbcm_set_bdaddr;
/* Broadcom LM_DIAG Interface numbers are hardcoded */
data->diag = usb_ifnum_to_if(data->udev, ifnum_base + 2);
}
if (id->driver_info & BTUSB_BCM_APPLE) {
hdev->manufacturer = 15;
hdev->setup = btbcm_setup_apple;
hdev->set_diag = btusb_bcm_set_diag;
/* Broadcom LM_DIAG Interface numbers are hardcoded */
data->diag = usb_ifnum_to_if(data->udev, ifnum_base + 2);
}
#endif
if (id->driver_info & BTUSB_INTEL) {
hdev->manufacturer = 2;
hdev->setup = btusb_setup_intel;
hdev->shutdown = btusb_shutdown_intel;
hdev->set_diag = btintel_set_diag_mfg;
hdev->set_bdaddr = btintel_set_bdaddr;
set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
}
if (id->driver_info & BTUSB_INTEL_NEW) {
hdev->manufacturer = 2;
hdev->send = btusb_send_frame_intel;
hdev->setup = btusb_setup_intel_new;
hdev->hw_error = btintel_hw_error;
hdev->set_diag = btintel_set_diag;
hdev->set_bdaddr = btintel_set_bdaddr;
set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
}
if (id->driver_info & BTUSB_MARVELL)
hdev->set_bdaddr = btusb_set_bdaddr_marvell;
if (id->driver_info & BTUSB_SWAVE) {
set_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks);
set_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks);
}
if (id->driver_info & BTUSB_INTEL_BOOT) {
hdev->manufacturer = 2;
set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks);
}
if (id->driver_info & BTUSB_ATH3012) {
hdev->set_bdaddr = btusb_set_bdaddr_ath3012;
set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
}
if (id->driver_info & BTUSB_QCA_ROME) {
data->setup_on_usb = btusb_setup_qca;
hdev->set_bdaddr = btusb_set_bdaddr_ath3012;
/* QCA Rome devices lose their updated firmware over suspend,
* but the USB hub doesn't notice any status change.
* explicitly request a device reset on resume.
*/
interface_to_usbdev(intf)->quirks |= USB_QUIRK_RESET_RESUME;
}
#ifdef CONFIG_BT_HCIBTUSB_RTL
if (id->driver_info & BTUSB_REALTEK) {
hdev->setup = btrtl_setup_realtek;
/* Realtek devices lose their updated firmware over suspend,
* but the USB hub doesn't notice any status change.
* Explicitly request a device reset on resume.
*/
interface_to_usbdev(intf)->quirks |= USB_QUIRK_RESET_RESUME;
}
#endif
if (id->driver_info & BTUSB_AMP) {
/* AMP controllers do not support SCO packets */
data->isoc = NULL;
} else {
/* Interface orders are hardcoded in the specification */
data->isoc = usb_ifnum_to_if(data->udev, ifnum_base + 1);
}
if (!reset)
set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
if (force_scofix || id->driver_info & BTUSB_WRONG_SCO_MTU) {
if (!disable_scofix)
set_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks);
}
if (id->driver_info & BTUSB_BROKEN_ISOC)
data->isoc = NULL;
if (id->driver_info & BTUSB_DIGIANSWER) {
data->cmdreq_type = USB_TYPE_VENDOR;
set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
}
if (id->driver_info & BTUSB_CSR) {
struct usb_device *udev = data->udev;
u16 bcdDevice = le16_to_cpu(udev->descriptor.bcdDevice);
/* Old firmware would otherwise execute USB reset */
if (bcdDevice < 0x117)
set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
/* Fake CSR devices with broken commands */
if (bcdDevice <= 0x100 || bcdDevice == 0x134)
hdev->setup = btusb_setup_csr;
set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
}
if (id->driver_info & BTUSB_SNIFFER) {
struct usb_device *udev = data->udev;
/* New sniffer firmware has crippled HCI interface */
if (le16_to_cpu(udev->descriptor.bcdDevice) > 0x997)
set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks);
}
if (id->driver_info & BTUSB_INTEL_BOOT) {
/* A bug in the bootloader causes that interrupt interface is
* only enabled after receiving SetInterface(0, AltSetting=0).
*/
err = usb_set_interface(data->udev, 0, 0);
if (err < 0) {
BT_ERR("failed to set interface 0, alt 0 %d", err);
hci_free_dev(hdev);
return err;
}
}
if (data->isoc) {
err = usb_driver_claim_interface(&btusb_driver,
data->isoc, data);
if (err < 0) {
hci_free_dev(hdev);
return err;
}
}
#ifdef CONFIG_BT_HCIBTUSB_BCM
if (data->diag) {
if (!usb_driver_claim_interface(&btusb_driver,
data->diag, data))
__set_diag_interface(hdev);
else
data->diag = NULL;
}
#endif
err = hci_register_dev(hdev);
if (err < 0) {
hci_free_dev(hdev);
return err;
}
usb_set_intfdata(intf, data);
return 0;
}
static void btusb_disconnect(struct usb_interface *intf)
{
struct btusb_data *data = usb_get_intfdata(intf);
struct hci_dev *hdev;
BT_DBG("intf %p", intf);
if (!data)
return;
hdev = data->hdev;
usb_set_intfdata(data->intf, NULL);
if (data->isoc)
usb_set_intfdata(data->isoc, NULL);
if (data->diag)
usb_set_intfdata(data->diag, NULL);
hci_unregister_dev(hdev);
if (intf == data->intf) {
if (data->isoc)
usb_driver_release_interface(&btusb_driver, data->isoc);
if (data->diag)
usb_driver_release_interface(&btusb_driver, data->diag);
} else if (intf == data->isoc) {
if (data->diag)
usb_driver_release_interface(&btusb_driver, data->diag);
usb_driver_release_interface(&btusb_driver, data->intf);
} else if (intf == data->diag) {
usb_driver_release_interface(&btusb_driver, data->intf);
if (data->isoc)
usb_driver_release_interface(&btusb_driver, data->isoc);
}
hci_free_dev(hdev);
}
#ifdef CONFIG_PM
static int btusb_suspend(struct usb_interface *intf, pm_message_t message)
{
struct btusb_data *data = usb_get_intfdata(intf);
BT_DBG("intf %p", intf);
if (data->suspend_count++)
return 0;
spin_lock_irq(&data->txlock);
if (!(PMSG_IS_AUTO(message) && data->tx_in_flight)) {
set_bit(BTUSB_SUSPENDING, &data->flags);
spin_unlock_irq(&data->txlock);
} else {
spin_unlock_irq(&data->txlock);
data->suspend_count--;
return -EBUSY;
}
cancel_work_sync(&data->work);
btusb_stop_traffic(data);
usb_kill_anchored_urbs(&data->tx_anchor);
return 0;
}
static void play_deferred(struct btusb_data *data)
{
struct urb *urb;
int err;
while ((urb = usb_get_from_anchor(&data->deferred))) {
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err < 0)
break;
data->tx_in_flight++;
}
usb_scuttle_anchored_urbs(&data->deferred);
}
static int btusb_resume(struct usb_interface *intf)
{
struct btusb_data *data = usb_get_intfdata(intf);
struct hci_dev *hdev = data->hdev;
int err = 0;
BT_DBG("intf %p", intf);
if (--data->suspend_count)
return 0;
if (!test_bit(HCI_RUNNING, &hdev->flags))
goto done;
if (test_bit(BTUSB_INTR_RUNNING, &data->flags)) {
err = btusb_submit_intr_urb(hdev, GFP_NOIO);
if (err < 0) {
clear_bit(BTUSB_INTR_RUNNING, &data->flags);
goto failed;
}
}
if (test_bit(BTUSB_BULK_RUNNING, &data->flags)) {
err = btusb_submit_bulk_urb(hdev, GFP_NOIO);
if (err < 0) {
clear_bit(BTUSB_BULK_RUNNING, &data->flags);
goto failed;
}
btusb_submit_bulk_urb(hdev, GFP_NOIO);
}
if (test_bit(BTUSB_ISOC_RUNNING, &data->flags)) {
if (btusb_submit_isoc_urb(hdev, GFP_NOIO) < 0)
clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
else
btusb_submit_isoc_urb(hdev, GFP_NOIO);
}
spin_lock_irq(&data->txlock);
play_deferred(data);
clear_bit(BTUSB_SUSPENDING, &data->flags);
spin_unlock_irq(&data->txlock);
schedule_work(&data->work);
return 0;
failed:
usb_scuttle_anchored_urbs(&data->deferred);
done:
spin_lock_irq(&data->txlock);
clear_bit(BTUSB_SUSPENDING, &data->flags);
spin_unlock_irq(&data->txlock);
return err;
}
#endif
static struct usb_driver btusb_driver = {
.name = "btusb",
.probe = btusb_probe,
.disconnect = btusb_disconnect,
#ifdef CONFIG_PM
.suspend = btusb_suspend,
.resume = btusb_resume,
#endif
.id_table = btusb_table,
.supports_autosuspend = 1,
.disable_hub_initiated_lpm = 1,
};
module_usb_driver(btusb_driver);
module_param(disable_scofix, bool, 0644);
MODULE_PARM_DESC(disable_scofix, "Disable fixup of wrong SCO buffer size");
module_param(force_scofix, bool, 0644);
MODULE_PARM_DESC(force_scofix, "Force fixup of wrong SCO buffers size");
module_param(reset, bool, 0644);
MODULE_PARM_DESC(reset, "Send HCI reset command on initialization");
MODULE_AUTHOR("Marcel Holtmann ");
MODULE_DESCRIPTION("Generic Bluetooth USB driver ver " VERSION);
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");
4.2 声明 usb驱动 usb_driver btusb_driver
4.3 0xe0, 0x01, 0x01 是通用的蓝牙接口描述信息。
4.4 驱动匹配完成,进入probe函数。
五、方法二:通过厂家ID 和device ID:USB_DEVICE(厂家ID ,device ID) 完成device匹配实例
5.1 kernel\drivers\bluetooth\rtk_btusb.c
/*
*
* Realtek Bluetooth USB driver
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "rtk_btusb.h"
#define RTKBT_RELEASE_NAME "20200318_BT_ANDROID_9.0"
#define VERSION "5.2.1"
#define SUSPNED_DW_FW 0
#define SET_WAKEUP_DEVICE 0
static DEFINE_SPINLOCK(queue_lock);
static DEFINE_SPINLOCK(running_flag_lock);
static volatile uint16_t driver_state = 0;
#if SUSPNED_DW_FW
static firmware_info *fw_info_4_suspend = NULL;
#endif
static uint32_t usb_info;
static patch_info fw_patch_table[] = {
/* { vid, pid, lmp_sub_default, lmp_sub, everion, mp_fw_name, fw_name, config_name, fw_cache, fw_len, mac_offset } */
{ 0x0BDA, 0x1724, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723A */
{ 0x0BDA, 0x8723, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* 8723AE */
{ 0x0BDA, 0xA723, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* 8723AE for LI */
{ 0x0BDA, 0x0723, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* 8723AE */
{ 0x13D3, 0x3394, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* 8723AE for Azurewave*/
{ 0x0BDA, 0x0724, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* 8723AU */
{ 0x0BDA, 0x8725, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* 8723AU */
{ 0x0BDA, 0x872A, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* 8723AU */
{ 0x0BDA, 0x872B, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* 8723AU */
{ 0x0BDA, 0xb720, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723bu_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BU */
{ 0x0BDA, 0xb72A, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723bu_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BU */
{ 0x0BDA, 0xb728, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE for LC */
{ 0x0BDA, 0xb723, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE */
{ 0x0BDA, 0xb72B, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE */
{ 0x0BDA, 0xb001, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE for HP */
{ 0x0BDA, 0xb002, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE */
{ 0x0BDA, 0xb003, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE */
{ 0x0BDA, 0xb004, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE */
{ 0x0BDA, 0xb005, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE */
{ 0x13D3, 0x3410, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE for Azurewave */
{ 0x13D3, 0x3416, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE for Azurewave */
{ 0x13D3, 0x3459, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE for Azurewave */
{ 0x0489, 0xE085, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE for Foxconn */
{ 0x0489, 0xE08B, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE for Foxconn */
{ 0x0BDA, 0x2850, 0x8761, 0, 0, "mp_rtl8761a_fw", "rtl8761au_fw", "rtl8761a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8761AU */
{ 0x0BDA, 0xA761, 0x8761, 0, 0, "mp_rtl8761a_fw", "rtl8761au_fw", "rtl8761a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8761AU only */
{ 0x0BDA, 0x818B, 0x8761, 0, 0, "mp_rtl8761a_fw", "rtl8761aw8192eu_fw", "rtl8761aw8192eu_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8761AW + 8192EU */
{ 0x0BDA, 0x818C, 0x8761, 0, 0, "mp_rtl8761a_fw", "rtl8761aw8192eu_fw", "rtl8761aw8192eu_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8761AW + 8192EU */
{ 0x0BDA, 0x8760, 0x8761, 0, 0, "mp_rtl8761a_fw", "rtl8761au8192ee_fw", "rtl8761a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8761AU + 8192EE */
{ 0x0BDA, 0xB761, 0x8761, 0, 0, "mp_rtl8761a_fw", "rtl8761au_fw", "rtl8761a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8761AUV only */
{ 0x0BDA, 0x8761, 0x8761, 0, 0, "mp_rtl8761a_fw", "rtl8761au8192ee_fw", "rtl8761a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8761AU + 8192EE for LI */
{ 0x0BDA, 0x8A60, 0x8761, 0, 0, "mp_rtl8761a_fw", "rtl8761au8812ae_fw", "rtl8761a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8761AU + 8812AE */
{ 0x0BDA, 0x8771, 0x8761, 0, 0, "mp_rtl8761b_fw", "rtl8761b_fw", "rtl8761b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8761BU */
{ 0x0BDA, 0xa725, 0x8761, 0, 0, "mp_rtl8725a_fw", "rtl8725a_fw", "rtl8725a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8725AU */
{ 0x0BDA, 0xa72A, 0x8761, 0, 0, "mp_rtl8725a_fw", "rtl8725a_fw", "rtl8725a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8725AU BT only */
{ 0x0BDA, 0x8821, 0x8821, 0, 0, "mp_rtl8821a_fw", "rtl8821a_fw", "rtl8821a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8821AE */
{ 0x0BDA, 0x0821, 0x8821, 0, 0, "mp_rtl8821a_fw", "rtl8821a_fw", "rtl8821a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8821AE */
{ 0x0BDA, 0x0823, 0x8821, 0, 0, "mp_rtl8821a_fw", "rtl8821a_fw", "rtl8821a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8821AU */
{ 0x13D3, 0x3414, 0x8821, 0, 0, "mp_rtl8821a_fw", "rtl8821a_fw", "rtl8821a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8821AE */
{ 0x13D3, 0x3458, 0x8821, 0, 0, "mp_rtl8821a_fw", "rtl8821a_fw", "rtl8821a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8821AE */
{ 0x13D3, 0x3461, 0x8821, 0, 0, "mp_rtl8821a_fw", "rtl8821a_fw", "rtl8821a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8821AE */
{ 0x13D3, 0x3462, 0x8821, 0, 0, "mp_rtl8821a_fw", "rtl8821a_fw", "rtl8821a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8821AE */
{ 0x0BDA, 0xB822, 0x8822, 0, 0, "mp_rtl8822b_fw", "rtl8822b_fw", "rtl8822b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_25K}, /* RTL8822BE */
{ 0x0BDA, 0xB82C, 0x8822, 0, 0, "mp_rtl8822b_fw", "rtl8822b_fw", "rtl8822b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_25K}, /* RTL8822BU */
{ 0x0BDA, 0xB81D, 0x8822, 0, 0, "mp_rtl8822b_fw", "rtl8822b_fw", "rtl8822b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_25K}, /* RTL8822BU BT only */
{ 0x0BDA, 0xB82E, 0x8822, 0, 0, "mp_rtl8822b_fw", "rtl8822b_fw", "rtl8822b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_25K}, /* RTL8822BU-VN */
{ 0x0BDA, 0xB023, 0x8822, 0, 0, "mp_rtl8822b_fw", "rtl8822b_fw", "rtl8822b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_25K}, /* RTL8822BE */
{ 0x0BDA, 0xB703, 0x8703, 0, 0, "mp_rtl8723c_fw", "rtl8723c_fw", "rtl8723c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_24K}, /* RTL8723CU */
/* todo: RTL8703BU */
{ 0x0BDA, 0xD723, 0x8723, 0, 0, "mp_rtl8723d_fw", "rtl8723d_fw", "rtl8723d_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_40K}, /* RTL8723DU */
{ 0x0BDA, 0xD72A, 0x8723, 0, 0, "mp_rtl8723d_fw", "rtl8723d_fw", "rtl8723d_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_40K}, /* RTL8723DU BT only */
{ 0x0BDA, 0xD720, 0x8723, 0, 0, "mp_rtl8723d_fw", "rtl8723d_fw", "rtl8723d_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_40K}, /* RTL8723DE */
{ 0x0BDA, 0xB820, 0x8821, 0, 0, "mp_rtl8821c_fw", "rtl8821c_fw", "rtl8821c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_40K}, /* RTL8821CU */
{ 0x0BDA, 0xC820, 0x8821, 0, 0, "mp_rtl8821c_fw", "rtl8821c_fw", "rtl8821c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_40K}, /* RTL8821CU */
{ 0x0BDA, 0xC82A, 0x8821, 0, 0, "mp_rtl8821c_fw", "rtl8821c_fw", "rtl8821c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_40K}, /* RTL8821CU BT only */
{ 0x0BDA, 0xC821, 0x8821, 0, 0, "mp_rtl8821c_fw", "rtl8821c_fw", "rtl8821c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_40K}, /* RTL8821CE */
/* todo: RTL8703CU */
{ 0x0BDA, 0xC82C, 0x8822, 0, 0, "mp_rtl8822c_fw", "rtl8822c_fw", "rtl8822c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8822CU */
{ 0x0BDA, 0xC82E, 0x8822, 0, 0, "mp_rtl8822c_fw", "rtl8822c_fw", "rtl8822c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8822CU-VN */
{ 0x0BDA, 0xC81D, 0x8822, 0, 0, "mp_rtl8822c_fw", "rtl8822c_fw", "rtl8822c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8822CU BT only */
{ 0x0BDA, 0xC82F, 0x8822, 0, 0, "mp_rtl8822c_fw", "rtl8822c_fw", "rtl8822c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8822CE-VS */
{ 0x0BDA, 0xC822, 0x8822, 0, 0, "mp_rtl8822c_fw", "rtl8822c_fw", "rtl8822c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8822CE */
{ 0x0BDA, 0xB00C, 0x8822, 0, 0, "mp_rtl8822c_fw", "rtl8822c_fw", "rtl8822c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8822CE */
/* NOTE: must append patch entries above the null entry */
{ 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0, 0, 0 }
};
struct btusb_data {
struct hci_dev *hdev;
struct usb_device *udev;
struct usb_interface *intf;
struct usb_interface *isoc;
spinlock_t lock;
unsigned long flags;
struct work_struct work;
struct work_struct waker;
struct usb_anchor tx_anchor;
struct usb_anchor intr_anchor;
struct usb_anchor bulk_anchor;
struct usb_anchor isoc_anchor;
struct usb_anchor deferred;
int tx_in_flight;
spinlock_t txlock;
struct usb_endpoint_descriptor *intr_ep;
struct usb_endpoint_descriptor *bulk_tx_ep;
struct usb_endpoint_descriptor *bulk_rx_ep;
struct usb_endpoint_descriptor *isoc_tx_ep;
struct usb_endpoint_descriptor *isoc_rx_ep;
__u8 cmdreq_type;
unsigned int sco_num;
int isoc_altsetting;
int suspend_count;
uint16_t sco_handle;
//#ifdef CONFIG_HAS_EARLYSUSPEND
#if 0
struct early_suspend early_suspend;
#else
struct notifier_block pm_notifier;
struct notifier_block reboot_notifier;
#endif
firmware_info *fw_info;
#ifdef CONFIG_SCO_OVER_HCI
RTK_sco_card_t *pSCOSnd;
#endif
};
int download_patch(firmware_info *fw_info, int cached);
int reset_controller(firmware_info* fw_info);
/********************************************************
** this function first check the value, if true then set value
**
*********************************************************/
static inline bool check_set_driver_state_value(uint16_t check_value, uint16_t change_value)
{
bool res;
spin_lock(&running_flag_lock);
if((driver_state & check_value) != check_value) {
res = false;
}
else {
driver_state |= change_value;
res = true;
}
spin_unlock(&running_flag_lock);
return res;
}
static inline uint16_t get_driver_state_value(void)
{
uint16_t state;
spin_lock(&running_flag_lock);
state = driver_state;
spin_unlock(&running_flag_lock);
return state;
}
static inline void clear_driver_state(uint16_t clear_value)
{
spin_lock(&running_flag_lock);
driver_state &= (~clear_value);
spin_unlock(&running_flag_lock);
}
static inline void set_driver_state_value(uint16_t change_value)
{
spin_lock(&running_flag_lock);
driver_state |= change_value;
spin_unlock(&running_flag_lock);
}
#if SUSPNED_DW_FW
static int download_suspend_patch(firmware_info *fw_info, int cached);
#endif
#if SET_WAKEUP_DEVICE
static void set_wakeup_device_from_conf(firmware_info *fw_info);
int set_wakeup_device(firmware_info* fw_info, uint8_t* wakeup_bdaddr);
#endif
static void rtk_free( struct btusb_data *data)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 1)
kfree(data);
#endif
return;
}
static struct btusb_data *rtk_alloc(struct usb_interface *intf)
{
struct btusb_data *data;
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 1)
data = kzalloc(sizeof(*data), GFP_KERNEL);
#else
data = devm_kzalloc(&intf->dev, sizeof(*data), GFP_KERNEL);
#endif
return data;
}
static void print_acl(struct sk_buff *skb, int direction)
{
#if PRINT_ACL_DATA
uint wlength = skb->len;
u16 *handle = (u16 *)(skb->data);
u16 len = *(handle+1);
u8 *acl_data = (u8 *)(skb->data);
RTK_INFO("%s: direction %d, handle %04x, len %d",
__func__, direction, *handle, len);
#endif
}
static void print_sco(struct sk_buff *skb, int direction)
{
#if PRINT_SCO_DATA
uint wlength = skb->len;
u16 *handle = (u16 *)(skb->data);
u8 len = *(u8 *)(handle+1);
u8 *sco_data =(u8 *)(skb->data);
RTKBT_INFO("%s: direction %d, handle %04x, len %d",
__func__, direction, *handle, len);
#endif
}
static void print_error_command(struct sk_buff *skb)
{
uint wlength = skb->len;
uint icount = 0;
u16 *opcode = (u16*)(skb->data);
u8 *cmd_data = (u8*)(skb->data);
u8 len = *(cmd_data+2);
switch (*opcode) {
case HCI_OP_INQUIRY:
printk("HCI_OP_INQUIRY");
break;
case HCI_OP_INQUIRY_CANCEL:
printk("HCI_OP_INQUIRY_CANCEL");
break;
case HCI_OP_EXIT_PERIODIC_INQ:
printk("HCI_OP_EXIT_PERIODIC_INQ");
break;
case HCI_OP_CREATE_CONN:
printk("HCI_OP_CREATE_CONN");
break;
case HCI_OP_DISCONNECT:
printk("HCI_OP_DISCONNECT");
break;
case HCI_OP_CREATE_CONN_CANCEL:
printk("HCI_OP_CREATE_CONN_CANCEL");
break;
case HCI_OP_ACCEPT_CONN_REQ:
printk("HCI_OP_ACCEPT_CONN_REQ");
break;
case HCI_OP_REJECT_CONN_REQ:
printk("HCI_OP_REJECT_CONN_REQ");
break;
case HCI_OP_AUTH_REQUESTED:
printk("HCI_OP_AUTH_REQUESTED");
break;
case HCI_OP_SET_CONN_ENCRYPT:
printk("HCI_OP_SET_CONN_ENCRYPT");
break;
case HCI_OP_REMOTE_NAME_REQ:
printk("HCI_OP_REMOTE_NAME_REQ");
break;
case HCI_OP_READ_REMOTE_FEATURES:
printk("HCI_OP_READ_REMOTE_FEATURES");
break;
case HCI_OP_SNIFF_MODE:
printk("HCI_OP_SNIFF_MODE");
break;
case HCI_OP_EXIT_SNIFF_MODE:
printk("HCI_OP_EXIT_SNIFF_MODE");
break;
case HCI_OP_SWITCH_ROLE:
printk("HCI_OP_SWITCH_ROLE");
break;
case HCI_OP_SNIFF_SUBRATE:
printk("HCI_OP_SNIFF_SUBRATE");
break;
case HCI_OP_RESET:
printk("HCI_OP_RESET");
break;
case HCI_OP_Write_Extended_Inquiry_Response:
printk("HCI_Write_Extended_Inquiry_Response");
break;
default:
printk("CMD");
break;
}
printk(":%04x,len:%d,", *opcode,len);
for (icount = 3; (icount < wlength) && (icount < 24); icount++)
printk("%02x ", *(cmd_data+icount));
printk("\n");
}
static void print_command(struct sk_buff *skb)
{
#if PRINT_CMD_EVENT
print_error_command(skb);
#endif
}
#if CONFIG_BLUEDROID
/* Global parameters for bt usb char driver */
#define BT_CHAR_DEVICE_NAME "rtkbt_dev"
static struct sk_buff_head btchr_readq;
static wait_queue_head_t btchr_read_wait;
static wait_queue_head_t bt_drv_state_wait;
static dev_t bt_devid; /* bt char device number */
static struct cdev bt_char_dev; /* bt character device structure */
static struct class *bt_char_class; /* device class for usb char driver */
static int bt_reset = 0;
/* HCI device & lock */
DEFINE_RWLOCK(hci_dev_lock);
struct hci_dev *ghdev = NULL;
static void print_event(struct sk_buff *skb)
{
#if PRINT_CMD_EVENT
uint wlength = skb->len;
uint icount = 0;
u8 *opcode = (u8*)(skb->data);
u8 len = *(opcode+1);
switch (*opcode) {
case HCI_EV_INQUIRY_COMPLETE:
printk("HCI_EV_INQUIRY_COMPLETE");
break;
case HCI_EV_INQUIRY_RESULT:
printk("HCI_EV_INQUIRY_RESULT");
break;
case HCI_EV_CONN_COMPLETE:
printk("HCI_EV_CONN_COMPLETE");
break;
case HCI_EV_CONN_REQUEST:
printk("HCI_EV_CONN_REQUEST");
break;
case HCI_EV_DISCONN_COMPLETE:
printk("HCI_EV_DISCONN_COMPLETE");
break;
case HCI_EV_AUTH_COMPLETE:
printk("HCI_EV_AUTH_COMPLETE");
break;
case HCI_EV_REMOTE_NAME:
printk("HCI_EV_REMOTE_NAME");
break;
case HCI_EV_ENCRYPT_CHANGE:
printk("HCI_EV_ENCRYPT_CHANGE");
break;
case HCI_EV_CHANGE_LINK_KEY_COMPLETE:
printk("HCI_EV_CHANGE_LINK_KEY_COMPLETE");
break;
case HCI_EV_REMOTE_FEATURES:
printk("HCI_EV_REMOTE_FEATURES");
break;
case HCI_EV_REMOTE_VERSION:
printk("HCI_EV_REMOTE_VERSION");
break;
case HCI_EV_QOS_SETUP_COMPLETE:
printk("HCI_EV_QOS_SETUP_COMPLETE");
break;
case HCI_EV_CMD_COMPLETE:
printk("HCI_EV_CMD_COMPLETE");
break;
case HCI_EV_CMD_STATUS:
printk("HCI_EV_CMD_STATUS");
break;
case HCI_EV_ROLE_CHANGE:
printk("HCI_EV_ROLE_CHANGE");
break;
case HCI_EV_NUM_COMP_PKTS:
printk("HCI_EV_NUM_COMP_PKTS");
break;
case HCI_EV_MODE_CHANGE:
printk("HCI_EV_MODE_CHANGE");
break;
case HCI_EV_PIN_CODE_REQ:
printk("HCI_EV_PIN_CODE_REQ");
break;
case HCI_EV_LINK_KEY_REQ:
printk("HCI_EV_LINK_KEY_REQ");
break;
case HCI_EV_LINK_KEY_NOTIFY:
printk("HCI_EV_LINK_KEY_NOTIFY");
break;
case HCI_EV_CLOCK_OFFSET:
printk("HCI_EV_CLOCK_OFFSET");
break;
case HCI_EV_PKT_TYPE_CHANGE:
printk("HCI_EV_PKT_TYPE_CHANGE");
break;
case HCI_EV_PSCAN_REP_MODE:
printk("HCI_EV_PSCAN_REP_MODE");
break;
case HCI_EV_INQUIRY_RESULT_WITH_RSSI:
printk("HCI_EV_INQUIRY_RESULT_WITH_RSSI");
break;
case HCI_EV_REMOTE_EXT_FEATURES:
printk("HCI_EV_REMOTE_EXT_FEATURES");
break;
case HCI_EV_SYNC_CONN_COMPLETE:
printk("HCI_EV_SYNC_CONN_COMPLETE");
break;
case HCI_EV_SYNC_CONN_CHANGED:
printk("HCI_EV_SYNC_CONN_CHANGED");
break;
case HCI_EV_SNIFF_SUBRATE:
printk("HCI_EV_SNIFF_SUBRATE");
break;
case HCI_EV_EXTENDED_INQUIRY_RESULT:
printk("HCI_EV_EXTENDED_INQUIRY_RESULT");
break;
case HCI_EV_IO_CAPA_REQUEST:
printk("HCI_EV_IO_CAPA_REQUEST");
break;
case HCI_EV_SIMPLE_PAIR_COMPLETE:
printk("HCI_EV_SIMPLE_PAIR_COMPLETE");
break;
case HCI_EV_REMOTE_HOST_FEATURES:
printk("HCI_EV_REMOTE_HOST_FEATURES");
break;
default:
printk("event");
break;
}
printk(":%02x,len:%d,", *opcode,len);
for (icount = 2; (icount < wlength) && (icount < 24); icount++)
printk("%02x ", *(opcode+icount));
printk("\n");
#endif
}
static inline ssize_t usb_put_user(struct sk_buff *skb,
char __user *buf, int count)
{
char __user *ptr = buf;
int len = min_t(unsigned int, skb->len, count);
if (copy_to_user(ptr, skb->data, len))
return -EFAULT;
return len;
}
static struct sk_buff *rtk_skb_queue[QUEUE_SIZE];
static int rtk_skb_queue_front = 0;
static int rtk_skb_queue_rear = 0;
static void rtk_enqueue(struct sk_buff *skb)
{
unsigned long flags;
spin_lock_irqsave(&queue_lock, flags);
if (rtk_skb_queue_front == (rtk_skb_queue_rear + 1) % QUEUE_SIZE) {
/*
* If queue is full, current solution is to drop
* the following entries.
*/
RTKBT_WARN("%s: Queue is full, entry will be dropped", __func__);
} else {
rtk_skb_queue[rtk_skb_queue_rear] = skb;
rtk_skb_queue_rear++;
rtk_skb_queue_rear %= QUEUE_SIZE;
}
spin_unlock_irqrestore(&queue_lock, flags);
}
static struct sk_buff *rtk_dequeue_try(unsigned int deq_len)
{
struct sk_buff *skb;
struct sk_buff *skb_copy;
if (rtk_skb_queue_front == rtk_skb_queue_rear) {
RTKBT_WARN("%s: Queue is empty", __func__);
return NULL;
}
skb = rtk_skb_queue[rtk_skb_queue_front];
if (deq_len >= skb->len) {
rtk_skb_queue[rtk_skb_queue_front] = NULL;
rtk_skb_queue_front++;
rtk_skb_queue_front %= QUEUE_SIZE;
/*
* Return skb addr to be dequeued, and the caller
* should free the skb eventually.
*/
return skb;
} else {
skb_copy = pskb_copy(skb, GFP_ATOMIC);
skb_pull(skb, deq_len);
/* Return its copy to be freed */
return skb_copy;
}
}
static inline int is_queue_empty(void)
{
return (rtk_skb_queue_front == rtk_skb_queue_rear) ? 1 : 0;
}
static void rtk_clear_queue(void)
{
struct sk_buff *skb;
unsigned long flags;
spin_lock_irqsave(&queue_lock, flags);
while(!is_queue_empty()) {
skb = rtk_skb_queue[rtk_skb_queue_front];
rtk_skb_queue[rtk_skb_queue_front] = NULL;
rtk_skb_queue_front++;
rtk_skb_queue_front %= QUEUE_SIZE;
if (skb) {
kfree_skb(skb);
}
}
spin_unlock_irqrestore(&queue_lock, flags);
}
/*
* Realtek - Integrate from hci_core.c
*/
/* Get HCI device by index.
* Device is held on return. */
static struct hci_dev *hci_dev_get(int index)
{
if (index != 0)
return NULL;
return ghdev;
}
/* ---- HCI ioctl helpers ---- */
static int hci_dev_open(__u16 dev)
{
struct hci_dev *hdev;
int ret = 0;
RTKBT_DBG("%s: dev %d", __func__, dev);
hdev = hci_dev_get(dev);
if (!hdev) {
RTKBT_ERR("%s: Failed to get hci dev[Null]", __func__);
return -ENODEV;
}
if (test_bit(HCI_UNREGISTER, &hdev->flags)) {
ret = -ENODEV;
goto done;
}
if (test_bit(HCI_UP, &hdev->flags)) {
ret = -EALREADY;
goto done;
}
done:
return ret;
}
static int hci_dev_do_close(struct hci_dev *hdev)
{
if (hdev->flush)
hdev->flush(hdev);
/* After this point our queues are empty
* and no tasks are scheduled. */
hdev->close(hdev);
/* Clear flags */
hdev->flags = 0;
memset(&hdev->conn_hash, 0, sizeof(struct hci_conn_hash));
return 0;
}
static int hci_dev_close(__u16 dev)
{
struct hci_dev *hdev;
int err;
hdev = hci_dev_get(dev);
if (!hdev) {
RTKBT_ERR("%s: failed to get hci dev[Null]", __func__);
return -ENODEV;
}
err = hci_dev_do_close(hdev);
return err;
}
static struct hci_dev *hci_alloc_dev(void)
{
struct hci_dev *hdev;
hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
if (!hdev)
return NULL;
return hdev;
}
/* Free HCI device */
static void hci_free_dev(struct hci_dev *hdev)
{
kfree(hdev);
}
/* Register HCI device */
static int hci_register_dev(struct hci_dev *hdev)
{
int i, id;
RTKBT_DBG("%s: %p name %s bus %d", __func__, hdev, hdev->name, hdev->bus);
/* Do not allow HCI_AMP devices to register at index 0,
* so the index can be used as the AMP controller ID.
*/
id = (hdev->dev_type == HCI_BREDR) ? 0 : 1;
write_lock(&hci_dev_lock);
sprintf(hdev->name, "hci%d", id);
hdev->id = id;
hdev->flags = 0;
mutex_init(&hdev->lock);
RTKBT_DBG("%s: id %d, name %s", __func__, hdev->id, hdev->name);
for (i = 0; i < NUM_REASSEMBLY; i++)
hdev->reassembly[i] = NULL;
memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
atomic_set(&hdev->promisc, 0);
if (ghdev) {
write_unlock(&hci_dev_lock);
RTKBT_ERR("%s: Hci device has been registered already", __func__);
return -1;
} else
ghdev = hdev;
write_unlock(&hci_dev_lock);
return id;
}
/* Unregister HCI device */
static void hci_unregister_dev(struct hci_dev *hdev)
{
int i;
RTKBT_DBG("%s: hdev %p name %s bus %d", __func__, hdev, hdev->name, hdev->bus);
set_bit(HCI_UNREGISTER, &hdev->flags);
write_lock(&hci_dev_lock);
ghdev = NULL;
write_unlock(&hci_dev_lock);
hci_dev_do_close(hdev);
for (i = 0; i < NUM_REASSEMBLY; i++)
kfree_skb(hdev->reassembly[i]);
}
#ifdef CONFIG_SCO_OVER_HCI
/* copy data from the URB buffer into the ALSA ring buffer */
static bool rtk_copy_capture_data_to_alsa(struct btusb_data *data, uint8_t* p_data, unsigned int frames)
{
struct snd_pcm_runtime *runtime;
unsigned int frame_bytes, frames1;
u8 *dest;
RTK_sco_card_t *pSCOSnd = data->pSCOSnd;
runtime = pSCOSnd->capture.substream->runtime;
frame_bytes = 2;
dest = runtime->dma_area + pSCOSnd->capture.buffer_pos * frame_bytes;
if (pSCOSnd->capture.buffer_pos + frames <= runtime->buffer_size) {
memcpy(dest, p_data, frames * frame_bytes);
} else {
/* wrap around at end of ring buffer */
frames1 = runtime->buffer_size - pSCOSnd->capture.buffer_pos;
memcpy(dest, p_data, frames1 * frame_bytes);
memcpy(runtime->dma_area,
p_data + frames1 * frame_bytes,
(frames - frames1) * frame_bytes);
}
pSCOSnd->capture.buffer_pos += frames;
if (pSCOSnd->capture.buffer_pos >= runtime->buffer_size) {
pSCOSnd->capture.buffer_pos -= runtime->buffer_size;
}
if((pSCOSnd->capture.buffer_pos%runtime->period_size) == 0) {
snd_pcm_period_elapsed(pSCOSnd->capture.substream);
}
return false;
}
static void hci_send_to_alsa_ringbuffer(struct hci_dev *hdev, struct sk_buff *skb)
{
struct btusb_data *data = GET_DRV_DATA(hdev);
RTK_sco_card_t *pSCOSnd = data->pSCOSnd;
uint8_t* p_data;
int sco_length = skb->len - HCI_SCO_HDR_SIZE;
RTKBT_DBG("%s", __func__);
if (!hdev) {
RTKBT_ERR("%s: Frame for unknown HCI device", __func__);
return;
}
if (!test_bit(ALSA_CAPTURE_RUNNING, &pSCOSnd->states)) {
//RTKBT_WARN("%s: ALSA is not running", __func__);
return;
}
p_data = (uint8_t *)skb->data + HCI_SCO_HDR_SIZE;
rtk_copy_capture_data_to_alsa(data, p_data, sco_length/2);
}
#endif
static void hci_send_to_stack(struct hci_dev *hdev, struct sk_buff *skb)
{
struct sk_buff *rtk_skb_copy = NULL;
RTKBT_DBG("%s", __func__);
if (!hdev) {
RTKBT_ERR("%s: Frame for unknown HCI device", __func__);
return;
}
if (!test_bit(HCI_RUNNING, &hdev->flags)) {
RTKBT_ERR("%s: HCI not running", __func__);
return;
}
rtk_skb_copy = pskb_copy(skb, GFP_ATOMIC);
if (!rtk_skb_copy) {
RTKBT_ERR("%s: Copy skb error", __func__);
return;
}
memcpy(skb_push(rtk_skb_copy, 1), &bt_cb(skb)->pkt_type, 1);
rtk_enqueue(rtk_skb_copy);
/* Make sure bt char device existing before wakeup read queue */
hdev = hci_dev_get(0);
if (hdev) {
RTKBT_DBG("%s: Try to wakeup read queue", __func__);
wake_up_interruptible(&btchr_read_wait);
}
return;
}
/* Receive frame from HCI drivers */
static int hci_recv_frame(struct sk_buff *skb)
{
struct hci_dev *hdev = (struct hci_dev *) skb->dev;
if (!hdev || !test_bit(HCI_UP, &hdev->flags)) {
kfree_skb(skb);
return -ENXIO;
}
/* Incomming skb */
bt_cb(skb)->incoming = 1;
/* Time stamp */
__net_timestamp(skb);
if (atomic_read(&hdev->promisc)) {
#ifdef CONFIG_SCO_OVER_HCI
if(bt_cb(skb)->pkt_type == HCI_SCODATA_PKT)
hci_send_to_alsa_ringbuffer(hdev, skb);
#endif
/* Send copy to the sockets */
hci_send_to_stack(hdev, skb);
}
kfree_skb(skb);
return 0;
}
/* Receive frame from HCI drivers */
static int hci_recv_sco_frame(struct sk_buff *skb)
{
struct hci_dev *hdev = (struct hci_dev *) skb->dev;
if (!hdev || !test_bit(HCI_UP, &hdev->flags)) {
kfree_skb(skb);
return -ENXIO;
}
/* Incomming skb */
bt_cb(skb)->incoming = 1;
/* Time stamp */
__net_timestamp(skb);
if (atomic_read(&hdev->promisc)) {
#ifdef CONFIG_SCO_OVER_HCI
if(bt_cb(skb)->pkt_type == HCI_SCODATA_PKT)
hci_send_to_alsa_ringbuffer(hdev, skb);
#endif
/* Send copy to the sockets */
hci_send_to_stack(hdev, skb);
}
kfree_skb(skb);
return 0;
}
static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
int count, __u8 index)
{
int len = 0;
int hlen = 0;
int remain = count;
struct sk_buff *skb;
struct bt_skb_cb *scb;
RTKBT_DBG("%s", __func__);
if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
index >= NUM_REASSEMBLY)
return -EILSEQ;
skb = hdev->reassembly[index];
if (!skb) {
switch (type) {
case HCI_ACLDATA_PKT:
len = HCI_MAX_FRAME_SIZE;
hlen = HCI_ACL_HDR_SIZE;
break;
case HCI_EVENT_PKT:
len = HCI_MAX_EVENT_SIZE;
hlen = HCI_EVENT_HDR_SIZE;
break;
case HCI_SCODATA_PKT:
len = HCI_MAX_SCO_SIZE;
hlen = HCI_SCO_HDR_SIZE;
break;
}
skb = bt_skb_alloc(len, GFP_ATOMIC);
if (!skb)
return -ENOMEM;
scb = (void *) skb->cb;
scb->expect = hlen;
scb->pkt_type = type;
skb->dev = (void *) hdev;
hdev->reassembly[index] = skb;
}
while (count) {
scb = (void *) skb->cb;
len = min_t(uint, scb->expect, count);
memcpy(skb_put(skb, len), data, len);
count -= len;
data += len;
scb->expect -= len;
remain = count;
switch (type) {
case HCI_EVENT_PKT:
if (skb->len == HCI_EVENT_HDR_SIZE) {
struct hci_event_hdr *h = hci_event_hdr(skb);
scb->expect = h->plen;
if (skb_tailroom(skb) < scb->expect) {
kfree_skb(skb);
hdev->reassembly[index] = NULL;
return -ENOMEM;
}
}
break;
case HCI_ACLDATA_PKT:
if (skb->len == HCI_ACL_HDR_SIZE) {
struct hci_acl_hdr *h = hci_acl_hdr(skb);
scb->expect = __le16_to_cpu(h->dlen);
if (skb_tailroom(skb) < scb->expect) {
kfree_skb(skb);
hdev->reassembly[index] = NULL;
return -ENOMEM;
}
}
break;
case HCI_SCODATA_PKT:
if (skb->len == HCI_SCO_HDR_SIZE) {
struct hci_sco_hdr *h = hci_sco_hdr(skb);
scb->expect = h->dlen;
if (skb_tailroom(skb) < scb->expect) {
kfree_skb(skb);
hdev->reassembly[index] = NULL;
return -ENOMEM;
}
}
break;
}
if (scb->expect == 0) {
/* Complete frame */
if(HCI_ACLDATA_PKT == type)
print_acl(skb,0);
if(HCI_SCODATA_PKT == type)
print_sco(skb,0);
if(HCI_EVENT_PKT == type)
print_event(skb);
bt_cb(skb)->pkt_type = type;
if(type == HCI_SCODATA_PKT) {
hci_recv_sco_frame(skb);
}
else
hci_recv_frame(skb);
hdev->reassembly[index] = NULL;
return remain;
}
}
return remain;
}
static int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
{
int rem = 0;
if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
return -EILSEQ;
while (count) {
rem = hci_reassembly(hdev, type, data, count, type - 1);
if (rem < 0)
return rem;
data += (count - rem);
count = rem;
}
return rem;
}
static void hci_hardware_error(void)
{
struct sk_buff *rtk_skb_copy = NULL;
int len = 4;
uint8_t hardware_err_pkt[4] = {HCI_EVENT_PKT, 0x10, 0x01, HCI_VENDOR_USB_DISC_HARDWARE_ERROR};
rtk_skb_copy = alloc_skb(len, GFP_ATOMIC);
if (!rtk_skb_copy) {
RTKBT_ERR("%s: Failed to allocate mem", __func__);
return;
}
memcpy(skb_put(rtk_skb_copy, len), hardware_err_pkt, len);
rtk_enqueue(rtk_skb_copy);
wake_up_interruptible(&btchr_read_wait);
}
static int btchr_open(struct inode *inode_p, struct file *file_p)
{
struct btusb_data *data;
struct hci_dev *hdev;
struct sk_buff *skb;
int i;
RTKBT_INFO("%s: BT usb char device is opening", __func__);
if(!check_set_driver_state_value(DEVICE_PROBED, CHAR_OPENED)) {
RTKBT_ERR("%s: Device not probed", __func__);
return -ENODEV;
}
hdev = hci_dev_get(0);
if (!hdev) {
RTKBT_ERR("%s: Failed to get hci dev[NULL]", __func__);
return -ENODEV;
}
set_bit(HCI_UP, &hdev->flags);
data = GET_DRV_DATA(hdev);
atomic_inc(&hdev->promisc);
/*
* As bt device is not re-opened when hotplugged out, we cannot
* trust on file's private data(may be null) when other file ops
* are invoked.
*/
file_p->private_data = data;
hci_dev_open(0);
rtk_clear_queue();
for(i = 0; i < NUM_REASSEMBLY; i++) {
skb = hdev->reassembly[i];
if(skb) {
hdev->reassembly[i] = NULL;
kfree_skb(skb);
}
}
return nonseekable_open(inode_p, file_p);
}
static int btchr_close(struct inode *inode_p, struct file *file_p)
{
struct btusb_data *data;
struct hci_dev *hdev;
RTKBT_INFO("%s: BT usb char device is closing", __func__);
data = file_p->private_data;
file_p->private_data = NULL;
#if CONFIG_BLUEDROID
/*
* If the upper layer closes bt char interfaces, no reset
* action required even bt device hotplugged out.
*/
bt_reset = 0;
#endif
hdev = hci_dev_get(0);
if (hdev) {
atomic_set(&hdev->promisc, 0);
hci_dev_close(0);
clear_bit(HCI_UP, &hdev->flags);
}
clear_driver_state(CHAR_OPENED);
//if the state is not probed, the driver may be in the disconnecting state
//and waitting for signal to wake up
if((get_driver_state_value() & DEVICE_PROBED) == 0)
wake_up_interruptible(&bt_drv_state_wait);
return 0;
}
static ssize_t btchr_read(struct file *file_p,
char __user *buf_p,
size_t count,
loff_t *pos_p)
{
struct hci_dev *hdev;
struct sk_buff *skb;
ssize_t ret = 0;
RTKBT_DBG("%s: BT usb char device is reading", __func__);
while (count) {
hdev = hci_dev_get(0);
if (!hdev) {
/*
* Note: Only when BT device hotplugged out, we wil get
* into such situation. In order to keep the upper layer
* stack alive (blocking the read), we should never return
* EFAULT or break the loop.
*/
RTKBT_ERR("%s: Failed to get hci dev[Null]", __func__);
}
ret = wait_event_interruptible(btchr_read_wait, !is_queue_empty());
if (ret < 0) {
RTKBT_ERR("%s: wait event is signaled %zu", __func__, ret);
break;
}
skb = rtk_dequeue_try(count);
if (skb) {
ret = usb_put_user(skb, buf_p, count);
if (ret < 0)
RTKBT_ERR("%s: Failed to put data to user space", __func__);
kfree_skb(skb);
break;
}
}
return ret;
}
static ssize_t btchr_write(struct file *file_p,
const char __user *buf_p,
size_t count,
loff_t *pos_p)
{
struct btusb_data *data = file_p->private_data;
struct hci_dev *hdev;
struct sk_buff *skb;
RTKBT_DBG("%s: BT usb char device is writing", __func__);
if((get_driver_state_value() & DEVICE_PROBED) == 0) {
RTKBT_ERR("%s: Device not probed", __func__);
return POLLERR | POLLHUP;
}
hdev = hci_dev_get(0);
if (!hdev) {
RTKBT_WARN("%s: Failed to get hci dev[Null]", __func__);
/*
* Note: we bypass the data from the upper layer if bt device
* is hotplugged out. Fortunatelly, H4 or H5 HCI stack does
* NOT check btchr_write's return value. However, returning
* count instead of EFAULT is preferable.
*/
/* return -EFAULT; */
return count;
}
/* Never trust on btusb_data, as bt device may be hotplugged out */
data = GET_DRV_DATA(hdev);
if (!data) {
RTKBT_WARN("%s: Failed to get bt usb driver data[Null]", __func__);
return count;
}
if (count > HCI_MAX_FRAME_SIZE)
return -EINVAL;
skb = bt_skb_alloc(count, GFP_ATOMIC);
if (!skb)
return -ENOMEM;
skb_reserve(skb, -1); // Add this line
if (copy_from_user(skb_put(skb, count), buf_p, count)) {
RTKBT_ERR("%s: Failed to get data from user space", __func__);
kfree_skb(skb);
return -EFAULT;
}
skb->dev = (void *)hdev;
bt_cb(skb)->pkt_type = *((__u8 *)skb->data);
skb_pull(skb, 1);
data->hdev->send(skb);
return count;
}
static unsigned int btchr_poll(struct file *file_p, poll_table *wait)
{
struct btusb_data *data = file_p->private_data;
struct hci_dev *hdev;
RTKBT_DBG("%s: BT usb char device is polling", __func__);
if((get_driver_state_value() & DRIVER_ON) == 0 ||
(get_driver_state_value() & DEVICE_PROBED) == 0) {
RTKBT_ERR("%s: Device not probed", __func__);
return POLLERR | POLLHUP;
}
poll_wait(file_p, &btchr_read_wait, wait);
hdev = hci_dev_get(0);
if (!hdev) {
RTKBT_ERR("%s: Failed to get hci dev[Null]", __func__);
mdelay(URB_CANCELING_DELAY_MS);
return POLLOUT | POLLWRNORM;
}
/* Never trust on btusb_data, as bt device may be hotplugged out */
data = GET_DRV_DATA(hdev);
if (!data) {
/*
* When bt device is hotplugged out, btusb_data will
* be freed in disconnect.
*/
RTKBT_ERR("%s: Failed to get bt usb driver data[Null]", __func__);
mdelay(URB_CANCELING_DELAY_MS);
return POLLOUT | POLLWRNORM;
}
if (!is_queue_empty())
return POLLIN | POLLRDNORM;
return POLLOUT | POLLWRNORM;
}
static long btchr_ioctl(struct file *file_p, unsigned int cmd, unsigned long arg){
int ret = 0;
struct hci_dev *hdev;
struct btusb_data *data;
firmware_info *fw_info;
if((get_driver_state_value() & DRIVER_ON) == 0 ||
(get_driver_state_value() & DEVICE_PROBED) == 0) {
RTKBT_ERR("%s bt controller is disconnect!", __func__);
return -ENODEV;
}
hdev = hci_dev_get(0);
if(!hdev) {
RTKBT_ERR("%s device is NULL!", __func__);
return 0;
}
data = GET_DRV_DATA(hdev);
fw_info = data->fw_info;
RTKBT_INFO(" btchr_ioctl with Cmd:%d",cmd);
switch (cmd) {
case DOWN_FW_CFG:
ret = usb_autopm_get_interface(data->intf);
if (ret < 0){
goto failed;
}
ret = download_patch(fw_info,1);
usb_autopm_put_interface(data->intf);
if(ret < 0){
RTKBT_ERR("%s:Failed in download_patch with ret:%d",__func__,ret);
goto failed;
}
ret = hdev->open(hdev);
if(ret < 0){
RTKBT_ERR("%s:Failed in hdev->open(hdev):%d",__func__,ret);
goto failed;
}
ret = 1;
break;
#ifdef CONFIG_SCO_OVER_HCI
case SET_ISO_CFG:
if(get_user(hdev->voice_setting, (__u16 __user*)arg)) {
ret = -EFAULT;
}
RTKBT_INFO(" voice settings = 0x%04x", hdev->voice_setting);
break;
#endif
case GET_USB_INFO:
ret = hdev->open(hdev);
if(ret < 0){
RTKBT_ERR("%s:Failed in hdev->open(hdev):%d",__func__,ret);
//goto done;
}
put_user(usb_info, (__u32 __user*)arg);
ret = 1;
break;
case RESET_CONTROLLER:
reset_controller(fw_info);
ret = 1;
break;
case DWFW_CMPLT:
{
uint16_t lmp_sub = 0;
if(get_user(lmp_sub, (__u16 __user*)arg)) {
ret = -EFAULT;
}
else if(lmp_sub != 0) {
fw_info->patch_entry->lmp_sub = lmp_sub;
}
RTKBT_INFO("%s lmp_sub = 0x%x, patch_entry->lmp_sub = 0x%x", __func__,
lmp_sub, fw_info->patch_entry->lmp_sub);
}
break;
default:
RTKBT_ERR("%s:Failed with wrong Cmd:%d",__func__,cmd);
goto failed;
}
failed:
return ret;
}
#ifdef CONFIG_COMPAT
static long compat_btchr_ioctl (struct file *filp, unsigned int cmd, unsigned long arg)
{
return btchr_ioctl(filp, cmd, (unsigned long) compat_ptr(arg));
}
#endif
static struct file_operations bt_chrdev_ops = {
open : btchr_open,
release : btchr_close,
read : btchr_read,
write : btchr_write,
poll : btchr_poll,
unlocked_ioctl : btchr_ioctl,
#ifdef CONFIG_COMPAT
compat_ioctl : compat_btchr_ioctl,
#endif
};
static int btchr_init(void)
{
int res = 0;
struct device *dev;
RTKBT_INFO("Register usb char device interface for BT driver");
skb_queue_head_init(&btchr_readq);
init_waitqueue_head(&btchr_read_wait);
init_waitqueue_head(&bt_drv_state_wait);
bt_char_class = class_create(THIS_MODULE, BT_CHAR_DEVICE_NAME);
if (IS_ERR(bt_char_class)) {
RTKBT_ERR("Failed to create bt char class");
return PTR_ERR(bt_char_class);
}
res = alloc_chrdev_region(&bt_devid, 0, 1, BT_CHAR_DEVICE_NAME);
if (res < 0) {
RTKBT_ERR("Failed to allocate bt char device");
goto err_alloc;
}
dev = device_create(bt_char_class, NULL, bt_devid, NULL, BT_CHAR_DEVICE_NAME);
if (IS_ERR(dev)) {
RTKBT_ERR("Failed to create bt char device");
res = PTR_ERR(dev);
goto err_create;
}
cdev_init(&bt_char_dev, &bt_chrdev_ops);
res = cdev_add(&bt_char_dev, bt_devid, 1);
if (res < 0) {
RTKBT_ERR("Failed to add bt char device");
goto err_add;
}
return 0;
err_add:
device_destroy(bt_char_class, bt_devid);
err_create:
unregister_chrdev_region(bt_devid, 1);
err_alloc:
class_destroy(bt_char_class);
return res;
}
static void btchr_exit(void)
{
RTKBT_INFO("Unregister usb char device interface for BT driver");
device_destroy(bt_char_class, bt_devid);
cdev_del(&bt_char_dev);
unregister_chrdev_region(bt_devid, 1);
class_destroy(bt_char_class);
return;
}
#endif
static int send_hci_cmd(firmware_info *fw_info)
{
int i = 0;
int ret_val = -1;
while((ret_val<0)&&(i++<10))
{
ret_val = usb_control_msg(
fw_info->udev, fw_info->pipe_out,
0, USB_TYPE_CLASS, 0, 0,
(void *)(fw_info->send_pkt),
fw_info->pkt_len, MSG_TO);
}
return ret_val;
}
static int rcv_hci_evt(firmware_info *fw_info)
{
int ret_len = 0, ret_val = 0;
int i;
while (1) {
for(i = 0; i < 5; i++) {
ret_val = usb_interrupt_msg(
fw_info->udev, fw_info->pipe_in,
(void *)(fw_info->rcv_pkt), PKT_LEN,
&ret_len, MSG_TO);
if (ret_val >= 0)
break;
}
if (ret_val < 0)
return ret_val;
if (CMD_CMP_EVT == fw_info->evt_hdr->evt) {
if (fw_info->cmd_hdr->opcode == fw_info->cmd_cmp->opcode)
return ret_len;
}
}
}
static int set_bt_onoff(firmware_info *fw_info, uint8_t onoff)
{
patch_info *patch_entry;
int ret_val;
RTKBT_INFO("%s: %s", __func__, onoff != 0 ? "on" : "off");
patch_entry = fw_info->patch_entry;
if (!patch_entry)
return -1;
fw_info->cmd_hdr->opcode = cpu_to_le16(BTOFF_OPCODE);
fw_info->cmd_hdr->plen = 1;
fw_info->pkt_len = CMD_HDR_LEN + 1;
fw_info->send_pkt[CMD_HDR_LEN] = onoff;
ret_val = send_hci_cmd(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to send bt %s cmd, errno %d",
__func__, onoff != 0 ? "on" : "off", ret_val);
return ret_val;
}
ret_val = rcv_hci_evt(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to receive bt %s event, errno %d",
__func__, onoff != 0 ? "on" : "off", ret_val);
return ret_val;
}
return ret_val;
}
static patch_info *get_fw_table_entry(struct usb_device* udev)
{
patch_info *patch_entry = fw_patch_table;
uint16_t vid = le16_to_cpu(udev->descriptor.idVendor);
uint16_t pid = le16_to_cpu(udev->descriptor.idProduct);
uint32_t entry_size = sizeof(fw_patch_table) / sizeof(fw_patch_table[0]);
uint32_t i;
RTKBT_INFO("%s: Product id = 0x%04x, fw table entry size %d", __func__, pid, entry_size);
usb_info = (uint32_t)(vid<<16) | pid;
for (i = 0; i < entry_size; i++, patch_entry++) {
if ((vid == patch_entry->vid)&&(pid == patch_entry->pid))
break;
}
if (i == entry_size) {
RTKBT_ERR("%s: No fw table entry found", __func__);
return NULL;
}
return patch_entry;
}
#if SUSPNED_DW_FW
static patch_info *get_suspend_fw_table_entry(struct usb_device* udev)
{
patch_info *patch_entry = fw_patch_table;
patch_info *patch_entry_real = NULL;
uint16_t vid = le16_to_cpu(udev->descriptor.idVendor);
uint16_t pid = le16_to_cpu(udev->descriptor.idProduct);
uint32_t entry_size = sizeof(fw_patch_table) / sizeof(fw_patch_table[0]);
uint32_t i;
RTKBT_INFO("%s: Product id = 0x%04x, fw table entry size %d", __func__, pid, entry_size);
for (i = 0; i < entry_size; i++, patch_entry++) {
if ((vid == patch_entry->vid)&&(pid == patch_entry->pid))
break;
}
if (i == entry_size) {
RTKBT_ERR("%s: No fw table entry found", __func__);
return NULL;
}
patch_entry_real = kmalloc(sizeof(fw_patch_table[0]), GFP_KERNEL);
if(!patch_entry_real)
return NULL;
memcpy(patch_entry_real, patch_entry, sizeof(fw_patch_table[0]));
return patch_entry_real;
}
#endif
static struct rtk_epatch_entry *get_fw_patch_entry(struct rtk_epatch *epatch_info, uint16_t eco_ver)
{
int patch_num = epatch_info->number_of_total_patch;
uint8_t *epatch_buf = (uint8_t *)epatch_info;
struct rtk_epatch_entry *p_entry = NULL;
int coex_date;
int coex_ver;
int i;
for (i = 0; i < patch_num; i++) {
if (*(uint16_t *)(epatch_buf + 14 + 2*i) == eco_ver + 1) {
p_entry = kzalloc(sizeof(*p_entry), GFP_KERNEL);
if (!p_entry) {
RTKBT_ERR("%s: Failed to allocate mem for patch entry", __func__);
return NULL;
}
p_entry->chip_id = eco_ver + 1;
p_entry->patch_length = *(uint16_t*)(epatch_buf + 14 + 2*patch_num + 2*i);
p_entry->start_offset = *(uint32_t*)(epatch_buf + 14 + 4*patch_num + 4*i);
p_entry->coex_version = *(uint32_t*)(epatch_buf + p_entry->start_offset + p_entry->patch_length - 12);
p_entry->svn_version = *(uint32_t*)(epatch_buf + p_entry->start_offset + p_entry->patch_length - 8);
p_entry->fw_version = *(uint32_t*)(epatch_buf + p_entry->start_offset + p_entry->patch_length - 4);
coex_date = ((p_entry->coex_version >> 16) & 0x7ff) + ((p_entry->coex_version >> 27) * 10000);
coex_ver = p_entry->coex_version & 0xffff;
RTKBT_INFO("BTCOEX:20%06d-0x%04x svn version:0x%08x fw version:0x%08x rtk_btusb version:%s Cut:%d, patch length:0x%04x, patch offset:0x%08x\n", \
coex_date, coex_ver, p_entry->svn_version, p_entry->fw_version, VERSION, p_entry->chip_id, p_entry->patch_length, p_entry->start_offset);
break;
}
}
return p_entry;
}
/*reset_controller is aimed to reset_bt_fw before updata Fw patch*/
int reset_controller(firmware_info* fw_info)
{
int ret_val;
RTKBT_ERR("reset_controller");
if (!fw_info)
return -ENODEV;
fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VENDOR_FORCE_RESET_AND_PATCHABLE);
fw_info->cmd_hdr->plen = 0;
fw_info->pkt_len = CMD_HDR_LEN;
ret_val = send_hci_cmd(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to send hci cmd 0x%04x, errno %d",
__func__, fw_info->cmd_hdr->opcode, ret_val);
return ret_val;
}
//sleep 1s for firmware reset.
msleep(1000);
RTKBT_INFO("%s: Wait fw reset for 1000ms",__func__);
return ret_val;
}
/*reset_controller is aimed to reset_bt_fw before updata Fw patch*/
/*
* check the return value
* 1: need to download fw patch
* 0: no need to download fw patch
* <0: failed to check lmp version
*/
static int check_fw_version(firmware_info* fw_info, bool resume_check)
{
struct hci_rp_read_local_version *read_ver_rsp;
patch_info *patch_entry = NULL;
int ret_val = -1, i, ret_len = 0;
struct sk_buff *rtk_skb_copy = NULL;
unsigned char pkt_type = HCI_EVENT_PKT;
fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_OP_READ_LOCAL_VERSION);
fw_info->cmd_hdr->plen = 0;
fw_info->pkt_len = CMD_HDR_LEN;
ret_val = send_hci_cmd(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to send hci cmd 0x%04x, errno %d",
__func__, fw_info->cmd_hdr->opcode, ret_val);
return ret_val;
}
while (1) {
for(i = 0; i < 5; i++) {
ret_val = usb_interrupt_msg(
fw_info->udev, fw_info->pipe_in,
(void *)(fw_info->rcv_pkt), PKT_LEN,
&ret_len, MSG_TO);
if (ret_val >= 0)
break;
}
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to receive hci event, errno %d",
__func__, ret_val);
return ret_val;
}
if ((CMD_CMP_EVT == fw_info->evt_hdr->evt) &&
(fw_info->cmd_hdr->opcode == fw_info->cmd_cmp->opcode)) {
break;
}
else if(resume_check) {
rtk_skb_copy = bt_skb_alloc((ret_len), GFP_ATOMIC);
if (!rtk_skb_copy) {
RTKBT_ERR("%s: Failed to allocate mem", __func__);
return 2;
}
memcpy(skb_put(rtk_skb_copy, ret_len), fw_info->rcv_pkt, ret_len);
memcpy(skb_push(rtk_skb_copy, 1), &pkt_type, 1);
rtk_enqueue(rtk_skb_copy);
rtk_skb_copy = NULL;
wake_up_interruptible(&btchr_read_wait);
}
}
patch_entry = fw_info->patch_entry;
read_ver_rsp = (struct hci_rp_read_local_version *)(fw_info->rsp_para);
RTKBT_INFO("%s: Controller lmp = 0x%04x, patch lmp = 0x%04x, default patch lmp = 0x%04x",
__func__, read_ver_rsp->lmp_subver, patch_entry->lmp_sub, patch_entry->lmp_sub_default);
if (read_ver_rsp->lmp_subver == patch_entry->lmp_sub_default) {
RTKBT_INFO("%s: Cold BT controller startup", __func__);
return 2;
} else if (read_ver_rsp->lmp_subver != patch_entry->lmp_sub) {
RTKBT_INFO("%s: Warm BT controller startup with updated lmp", __func__);
return 1;
} else {
RTKBT_INFO("%s: Warm BT controller startup with same lmp", __func__);
return 0;
}
}
#if SET_WAKEUP_DEVICE
int set_wakeup_device(firmware_info* fw_info, uint8_t* wakeup_bdaddr)
{
struct rtk_eversion_evt *ever_evt;
int ret_val;
if (!fw_info)
return -ENODEV;
fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VENDOR_ADD_WAKE_UP_DEVICE);
fw_info->cmd_hdr->plen = 7;
memcpy(fw_info->req_para, wakeup_bdaddr, 7);
fw_info->pkt_len = CMD_HDR_LEN + 7;
ret_val = send_hci_cmd(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to send hci cmd 0x%04x, errno %d\n",
__func__, fw_info->cmd_hdr->opcode, ret_val);
return ret_val;
}
ret_val = rcv_hci_evt(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to receive hci event, errno %d\n",__func__, ret_val);
return ret_val;
}
ever_evt = (struct rtk_eversion_evt *)(fw_info->rsp_para);
RTKBT_DBG("%s: status %d, eversion %d", __func__, ever_evt->status, ever_evt->version);
return ret_val;
}
#endif
/*reset_channel to recover the communication between wifi 8192eu with 8761 bt controller in case of geteversion error*/
static int reset_channel(firmware_info* fw_info)
{
struct rtk_reset_evt *ever_evt;
int ret_val;
if (!fw_info)
return -ENODEV;
fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VENDOR_RESET);
fw_info->cmd_hdr->plen = 0;
fw_info->pkt_len = CMD_HDR_LEN;
ret_val = send_hci_cmd(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to send hci cmd 0x%04x, errno %d",
__func__, fw_info->cmd_hdr->opcode, ret_val);
return ret_val;
}
ret_val = rcv_hci_evt(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to receive hci event, errno %d",
__func__, ret_val);
return ret_val;
}
ever_evt = (struct rtk_reset_evt *)(fw_info->rsp_para);
RTKBT_INFO("%s: status %d ", __func__, ever_evt->status);
//sleep 300ms for channel reset.
msleep(300);
RTKBT_INFO("%s: Wait channel reset for 300ms",__func__);
return ret_val;
}
//sometimes the controller is in warm resume,and still send message to host
//we should reset controller and clean the hardware buffer
static bool reset_and_clean_hw_buffer(firmware_info* fw_info)
{
int ret_val/*, i*/;
int ret_len = 0;
bool event_recv = false;
if (!fw_info)
return -ENODEV;
fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VENDOR_RESET);
fw_info->cmd_hdr->plen = 0;
fw_info->pkt_len = CMD_HDR_LEN;
ret_val = send_hci_cmd(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to send hci cmd 0x%04x, errno %d",
__func__, fw_info->cmd_hdr->opcode, ret_val);
return ret_val;
}
//we need to clean the hardware buffer
while (1) {
ret_val = usb_interrupt_msg(
fw_info->udev, fw_info->pipe_in,
(void *)(fw_info->rcv_pkt), PKT_LEN,
&ret_len, (MSG_TO/2));
if(ret_val >= 0) {
if(event_recv) {
RTKBT_INFO("%s: clear hardware event", __func__);
continue;
}
}
else {
return event_recv;
}
if (CMD_CMP_EVT == fw_info->evt_hdr->evt) {
if (fw_info->cmd_hdr->opcode == fw_info->cmd_cmp->opcode) {
event_recv = true;
}
}
}
return ret_val;
}
#if 0
static int read_localversion(firmware_info* fw_info)
{
struct rtk_localversion_evt *ever_evt;
int ret_val;
if (!fw_info)
return -ENODEV;
fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VENDOR_READ_LMP_VERISION);
fw_info->cmd_hdr->plen = 0;
fw_info->pkt_len = CMD_HDR_LEN;
ret_val = send_hci_cmd(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to send hci cmd 0x%04x, errno %d",
__func__, fw_info->cmd_hdr->opcode, ret_val);
return ret_val;
}
ret_val = rcv_hci_evt(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to receive hci event, errno %d",
__func__, ret_val);
return ret_val;
}
ever_evt = (struct rtk_localversion_evt *)(fw_info->rsp_para);
RTKBT_INFO("%s: status %d ", __func__, ever_evt->status);
RTKBT_INFO("%s: hci_version %d ", __func__, ever_evt->hci_version);
RTKBT_INFO("%s: hci_revision %d ", __func__, ever_evt->hci_revision);
RTKBT_INFO("%s: lmp_version %d ", __func__, ever_evt->lmp_version);
RTKBT_INFO("%s: lmp_subversion %d ", __func__, ever_evt->lmp_subversion);
RTKBT_INFO("%s: lmp_manufacture %d ", __func__, ever_evt->lmp_manufacture);
//sleep 300ms for channel reset.
msleep(300);
RTKBT_INFO("%s: Wait channel reset for 300ms",__func__);
return ret_val;
}
#endif
static int get_eversion(firmware_info* fw_info)
{
struct rtk_eversion_evt *ever_evt;
int ret_val;
if (!fw_info)
return -ENODEV;
fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VENDOR_READ_RTK_ROM_VERISION);
fw_info->cmd_hdr->plen = 0;
fw_info->pkt_len = CMD_HDR_LEN;
ret_val = send_hci_cmd(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to send hci cmd 0x%04x, errno %d",
__func__, fw_info->cmd_hdr->opcode, ret_val);
return ret_val;
}
ret_val = rcv_hci_evt(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to receive hci event, errno %d",
__func__, ret_val);
return ret_val;
}
ever_evt = (struct rtk_eversion_evt *)(fw_info->rsp_para);
RTKBT_INFO("%s: status %d, eversion %d", __func__, ever_evt->status, ever_evt->version);
if (ever_evt->status)
fw_info->patch_entry->eversion = 0;
else
fw_info->patch_entry->eversion = ever_evt->version;
return ret_val;
}
static void rtk_update_altsettings(patch_info *patch_entry, const unsigned char* org_config_buf, int org_config_len, unsigned char ** new_config_buf_ptr, int *new_config_len_ptr)
{
static unsigned char config_buf[1024];
unsigned short offset[256];
unsigned char val[256];
struct rtk_bt_vendor_config* config = (struct rtk_bt_vendor_config*) config_buf;
struct rtk_bt_vendor_config_entry* entry = config->entry;
int count = 0,temp = 0, i = 0, j;
memset(config_buf, 0, sizeof(config_buf));
memset(offset, 0, sizeof(offset));
memset(val, 0, sizeof(val));
memcpy(config_buf, org_config_buf, org_config_len);
*new_config_buf_ptr = config_buf;
*new_config_len_ptr = org_config_len;
count = getAltSettings(patch_entry, offset, sizeof(offset)/sizeof(unsigned short));
if(count <= 0){
RTKBT_INFO("rtk_update_altsettings: No AltSettings");
return;
}else{
RTKBT_INFO("rtk_update_altsettings: %d AltSettings", count);
}
RTKBT_INFO("ORG Config len=%08x:\n", org_config_len);
for(i=0;i<=org_config_len;i+=0x10)
{
RTKBT_INFO("%08x: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", i, \
config_buf[i], config_buf[i+1], config_buf[i+2], config_buf[i+3], config_buf[i+4], config_buf[i+5], config_buf[i+6], config_buf[i+7], \
config_buf[i+8], config_buf[i+9], config_buf[i+10], config_buf[i+11], config_buf[i+12], config_buf[i+13], config_buf[i+14], config_buf[i+15]);
}
if (config->data_len != org_config_len - sizeof(struct rtk_bt_vendor_config))
{
RTKBT_ERR("rtk_update_altsettings: config len(%x) is not right(%x)", (int)(config->data_len), (int)(org_config_len-sizeof(struct rtk_bt_vendor_config)));
return;
}
for (i=0; idata_len;)
{
for(j = 0; j < count;j++)
{
if(entry->offset == offset[j])
offset[j] = 0;
}
if(getAltSettingVal(patch_entry, entry->offset, val) == entry->entry_len){
RTKBT_INFO("rtk_update_altsettings: replace %04x[%02x]", entry->offset, entry->entry_len);
memcpy(entry->entry_data, val, entry->entry_len);
}
temp = entry->entry_len + sizeof(struct rtk_bt_vendor_config_entry);
i += temp;
entry = (struct rtk_bt_vendor_config_entry*)((uint8_t*)entry + temp);
}
for(j = 0; j < count;j++){
if(offset[j] == 0)
continue;
entry->entry_len = getAltSettingVal(patch_entry, offset[j], val);
if(entry->entry_len <= 0)
continue;
entry->offset = offset[j];
memcpy(entry->entry_data, val, entry->entry_len);
RTKBT_INFO("rtk_update_altsettings: add %04x[%02x]", entry->offset, entry->entry_len);
temp = entry->entry_len + sizeof(struct rtk_bt_vendor_config_entry);
i += temp;
entry = (struct rtk_bt_vendor_config_entry*)((uint8_t*)entry + temp);
}
config->data_len = i;
*new_config_buf_ptr = config_buf;
*new_config_len_ptr = config->data_len+sizeof(struct rtk_bt_vendor_config);
return;
}
static int load_firmware(firmware_info *fw_info, uint8_t **buff)
{
const struct firmware *fw, *cfg;
struct usb_device *udev;
patch_info *patch_entry;
char *config_name, *fw_name;
int fw_len = 0;
int ret_val;
int config_len = 0, buf_len = -1;
uint8_t *buf = *buff, *config_file_buf = NULL;
uint8_t *epatch_buf = NULL;
struct rtk_epatch *epatch_info = NULL;
uint8_t need_download_fw = 1;
struct rtk_extension_entry patch_lmp = {0};
struct rtk_epatch_entry *p_epatch_entry = NULL;
uint16_t lmp_version;
//uint8_t use_mp_fw = 0;
RTKBT_DBG("%s: start", __func__);
udev = fw_info->udev;
patch_entry = fw_info->patch_entry;
lmp_version = patch_entry->lmp_sub_default;
config_name = patch_entry->config_name;
/* 1 Mptool Fw; 0 Normal Fw */
if(DRV_MP_MODE == mp_drv_mode){
fw_name = patch_entry->mp_patch_name;
}else{
fw_name = patch_entry->patch_name;
}
RTKBT_INFO("%s: Default lmp version = 0x%04x, config file name[%s], "
"fw file name[%s]", __func__, lmp_version,config_name, fw_name);
ret_val = request_firmware(&cfg, config_name, &udev->dev);
if (ret_val < 0)
config_len = 0;
else {
int i;
rtk_update_altsettings(patch_entry, cfg->data, cfg->size, &config_file_buf, &config_len);
RTKBT_INFO("Final Config len=%08x:\n", config_len);
for(i=0;i<=config_len;i+=0x10)
{
RTKBT_INFO("%08x: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", i, \
config_file_buf[i], config_file_buf[i+1], config_file_buf[i+2], config_file_buf[i+3], config_file_buf[i+4], config_file_buf[i+5], config_file_buf[i+6], config_file_buf[i+7], \
config_file_buf[i+8], config_file_buf[i+9], config_file_buf[i+10], config_file_buf[i+11], config_file_buf[i+12], config_file_buf[i+13], config_file_buf[i+14], config_file_buf[i+15]);
}
release_firmware(cfg);
}
ret_val = request_firmware(&fw, fw_name, &udev->dev);
if (ret_val < 0)
goto fw_fail;
else {
epatch_buf = vmalloc(fw->size);
RTKBT_INFO("%s: epatch_buf = vmalloc(fw->size, GFP_KERNEL)", __func__);
if (!epatch_buf) {
release_firmware(fw);
goto fw_fail;
}
memcpy(epatch_buf, fw->data, fw->size);
fw_len = fw->size;
buf_len = fw_len + config_len;
release_firmware(fw);
}
if (lmp_version == ROM_LMP_8723a) {
RTKBT_DBG("%s: 8723a -> use old style patch", __func__);
if (!memcmp(epatch_buf, RTK_EPATCH_SIGNATURE, 8)) {
RTKBT_ERR("%s: 8723a check signature error", __func__);
need_download_fw = 0;
} else {
if (!(buf = kzalloc(buf_len, GFP_KERNEL))) {
RTKBT_ERR("%s: Failed to allocate mem for fw&config", __func__);
buf_len = -1;
} else {
RTKBT_DBG("%s: 8723a -> fw copy directly", __func__);
memcpy(buf, epatch_buf, buf_len);
patch_entry->lmp_sub = *(uint16_t *)(buf + buf_len - config_len - 4);
RTKBT_DBG("%s: Config lmp version = 0x%04x", __func__,
patch_entry->lmp_sub);
vfree(epatch_buf);
RTKBT_INFO("%s:ROM_LMP_8723a vfree(epatch_buf)", __func__);
epatch_buf = NULL;
if (config_len)
memcpy(buf + buf_len - config_len, config_file_buf, config_len);
}
}
} else {
RTKBT_DBG("%s: Not 8723a -> use new style patch", __func__);
RTKBT_DBG("%s: reset_channel before get_eversion from bt controller", __func__);
ret_val = reset_channel(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to reset_channel, errno %d", __func__, ret_val);
goto fw_fail;
}
// read_localversion(fw_info);
RTKBT_DBG("%s: get_eversion from bt controller", __func__);
ret_val = get_eversion(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to get eversion, errno %d", __func__, ret_val);
goto fw_fail;
}
RTKBT_DBG("%s: Get eversion =%d", __func__, patch_entry->eversion);
if (memcmp(epatch_buf + buf_len - config_len - 4 , EXTENSION_SECTION_SIGNATURE, 4)) {
RTKBT_ERR("%s: Failed to check extension section signature", __func__);
need_download_fw = 0;
} else {
uint8_t *temp;
temp = epatch_buf+buf_len-config_len - 5;
do {
if (*temp == 0x00) {
patch_lmp.opcode = *temp;
patch_lmp.length = *(temp-1);
if ((patch_lmp.data = kzalloc(patch_lmp.length, GFP_KERNEL))) {
int k;
for (k = 0; k < patch_lmp.length; k++) {
*(patch_lmp.data+k) = *(temp-2-k);
RTKBT_DBG("data = 0x%x", *(patch_lmp.data+k));
}
}
RTKBT_DBG("%s: opcode = 0x%x, length = 0x%x, data = 0x%x", __func__,
patch_lmp.opcode, patch_lmp.length, *(patch_lmp.data));
break;
}
temp -= *(temp-1) + 2;
} while (*temp != 0xFF);
if (patch_lmp.data && lmp_version != project_id[*(patch_lmp.data)]) {
RTKBT_ERR("%s: Default lmp_version 0x%04x, project_id[%d] 0x%04x "
"-> not match", __func__, lmp_version, *(patch_lmp.data),project_id[*(patch_lmp.data)]);
if (patch_lmp.data)
kfree(patch_lmp.data);
need_download_fw = 0;
} else {
if (patch_lmp.data) {
RTKBT_INFO("%s: Default lmp_version 0x%04x, project_id[%d] 0x%04x "
"-> match", __func__, lmp_version, *(patch_lmp.data), project_id[*(patch_lmp.data)]);
}
if (patch_lmp.data)
kfree(patch_lmp.data);
if (memcmp(epatch_buf, RTK_EPATCH_SIGNATURE, 8)) {
RTKBT_ERR("%s: Check signature error", __func__);
need_download_fw = 0;
} else {
epatch_info = (struct rtk_epatch*)epatch_buf;
patch_entry->lmp_sub = (uint16_t)epatch_info->fw_version;
RTKBT_DBG("%s: lmp version 0x%04x, fw_version 0x%x, "
"number_of_total_patch %d", __func__,
patch_entry->lmp_sub, epatch_info->fw_version,
epatch_info->number_of_total_patch);
/* Get right epatch entry */
p_epatch_entry = get_fw_patch_entry(epatch_info, patch_entry->eversion);
if (p_epatch_entry == NULL) {
RTKBT_WARN("%s: Failed to get fw patch entry", __func__);
ret_val = -1;
goto fw_fail ;
}
buf_len = p_epatch_entry->patch_length + config_len;
RTKBT_DBG("buf_len = 0x%x", buf_len);
if (!(buf = kzalloc(buf_len, GFP_KERNEL))) {
RTKBT_ERR("%s: Can't alloc memory for fw&config", __func__);
buf_len = -1;
kfree(p_epatch_entry);
} else {
memcpy(buf, &epatch_buf[p_epatch_entry->start_offset], p_epatch_entry->patch_length);
memcpy(&buf[p_epatch_entry->patch_length-4], &epatch_info->fw_version, 4);
kfree(p_epatch_entry);
}
vfree(epatch_buf);
RTKBT_INFO("%s: vfree(epatch_buf)", __func__);
epatch_buf = NULL;
if (buf && config_len)
memcpy(&buf[buf_len - config_len], config_file_buf, config_len);
}
}
}
}
RTKBT_INFO("%s: fw%s exists, config file%s exists", __func__,
(buf_len > 0) ? "" : " not", (config_len > 0) ? "":" not");
if (buf && buf_len > 0 && need_download_fw)
*buff = buf;
RTKBT_DBG("%s: done", __func__);
return buf_len;
fw_fail:
return ret_val;
}
static void load_firmware_info(firmware_info *fw_info)
{
const struct firmware *fw/*, *cfg*/;
struct usb_device *udev;
patch_info *patch_entry;
char *fw_name;
int ret_val;
int buf_len = -1;
uint8_t *epatch_buf = NULL;
struct rtk_epatch *epatch_info = NULL;
struct rtk_extension_entry patch_lmp = {0};
uint16_t lmp_version;
RTKBT_DBG("%s: start", __func__);
udev = fw_info->udev;
patch_entry = fw_info->patch_entry;
lmp_version = patch_entry->lmp_sub_default;
if(DRV_MP_MODE == mp_drv_mode){
fw_name = patch_entry->mp_patch_name;
} else {
fw_name = patch_entry->patch_name;
}
RTKBT_INFO("%s: Default lmp version = 0x%04x, fw file name[%s]", __func__, lmp_version, fw_name);
ret_val = request_firmware(&fw, fw_name, &udev->dev);
if (ret_val < 0)
goto fw_fail;
else {
epatch_buf = vmalloc(fw->size);
RTKBT_INFO("%s: epatch_buf = vmalloc(fw->size, GFP_KERNEL)", __func__);
if (!epatch_buf) {
release_firmware(fw);
goto fw_fail;
}
memcpy(epatch_buf, fw->data, fw->size);
buf_len = fw->size;
release_firmware(fw);
}
ret_val = reset_and_clean_hw_buffer(fw_info);
if (lmp_version != ROM_LMP_8723a) {
RTKBT_DBG("%s: Not 8723a -> use new style patch", __func__);
ret_val = get_eversion(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to get eversion, errno %d", __func__, ret_val);
goto fw_fail;
}
RTKBT_DBG("%s: Get eversion =%d", __func__, patch_entry->eversion);
if (memcmp(epatch_buf + buf_len - 4 , EXTENSION_SECTION_SIGNATURE, 4)) {
RTKBT_ERR("%s: Failed to check extension section signature", __func__);
} else {
uint8_t *temp;
temp = epatch_buf + buf_len - 5;
do {
if (*temp == 0x00) {
patch_lmp.opcode = *temp;
patch_lmp.length = *(temp-1);
if ((patch_lmp.data = vmalloc(patch_lmp.length))) {
int k;
for (k = 0; k < patch_lmp.length; k++) {
*(patch_lmp.data+k) = *(temp-2-k);
RTKBT_DBG("data = 0x%x", *(patch_lmp.data+k));
}
}
else
goto fw_fail;
RTKBT_DBG("%s: opcode = 0x%x, length = 0x%x, data = 0x%x", __func__,
patch_lmp.opcode, patch_lmp.length, *(patch_lmp.data));
break;
}
temp -= *(temp-1) + 2;
} while (*temp != 0xFF);
if (patch_lmp.data && lmp_version != project_id[*(patch_lmp.data)]) {
RTKBT_ERR("%s: Default lmp_version 0x%04x, project_id[%d] 0x%04x "
"-> not match", __func__, lmp_version, *(patch_lmp.data),project_id[*(patch_lmp.data)]);
} else {
if (patch_lmp.data) {
RTKBT_INFO("%s: Default lmp_version 0x%04x, project_id[%d] 0x%04x "
"-> match", __func__, lmp_version, *(patch_lmp.data), project_id[*(patch_lmp.data)]);
}
if (memcmp(epatch_buf, RTK_EPATCH_SIGNATURE, 8)) {
RTKBT_ERR("%s: Check signature error", __func__);
} else {
epatch_info = (struct rtk_epatch*)epatch_buf;
patch_entry->lmp_sub = (uint16_t)epatch_info->fw_version;
RTKBT_DBG("%s: lmp version 0x%04x, fw_version 0x%x, "
"number_of_total_patch %d", __func__,
patch_entry->lmp_sub, epatch_info->fw_version,
epatch_info->number_of_total_patch);
}
}
}
}
RTKBT_DBG("%s: done", __func__);
fw_fail:
if(epatch_buf)
vfree(epatch_buf);
if (patch_lmp.data)
vfree(patch_lmp.data);
}
#if SUSPNED_DW_FW
static int load_suspend_firmware(firmware_info *fw_info, uint8_t **buff)
{
const struct firmware *fw, *cfg;
struct usb_device *udev;
patch_info *patch_entry;
char config_name[100] = {0};
char fw_name[100] = {0};
int fw_len = 0;
int ret_val;
int config_len = 0, buf_len = -1;
uint8_t *buf = *buff, *config_file_buf = NULL;
uint8_t *epatch_buf = NULL;
struct rtk_epatch *epatch_info = NULL;
uint8_t need_download_fw = 1;
struct rtk_extension_entry patch_lmp = {0};
struct rtk_epatch_entry *p_epatch_entry = NULL;
uint16_t lmp_version;
RTKBT_DBG("%s: start", __func__);
udev = fw_info->udev;
patch_entry = fw_info->patch_entry;
lmp_version = patch_entry->lmp_sub_default;
sprintf(config_name, "%s_suspend", patch_entry->config_name);
sprintf(fw_name, "%s_suspend", patch_entry->patch_name);
RTKBT_INFO("%s: Default lmp version = 0x%04x, config file name[%s], "
"fw file name[%s]", __func__, lmp_version,config_name, fw_name);
ret_val = request_firmware(&cfg, config_name, &udev->dev);
if (ret_val < 0)
config_len = 0;
else {
int i;
rtk_update_altsettings(patch_entry, cfg->data, cfg->size, &config_file_buf, &config_len);
RTKBT_INFO("Final Config len=%08x:\n", config_len);
for(i=0;i<=config_len;i+=0x10)
{
RTKBT_INFO("%08x: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", i, \
config_file_buf[i], config_file_buf[i+1], config_file_buf[i+2], config_file_buf[i+3], config_file_buf[i+4], config_file_buf[i+5], config_file_buf[i+6], config_file_buf[i+7], \
config_file_buf[i+8], config_file_buf[i+9], config_file_buf[i+10], config_file_buf[i+11], config_file_buf[i+12], config_file_buf[i+13], config_file_buf[i+14], config_file_buf[i+15]);
}
release_firmware(cfg);
}
ret_val = request_firmware(&fw, fw_name, &udev->dev);
if (ret_val < 0)
goto fw_fail;
else {
epatch_buf = vmalloc(fw->size);
RTKBT_INFO("%s: epatch_buf = vmalloc(fw->size, GFP_KERNEL)", __func__);
if (!epatch_buf) {
release_firmware(fw);
goto fw_fail;
}
memcpy(epatch_buf, fw->data, fw->size);
fw_len = fw->size;
buf_len = fw_len + config_len;
release_firmware(fw);
}
RTKBT_DBG("%s: Not 8723a -> use new style patch", __func__);
RTKBT_DBG("%s: get_eversion from bt controller", __func__);
ret_val = get_eversion(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to get eversion, errno %d", __func__, ret_val);
goto fw_fail;
}
RTKBT_DBG("%s: Get eversion =%d", __func__, patch_entry->eversion);
if (memcmp(epatch_buf + buf_len - config_len - 4 , EXTENSION_SECTION_SIGNATURE, 4)) {
RTKBT_ERR("%s: Failed to check extension section signature", __func__);
need_download_fw = 0;
} else {
uint8_t *temp;
temp = epatch_buf+buf_len-config_len - 5;
do {
if (*temp == 0x00) {
patch_lmp.opcode = *temp;
patch_lmp.length = *(temp-1);
if ((patch_lmp.data = kzalloc(patch_lmp.length, GFP_KERNEL))) {
int k;
for (k = 0; k < patch_lmp.length; k++) {
*(patch_lmp.data+k) = *(temp-2-k);
RTKBT_DBG("data = 0x%x", *(patch_lmp.data+k));
}
}
RTKBT_DBG("%s: opcode = 0x%x, length = 0x%x, data = 0x%x", __func__,
patch_lmp.opcode, patch_lmp.length, *(patch_lmp.data));
break;
}
temp -= *(temp-1) + 2;
} while (*temp != 0xFF);
if (lmp_version != project_id[*(patch_lmp.data)]) {
RTKBT_ERR("%s: Default lmp_version 0x%04x, project_id[%d] 0x%04x "
"-> not match", __func__, lmp_version, *(patch_lmp.data),project_id[*(patch_lmp.data)]);
if (patch_lmp.data)
kfree(patch_lmp.data);
need_download_fw = 0;
} else {
RTKBT_INFO("%s: Default lmp_version 0x%04x, project_id[%d] 0x%04x "
"-> match", __func__, lmp_version, *(patch_lmp.data), project_id[*(patch_lmp.data)]);
if (patch_lmp.data)
kfree(patch_lmp.data);
if (memcmp(epatch_buf, RTK_EPATCH_SIGNATURE, 8)) {
RTKBT_ERR("%s: Check signature error", __func__);
need_download_fw = 0;
} else {
epatch_info = (struct rtk_epatch*)epatch_buf;
patch_entry->lmp_sub = (uint16_t)epatch_info->fw_version;
RTKBT_DBG("%s: lmp version 0x%04x, fw_version 0x%x, "
"number_of_total_patch %d", __func__,
patch_entry->lmp_sub, epatch_info->fw_version,
epatch_info->number_of_total_patch);
/* Get right epatch entry */
p_epatch_entry = get_fw_patch_entry(epatch_info, patch_entry->eversion);
if (p_epatch_entry == NULL) {
RTKBT_WARN("%s: Failed to get fw patch entry", __func__);
ret_val = -1;
goto fw_fail ;
}
buf_len = p_epatch_entry->patch_length + config_len;
RTKBT_DBG("buf_len = 0x%x", buf_len);
if (!(buf = kzalloc(buf_len, GFP_KERNEL))) {
RTKBT_ERR("%s: Can't alloc memory for fw&config", __func__);
buf_len = -1;
kfree(p_epatch_entry);
} else {
memcpy(buf, &epatch_buf[p_epatch_entry->start_offset], p_epatch_entry->patch_length);
memcpy(&buf[p_epatch_entry->patch_length-4], &epatch_info->fw_version, 4);
kfree(p_epatch_entry);
}
vfree(epatch_buf);
RTKBT_INFO("%s: vfree(epatch_buf)", __func__);
epatch_buf = NULL;
if (config_len)
memcpy(&buf[buf_len - config_len], config_file_buf, config_len);
}
}
}
RTKBT_INFO("%s: fw%s exists, config file%s exists", __func__,
(buf_len > 0) ? "" : " not", (config_len > 0) ? "":" not");
if (buf && buf_len > 0 && need_download_fw)
*buff = buf;
RTKBT_DBG("%s: done", __func__);
return buf_len;
fw_fail:
return ret_val;
}
#endif
static int get_firmware(firmware_info *fw_info, int cached)
{
patch_info *patch_entry = fw_info->patch_entry;
RTKBT_INFO("%s: start, cached %d,patch_entry->fw_len= %d", __func__, cached,patch_entry->fw_len);
if (cached > 0) {
if (patch_entry->fw_len > 0) {
fw_info->fw_data = kzalloc(patch_entry->fw_len, GFP_KERNEL);
if (!fw_info->fw_data)
return -ENOMEM;
memcpy(fw_info->fw_data, patch_entry->fw_cache, patch_entry->fw_len);
fw_info->fw_len = patch_entry->fw_len;
} else {
fw_info->fw_len = load_firmware(fw_info, &fw_info->fw_data);
if (fw_info->fw_len <= 0)
return -1;
}
} else {
fw_info->fw_len = load_firmware(fw_info, &fw_info->fw_data);
if (fw_info->fw_len <= 0)
return -1;
}
return 0;
}
#if SUSPNED_DW_FW
static int get_suspend_firmware(firmware_info *fw_info, int cached)
{
patch_info *patch_entry = fw_info->patch_entry;
RTKBT_INFO("%s: start, cached %d,patch_entry->fw_len= %d", __func__, cached,patch_entry->fw_len);
if (cached > 0) {
if (patch_entry->fw_len > 0) {
fw_info->fw_data = kzalloc(patch_entry->fw_len, GFP_KERNEL);
if (!fw_info->fw_data)
return -ENOMEM;
memcpy(fw_info->fw_data, patch_entry->fw_cache, patch_entry->fw_len);
fw_info->fw_len = patch_entry->fw_len;
} else {
fw_info->fw_len = load_suspend_firmware(fw_info, &fw_info->fw_data);
if (fw_info->fw_len <= 0)
return -1;
}
} else {
fw_info->fw_len = load_suspend_firmware(fw_info, &fw_info->fw_data);
if (fw_info->fw_len <= 0)
return -1;
}
return 0;
}
#endif
/*
* Open the log message only if in debugging,
* or it will decelerate download procedure.
*/
static int download_data(firmware_info *fw_info)
{
download_cp *cmd_para;
download_rp *evt_para;
uint8_t *pcur;
int pkt_len, frag_num, frag_len;
int i, ret_val;
int ncmd = 1, step = 1;
RTKBT_DBG("%s: start", __func__);
cmd_para = (download_cp *)fw_info->req_para;
evt_para = (download_rp *)fw_info->rsp_para;
pcur = fw_info->fw_data;
pkt_len = CMD_HDR_LEN + sizeof(download_cp);
frag_num = fw_info->fw_len / PATCH_SEG_MAX + 1;
frag_len = PATCH_SEG_MAX;
for (i = 0; i < frag_num; i++) {
cmd_para->index = i?((i-1)%0x7f+1):0;
if (i == (frag_num - 1)) {
cmd_para->index |= DATA_END;
frag_len = fw_info->fw_len % PATCH_SEG_MAX;
pkt_len -= (PATCH_SEG_MAX - frag_len);
}
fw_info->cmd_hdr->opcode = cpu_to_le16(DOWNLOAD_OPCODE);
fw_info->cmd_hdr->plen = sizeof(uint8_t) + frag_len;
fw_info->pkt_len = pkt_len;
memcpy(cmd_para->data, pcur, frag_len);
if (step > 0) {
ret_val = send_hci_cmd(fw_info);
if (ret_val < 0) {
RTKBT_DBG("%s: Failed to send frag num %d", __func__, cmd_para->index);
return ret_val;
} else
RTKBT_DBG("%s: Send frag num %d", __func__, cmd_para->index);
if (--step > 0 && i < frag_num - 1) {
RTKBT_DBG("%s: Continue to send frag num %d", __func__, cmd_para->index + 1);
pcur += PATCH_SEG_MAX;
continue;
}
}
while (ncmd > 0) {
ret_val = rcv_hci_evt(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: rcv_hci_evt err %d", __func__, ret_val);
return ret_val;
} else {
RTKBT_DBG("%s: Receive acked frag num %d", __func__, evt_para->index);
ncmd--;
}
if (0 != evt_para->status) {
RTKBT_ERR("%s: Receive acked frag num %d, err status %d",
__func__, ret_val, evt_para->status);
return -1;
}
if ((evt_para->index & DATA_END) || (evt_para->index == frag_num - 1)) {
RTKBT_DBG("%s: Receive last acked index %d", __func__, evt_para->index);
goto end;
}
}
ncmd = step = fw_info->cmd_cmp->ncmd;
pcur += PATCH_SEG_MAX;
RTKBT_DBG("%s: HCI command packet num %d", __func__, ncmd);
}
/*
* It is tricky that Host cannot receive DATA_END index from BT
* controller, at least for 8723au. We are doomed if failed.
*/
#if 0
/* Continue to receive the responsed events until last index occurs */
if (i == frag_num) {
RTKBT_DBG("%s: total frag count %d", __func__, frag_num);
while (!(evt_para->index & DATA_END)) {
ret_val = rcv_hci_evt(fw_info);
if (ret_val < 0) {
RTKBT_ERR("%s: rcv_hci_evt err %d", __func__, ret_val);
return ret_val;
}
if (0 != evt_para->status)
return -1;
RTKBT_DBG("%s: continue to receive acked frag num %d", __func__, evt_para->index);
}
}
#endif
end:
RTKBT_INFO("%s: done, sent %d frag pkts, received %d frag events",
__func__, cmd_para->index, evt_para->index);
return fw_info->fw_len;
}
int download_patch(firmware_info *fw_info, int cached)
{
int ret_val = 0;
RTKBT_DBG("%s: Download fw patch start, cached %d", __func__, cached);
if (!fw_info || !fw_info->patch_entry) {
RTKBT_ERR("%s: No patch entry exists(fw_info %p)", __func__, fw_info);
ret_val = -1;
goto end;
}
/*
* step1: get local firmware if existed
* step2: check firmware version
* step3: download firmware if updated
*/
ret_val = get_firmware(fw_info, cached);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to get firmware", __func__);
goto end;
}
#if SUSPNED_DW_FW
if(fw_info_4_suspend) {
RTKBT_DBG("%s: get suspend fw first cached %d", __func__, cached);
ret_val = get_suspend_firmware(fw_info_4_suspend, cached);
if (ret_val < 0) {
RTKBT_ERR("%s: Failed to get suspend firmware", __func__);
goto end;
}
}
#endif
/*check the length of fw to be download*/
RTKBT_DBG("%s: Check fw_info->fw_len:%d max_patch_size %d", __func__, fw_info->fw_len, fw_info->patch_entry->max_patch_size);
if (fw_info->fw_len > fw_info->patch_entry->max_patch_size) {
RTKBT_ERR("%s: Total length of fw&config(%08x) larger than max_patch_size 0x%08x", __func__, fw_info->fw_len, fw_info->patch_entry->max_patch_size);
ret_val = -1;
goto free;
}
ret_val = check_fw_version(fw_info, false);
if (2 == ret_val) {
RTKBT_ERR("%s: Cold reset bt chip only download", __func__);
ret_val = download_data(fw_info);
if (ret_val > 0)
RTKBT_ERR("%s: Download fw patch done, fw len %d", __func__, ret_val);
} else if(1 == ret_val){
// reset bt chip to update Fw patch
ret_val = reset_controller(fw_info);
RTKBT_ERR("%s: reset bt chip to update Fw patch, fw len %d", __func__, ret_val);
ret_val = download_data(fw_info);
if (ret_val > 0)
RTKBT_ERR("%s: Download fw patch done, fw len %d", __func__, ret_val);
}
free:
/* Free fw data after download finished */
kfree(fw_info->fw_data);
fw_info->fw_data = NULL;
end:
return ret_val;
}
#if SUSPNED_DW_FW
static int download_suspend_patch(firmware_info *fw_info, int cached)
{
int ret_val = 0;
RTKBT_DBG("%s: Download fw patch start, cached %d", __func__, cached);
if (!fw_info || !fw_info->patch_entry) {
RTKBT_ERR("%s: No patch entry exists(fw_info %p)", __func__, fw_info);
ret_val = -1;
goto end;
}
/*check the length of fw to be download*/
RTKBT_DBG("%s:Check RTK_PATCH_LENGTH fw_info->fw_len:%d", __func__,fw_info->fw_len);
if (fw_info->fw_len > fw_info->patch_entry->max_patch_size || fw_info->fw_len == 0) {
RTKBT_ERR("%s: Total length of fw&config(%08x) larger than max_patch_size 0x%08x", __func__, fw_info->fw_len, fw_info->patch_entry->max_patch_size);
ret_val = -1;
goto free;
}
ret_val = check_fw_version(fw_info, false);
if (2 == ret_val) {
RTKBT_ERR("%s: Cold reset bt chip only download", __func__);
ret_val = download_data(fw_info);
if (ret_val > 0)
RTKBT_ERR("%s: Download fw patch done, fw len %d", __func__, ret_val);
} else if(1 == ret_val){
// reset bt chip to update Fw patch
ret_val = reset_controller(fw_info);
RTKBT_ERR("%s: reset bt chip to update Fw patch, fw len %d", __func__, ret_val);
ret_val = download_data(fw_info);
if (ret_val > 0)
RTKBT_ERR("%s: Download fw patch done, fw len %d", __func__, ret_val);
}
free:
/* Free fw data after download finished */
kfree(fw_info->fw_data);
fw_info->fw_data = NULL;
end:
return ret_val;
}
static void suspend_firmware_info_init(firmware_info *fw_info)
{
RTKBT_DBG("%s: start", __func__);
if(!fw_info)
return;
fw_info_4_suspend= kzalloc(sizeof(*fw_info), GFP_KERNEL);
if (!fw_info_4_suspend)
goto error;
fw_info_4_suspend->send_pkt = kzalloc(PKT_LEN, GFP_KERNEL);
if (!fw_info_4_suspend->send_pkt) {
kfree(fw_info_4_suspend);
goto error;
}
fw_info_4_suspend->rcv_pkt = kzalloc(PKT_LEN, GFP_KERNEL);
if (!fw_info_4_suspend->rcv_pkt) {
kfree(fw_info_4_suspend->send_pkt);
kfree(fw_info_4_suspend);
goto error;
}
fw_info_4_suspend->patch_entry = get_suspend_fw_table_entry(fw_info->udev);
if (!fw_info_4_suspend->patch_entry) {
kfree(fw_info_4_suspend->rcv_pkt);
kfree(fw_info_4_suspend->send_pkt);
kfree(fw_info_4_suspend);
goto error;
}
fw_info_4_suspend->intf = fw_info->intf;
fw_info_4_suspend->udev = fw_info->udev;
fw_info_4_suspend->cmd_hdr = (struct hci_command_hdr *)(fw_info_4_suspend->send_pkt);
fw_info_4_suspend->evt_hdr = (struct hci_event_hdr *)(fw_info_4_suspend->rcv_pkt);
fw_info_4_suspend->cmd_cmp = (struct hci_ev_cmd_complete *)(fw_info_4_suspend->rcv_pkt + EVT_HDR_LEN);
fw_info_4_suspend->req_para = fw_info_4_suspend->send_pkt + CMD_HDR_LEN;
fw_info_4_suspend->rsp_para = fw_info_4_suspend->rcv_pkt + EVT_HDR_LEN + CMD_CMP_LEN;
fw_info_4_suspend->pipe_in = fw_info->pipe_in;
fw_info_4_suspend->pipe_out = fw_info->pipe_out;
return;
error:
RTKBT_DBG("%s: fail !", __func__);
fw_info_4_suspend = NULL;
return;
}
#endif
#if SET_WAKEUP_DEVICE
static void set_wakeup_device_from_conf(firmware_info *fw_info)
{
uint8_t paired_wakeup_bdaddr[7];
uint8_t num = 0;
int i;
struct file *fp;
mm_segment_t fs;
loff_t pos;
memset(paired_wakeup_bdaddr, 0, 7);
fp = filp_open(SET_WAKEUP_DEVICE_CONF, O_RDWR, 0);
if (!IS_ERR(fp)) {
fs = get_fs();
set_fs(KERNEL_DS);
pos = 0;
//read number
vfs_read(fp, &num, 1, &pos);
RTKBT_DBG("read number = %d", num);
if(num) {
for(i = 0; i < num; i++) {
vfs_read(fp, paired_wakeup_bdaddr, 7, &pos);
RTKBT_DBG("paired_wakeup_bdaddr: 0x%02x:0x%02x:0x%02x:0x%02x:0x%02x:0x%02x",
paired_wakeup_bdaddr[1],paired_wakeup_bdaddr[2],paired_wakeup_bdaddr[3],
paired_wakeup_bdaddr[4],paired_wakeup_bdaddr[5],paired_wakeup_bdaddr[6]);
set_wakeup_device(fw_info, paired_wakeup_bdaddr);
}
}
filp_close(fp, NULL);
set_fs(fs);
}
else {
RTKBT_ERR("open wakeup config file fail! errno = %ld", PTR_ERR(fp));
}
}
#endif
static firmware_info *firmware_info_init(struct usb_interface *intf)
{
struct usb_device *udev = interface_to_usbdev(intf);
firmware_info *fw_info;
RTKBT_DBG("%s: start", __func__);
fw_info = kzalloc(sizeof(*fw_info), GFP_KERNEL);
if (!fw_info)
return NULL;
fw_info->send_pkt = kzalloc(PKT_LEN, GFP_KERNEL);
if (!fw_info->send_pkt) {
kfree(fw_info);
return NULL;
}
fw_info->rcv_pkt = kzalloc(PKT_LEN, GFP_KERNEL);
if (!fw_info->rcv_pkt) {
kfree(fw_info->send_pkt);
kfree(fw_info);
return NULL;
}
fw_info->patch_entry = get_fw_table_entry(udev);
if (!fw_info->patch_entry) {
kfree(fw_info->rcv_pkt);
kfree(fw_info->send_pkt);
kfree(fw_info);
return NULL;
}
fw_info->intf = intf;
fw_info->udev = udev;
fw_info->pipe_in = usb_rcvintpipe(fw_info->udev, INTR_EP);
fw_info->pipe_out = usb_sndctrlpipe(fw_info->udev, CTRL_EP);
fw_info->cmd_hdr = (struct hci_command_hdr *)(fw_info->send_pkt);
fw_info->evt_hdr = (struct hci_event_hdr *)(fw_info->rcv_pkt);
fw_info->cmd_cmp = (struct hci_ev_cmd_complete *)(fw_info->rcv_pkt + EVT_HDR_LEN);
fw_info->req_para = fw_info->send_pkt + CMD_HDR_LEN;
fw_info->rsp_para = fw_info->rcv_pkt + EVT_HDR_LEN + CMD_CMP_LEN;
#if SUSPNED_DW_FW
suspend_firmware_info_init(fw_info);
#endif
#if BTUSB_RPM
RTKBT_INFO("%s: Auto suspend is enabled", __func__);
usb_enable_autosuspend(udev);
pm_runtime_set_autosuspend_delay(&(udev->dev), 2000);
#else
RTKBT_INFO("%s: Auto suspend is disabled", __func__);
usb_disable_autosuspend(udev);
#endif
#if BTUSB_WAKEUP_HOST
device_wakeup_enable(&udev->dev);
#endif
return fw_info;
}
static void firmware_info_destroy(struct usb_interface *intf)
{
firmware_info *fw_info;
struct usb_device *udev;
struct btusb_data *data;
udev = interface_to_usbdev(intf);
data = usb_get_intfdata(intf);
fw_info = data->fw_info;
if (!fw_info)
return;
#if BTUSB_RPM
usb_disable_autosuspend(udev);
#endif
/*
* In order to reclaim fw data mem, we free fw_data immediately
* after download patch finished instead of here.
*/
kfree(fw_info->rcv_pkt);
kfree(fw_info->send_pkt);
kfree(fw_info);
#if SUSPNED_DW_FW
if (!fw_info_4_suspend)
return;
kfree(fw_info_4_suspend->rcv_pkt);
kfree(fw_info_4_suspend->send_pkt);
kfree(fw_info_4_suspend->patch_entry);
kfree(fw_info_4_suspend);
fw_info_4_suspend = NULL;
#endif
}
static struct usb_driver btusb_driver;
static struct usb_device_id btusb_table[] = {
{ .match_flags = USB_DEVICE_ID_MATCH_VENDOR |
USB_DEVICE_ID_MATCH_INT_INFO,
.idVendor = 0x0bda,
.bInterfaceClass = 0xe0,
.bInterfaceSubClass = 0x01,
.bInterfaceProtocol = 0x01 },
{ .match_flags = USB_DEVICE_ID_MATCH_VENDOR |
USB_DEVICE_ID_MATCH_INT_INFO,
.idVendor = 0x13d3,
.bInterfaceClass = 0xe0,
.bInterfaceSubClass = 0x01,
.bInterfaceProtocol = 0x01 },
{ }
};
MODULE_DEVICE_TABLE(usb, btusb_table);
static int inc_tx(struct btusb_data *data)
{
unsigned long flags;
int rv;
spin_lock_irqsave(&data->txlock, flags);
rv = test_bit(BTUSB_SUSPENDING, &data->flags);
if (!rv)
data->tx_in_flight++;
spin_unlock_irqrestore(&data->txlock, flags);
return rv;
}
#ifdef CONFIG_SCO_OVER_HCI
static void check_sco_event(struct urb *urb)
{
u8* opcode = (u8*)(urb->transfer_buffer);
u8 status;
uint16_t handle;
struct hci_dev *hdev = urb->context;
struct btusb_data *data = GET_DRV_DATA(hdev);
switch (*opcode) {
case HCI_EV_SYNC_CONN_COMPLETE:
RTKBT_INFO("%s: HCI_EV_SYNC_CONN_COMPLETE(0x%02x)", __func__, *opcode);
status = *(opcode + 2);
data->sco_handle = *(opcode + 3) | *(opcode + 4) << 8;
//hdev->voice_setting = *(uint16_t*)&opcode[15];
if (status == 0) {
hdev->conn_hash.sco_num++;
hdev->notify(hdev, 0);
}
break;
case HCI_EV_DISCONN_COMPLETE:
status = *(opcode + 2);
handle = *(opcode + 3) | *(opcode + 4) << 8;
if (status == 0 && data->sco_handle == handle) {
RTKBT_INFO("%s: SCO HCI_EV_DISCONN_COMPLETE(0x%02x)", __func__, *opcode);
hdev->conn_hash.sco_num--;
hdev->notify(hdev, 0);
data->sco_handle = 0;
}
break;
default:
RTKBT_DBG("%s: event 0x%02x", __func__, *opcode);
break;
}
}
#endif
static void btusb_intr_complete(struct urb *urb)
{
struct hci_dev *hdev = urb->context;
struct btusb_data *data = GET_DRV_DATA(hdev);
int err;
RTKBT_DBG("%s: urb %p status %d count %d ", __func__,
urb, urb->status, urb->actual_length);
#ifdef CONFIG_SCO_OVER_HCI
check_sco_event(urb);
#endif
if (!test_bit(HCI_RUNNING, &hdev->flags))
return;
if (urb->status == 0) {
hdev->stat.byte_rx += urb->actual_length;
if (hci_recv_fragment(hdev, HCI_EVENT_PKT,
urb->transfer_buffer,
urb->actual_length) < 0) {
RTKBT_ERR("%s: Corrupted event packet", __func__);
hdev->stat.err_rx++;
}
}
/* Avoid suspend failed when usb_kill_urb */
else if(urb->status == -ENOENT) {
return;
}
if (!test_bit(BTUSB_INTR_RUNNING, &data->flags))
return;
usb_mark_last_busy(data->udev);
usb_anchor_urb(urb, &data->intr_anchor);
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err < 0) {
/* EPERM: urb is being killed;
* ENODEV: device got disconnected */
if (err != -EPERM && err != -ENODEV)
RTKBT_ERR("%s: Failed to re-submit urb %p, err %d",
__func__, urb, err);
usb_unanchor_urb(urb);
}
}
static int btusb_submit_intr_urb(struct hci_dev *hdev, gfp_t mem_flags)
{
struct btusb_data *data = GET_DRV_DATA(hdev);
struct urb *urb;
unsigned char *buf;
unsigned int pipe;
int err, size;
if (!data->intr_ep)
return -ENODEV;
urb = usb_alloc_urb(0, mem_flags);
if (!urb)
return -ENOMEM;
size = le16_to_cpu(data->intr_ep->wMaxPacketSize);
buf = kmalloc(size, mem_flags);
if (!buf) {
usb_free_urb(urb);
return -ENOMEM;
}
RTKBT_DBG("%s: mMaxPacketSize %d, bEndpointAddress 0x%02x",
__func__, size, data->intr_ep->bEndpointAddress);
pipe = usb_rcvintpipe(data->udev, data->intr_ep->bEndpointAddress);
usb_fill_int_urb(urb, data->udev, pipe, buf, size,
btusb_intr_complete, hdev,
data->intr_ep->bInterval);
urb->transfer_flags |= URB_FREE_BUFFER;
usb_anchor_urb(urb, &data->intr_anchor);
err = usb_submit_urb(urb, mem_flags);
if (err < 0) {
RTKBT_ERR("%s: Failed to submit urb %p, err %d",
__func__, urb, err);
usb_unanchor_urb(urb);
}
usb_free_urb(urb);
return err;
}
static void btusb_bulk_complete(struct urb *urb)
{
struct hci_dev *hdev = urb->context;
struct btusb_data *data = GET_DRV_DATA(hdev);
int err;
RTKBT_DBG("%s: urb %p status %d count %d",
__func__, urb, urb->status, urb->actual_length);
if (!test_bit(HCI_RUNNING, &hdev->flags))
return;
if (urb->status == 0) {
hdev->stat.byte_rx += urb->actual_length;
if (hci_recv_fragment(hdev, HCI_ACLDATA_PKT,
urb->transfer_buffer,
urb->actual_length) < 0) {
RTKBT_ERR("%s: Corrupted ACL packet", __func__);
hdev->stat.err_rx++;
}
}
/* Avoid suspend failed when usb_kill_urb */
else if(urb->status == -ENOENT) {
return;
}
if (!test_bit(BTUSB_BULK_RUNNING, &data->flags))
return;
usb_anchor_urb(urb, &data->bulk_anchor);
usb_mark_last_busy(data->udev);
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err < 0) {
/* -EPERM: urb is being killed;
* -ENODEV: device got disconnected */
if (err != -EPERM && err != -ENODEV)
RTKBT_ERR("btusb_bulk_complete %s urb %p failed to resubmit (%d)",
hdev->name, urb, -err);
usb_unanchor_urb(urb);
}
}
static int btusb_submit_bulk_urb(struct hci_dev *hdev, gfp_t mem_flags)
{
struct btusb_data *data = GET_DRV_DATA(hdev);
struct urb *urb;
unsigned char *buf;
unsigned int pipe;
int err, size = HCI_MAX_FRAME_SIZE;
RTKBT_DBG("%s: hdev name %s", __func__, hdev->name);
if (!data->bulk_rx_ep)
return -ENODEV;
urb = usb_alloc_urb(0, mem_flags);
if (!urb)
return -ENOMEM;
buf = kmalloc(size, mem_flags);
if (!buf) {
usb_free_urb(urb);
return -ENOMEM;
}
pipe = usb_rcvbulkpipe(data->udev, data->bulk_rx_ep->bEndpointAddress);
usb_fill_bulk_urb(urb, data->udev, pipe,
buf, size, btusb_bulk_complete, hdev);
urb->transfer_flags |= URB_FREE_BUFFER;
usb_mark_last_busy(data->udev);
usb_anchor_urb(urb, &data->bulk_anchor);
err = usb_submit_urb(urb, mem_flags);
if (err < 0) {
RTKBT_ERR("%s: Failed to submit urb %p, err %d", __func__, urb, err);
usb_unanchor_urb(urb);
}
usb_free_urb(urb);
return err;
}
static void btusb_isoc_complete(struct urb *urb)
{
struct hci_dev *hdev = urb->context;
struct btusb_data *data = GET_DRV_DATA(hdev);
int i, err;
RTKBT_DBG("%s: urb %p status %d count %d",
__func__, urb, urb->status, urb->actual_length);
if (!test_bit(HCI_RUNNING, &hdev->flags) || !test_bit(BTUSB_ISOC_RUNNING, &data->flags))
return;
if (urb->status == 0) {
for (i = 0; i < urb->number_of_packets; i++) {
unsigned int offset = urb->iso_frame_desc[i].offset;
unsigned int length = urb->iso_frame_desc[i].actual_length;
if (urb->iso_frame_desc[i].status)
continue;
hdev->stat.byte_rx += length;
if (hci_recv_fragment(hdev, HCI_SCODATA_PKT,
urb->transfer_buffer + offset,
length) < 0) {
RTKBT_ERR("%s: Corrupted SCO packet", __func__);
hdev->stat.err_rx++;
}
}
}
/* Avoid suspend failed when usb_kill_urb */
else if(urb->status == -ENOENT) {
return;
}
usb_anchor_urb(urb, &data->isoc_anchor);
i = 0;
retry:
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err < 0) {
/* -EPERM: urb is being killed;
* -ENODEV: device got disconnected */
if (err != -EPERM && err != -ENODEV)
RTKBT_ERR("%s: Failed to re-sumbit urb %p, retry %d, err %d",
__func__, urb, i, err);
if (i < 10) {
i++;
mdelay(1);
goto retry;
}
usb_unanchor_urb(urb);
}
}
static inline void fill_isoc_descriptor(struct urb *urb, int len, int mtu)
{
int i, offset = 0;
RTKBT_DBG("%s: len %d mtu %d", __func__, len, mtu);
for (i = 0; i < BTUSB_MAX_ISOC_FRAMES && len >= mtu;
i++, offset += mtu, len -= mtu) {
urb->iso_frame_desc[i].offset = offset;
urb->iso_frame_desc[i].length = mtu;
}
if (len && i < BTUSB_MAX_ISOC_FRAMES) {
urb->iso_frame_desc[i].offset = offset;
urb->iso_frame_desc[i].length = len;
i++;
}
urb->number_of_packets = i;
}
static int btusb_submit_isoc_urb(struct hci_dev *hdev, gfp_t mem_flags)
{
struct btusb_data *data = GET_DRV_DATA(hdev);
struct urb *urb;
unsigned char *buf;
unsigned int pipe;
int err, size;
if (!data->isoc_rx_ep)
return -ENODEV;
urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, mem_flags);
if (!urb)
return -ENOMEM;
size = le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize) *
BTUSB_MAX_ISOC_FRAMES;
buf = kmalloc(size, mem_flags);
if (!buf) {
usb_free_urb(urb);
return -ENOMEM;
}
pipe = usb_rcvisocpipe(data->udev, data->isoc_rx_ep->bEndpointAddress);
urb->dev = data->udev;
urb->pipe = pipe;
urb->context = hdev;
urb->complete = btusb_isoc_complete;
urb->interval = data->isoc_rx_ep->bInterval;
urb->transfer_flags = URB_FREE_BUFFER | URB_ISO_ASAP;
urb->transfer_buffer = buf;
urb->transfer_buffer_length = size;
fill_isoc_descriptor(urb, size,
le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize));
usb_anchor_urb(urb, &data->isoc_anchor);
err = usb_submit_urb(urb, mem_flags);
if (err < 0) {
RTKBT_ERR("%s: Failed to submit urb %p, err %d", __func__, urb, err);
usb_unanchor_urb(urb);
}
usb_free_urb(urb);
return err;
}
static void btusb_tx_complete(struct urb *urb)
{
struct sk_buff *skb = urb->context;
struct hci_dev *hdev = (struct hci_dev *) skb->dev;
struct btusb_data *data = GET_DRV_DATA(hdev);
if (!test_bit(HCI_RUNNING, &hdev->flags))
goto done;
if (!urb->status)
hdev->stat.byte_tx += urb->transfer_buffer_length;
else
hdev->stat.err_tx++;
done:
spin_lock(&data->txlock);
data->tx_in_flight--;
spin_unlock(&data->txlock);
kfree(urb->setup_packet);
kfree_skb(skb);
}
static void btusb_isoc_tx_complete(struct urb *urb)
{
struct sk_buff *skb = urb->context;
struct hci_dev *hdev = (struct hci_dev *) skb->dev;
RTKBT_DBG("%s: urb %p status %d count %d",
__func__, urb, urb->status, urb->actual_length);
if (skb && hdev) {
if (!test_bit(HCI_RUNNING, &hdev->flags))
goto done;
if (!urb->status)
hdev->stat.byte_tx += urb->transfer_buffer_length;
else
hdev->stat.err_tx++;
} else
RTKBT_ERR("%s: skb 0x%p hdev 0x%p", __func__, skb, hdev);
done:
kfree(urb->setup_packet);
kfree_skb(skb);
}
static int btusb_open(struct hci_dev *hdev)
{
struct btusb_data *data = GET_DRV_DATA(hdev);
int i, err = 0;
RTKBT_INFO("%s: Start, PM usage count %d", __func__,
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 9, 0)
atomic_read(&data->intf->dev.power.usage_count)
#else
0
#endif
);
err = usb_autopm_get_interface(data->intf);
if (err < 0)
return err;
data->intf->needs_remote_wakeup = 1;
for (i = 0; i < NUM_REASSEMBLY; i++) {
if (hdev->reassembly[i]) {
RTKBT_DBG("%s: free ressembly[%d]", __func__, i);
kfree_skb(hdev->reassembly[i]);
hdev->reassembly[i] = NULL;
}
}
if (test_and_set_bit(HCI_RUNNING, &hdev->flags))
goto done;
if (test_and_set_bit(BTUSB_INTR_RUNNING, &data->flags))
goto done;
err = btusb_submit_intr_urb(hdev, GFP_KERNEL);
if (err < 0)
goto failed;
err = btusb_submit_bulk_urb(hdev, GFP_KERNEL);
if (err < 0) {
mdelay(URB_CANCELING_DELAY_MS);
usb_kill_anchored_urbs(&data->intr_anchor);
goto failed;
}
set_bit(BTUSB_BULK_RUNNING, &data->flags);
btusb_submit_bulk_urb(hdev, GFP_KERNEL);
done:
usb_autopm_put_interface(data->intf);
RTKBT_INFO("%s: End, PM usage count %d", __func__,
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 9, 0)
atomic_read(&data->intf->dev.power.usage_count)
#else
0
#endif
);
return 0;
failed:
clear_bit(BTUSB_INTR_RUNNING, &data->flags);
clear_bit(HCI_RUNNING, &hdev->flags);
usb_autopm_put_interface(data->intf);
RTKBT_ERR("%s: Failed, PM usage count %d", __func__,
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 9, 0)
atomic_read(&data->intf->dev.power.usage_count)
#else
0
#endif
);
return err;
}
static void btusb_stop_traffic(struct btusb_data *data)
{
mdelay(URB_CANCELING_DELAY_MS);
usb_kill_anchored_urbs(&data->intr_anchor);
usb_kill_anchored_urbs(&data->bulk_anchor);
usb_kill_anchored_urbs(&data->isoc_anchor);
}
static int btusb_close(struct hci_dev *hdev)
{
struct btusb_data *data = GET_DRV_DATA(hdev);
int err;
RTKBT_INFO("%s: hci running %lu", __func__, hdev->flags & HCI_RUNNING);
if (!test_and_clear_bit(HCI_RUNNING, &hdev->flags))
return 0;
cancel_work_sync(&data->work);
cancel_work_sync(&data->waker);
clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
clear_bit(BTUSB_BULK_RUNNING, &data->flags);
clear_bit(BTUSB_INTR_RUNNING, &data->flags);
btusb_stop_traffic(data);
err = usb_autopm_get_interface(data->intf);
if (err < 0)
goto failed;
data->intf->needs_remote_wakeup = 0;
usb_autopm_put_interface(data->intf);
failed:
mdelay(URB_CANCELING_DELAY_MS);
usb_scuttle_anchored_urbs(&data->deferred);
return 0;
}
static int btusb_flush(struct hci_dev *hdev)
{
struct btusb_data *data = GET_DRV_DATA(hdev);
RTKBT_DBG("%s", __func__);
mdelay(URB_CANCELING_DELAY_MS);
usb_kill_anchored_urbs(&data->tx_anchor);
return 0;
}
#ifdef CONFIG_SCO_OVER_HCI
static void btusb_isoc_snd_tx_complete(struct urb *urb);
static int snd_send_sco_frame(struct sk_buff *skb)
{
struct hci_dev *hdev = (struct hci_dev *) skb->dev;
struct btusb_data *data = GET_DRV_DATA(hdev);
//struct usb_ctrlrequest *dr;
struct urb *urb;
unsigned int pipe;
int err;
RTKBT_DBG("%s:pkt type %d, packet_len : %d",
__func__,bt_cb(skb)->pkt_type, skb->len);
if (!hdev && !test_bit(HCI_RUNNING, &hdev->flags))
return -EBUSY;
if (!data->isoc_tx_ep || hdev->conn_hash.sco_num < 1) {
kfree(skb);
return -ENODEV;
}
urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, GFP_ATOMIC);
if (!urb) {
RTKBT_ERR("%s: Failed to allocate mem for sco pkts", __func__);
kfree(skb);
return -ENOMEM;
}
pipe = usb_sndisocpipe(data->udev, data->isoc_tx_ep->bEndpointAddress);
usb_fill_int_urb(urb, data->udev, pipe,
skb->data, skb->len, btusb_isoc_snd_tx_complete,
skb, data->isoc_tx_ep->bInterval);
urb->transfer_flags = URB_ISO_ASAP;
fill_isoc_descriptor(urb, skb->len,
le16_to_cpu(data->isoc_tx_ep->wMaxPacketSize));
hdev->stat.sco_tx++;
usb_anchor_urb(urb, &data->tx_anchor);
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err < 0) {
RTKBT_ERR("%s: Failed to submit urb %p, pkt type %d, err %d",
__func__, urb, bt_cb(skb)->pkt_type, err);
kfree(urb->setup_packet);
usb_unanchor_urb(urb);
} else
usb_mark_last_busy(data->udev);
usb_free_urb(urb);
return err;
}
static bool snd_copy_send_sco_data( RTK_sco_card_t *pSCOSnd)
{
struct snd_pcm_runtime *runtime = pSCOSnd->playback.substream->runtime;
unsigned int frame_bytes = 2, frames1;
const u8 *source;
snd_pcm_uframes_t period_size = runtime->period_size;
int i, count;
u8 buffer[period_size * 3];
int sco_packet_bytes = pSCOSnd->playback.sco_packet_bytes;
struct sk_buff *skb;
count = frames_to_bytes(runtime, period_size)/sco_packet_bytes;
skb = bt_skb_alloc(((sco_packet_bytes + HCI_SCO_HDR_SIZE) * count), GFP_ATOMIC);
skb->dev = (void *)hci_dev_get(0);
bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
skb_put(skb, ((sco_packet_bytes + HCI_SCO_HDR_SIZE) * count));
if(!skb)
return false;
RTKBT_DBG("%s, buffer_pos: %d", __FUNCTION__, pSCOSnd->playback.buffer_pos);
source = runtime->dma_area + pSCOSnd->playback.buffer_pos * frame_bytes;
if (pSCOSnd->playback.buffer_pos + period_size <= runtime->buffer_size) {
memcpy(buffer, source, period_size * frame_bytes);
} else {
/* wrap around at end of ring buffer */
frames1 = runtime->buffer_size - pSCOSnd->playback.buffer_pos;
memcpy(buffer, source, frames1 * frame_bytes);
memcpy(&buffer[frames1 * frame_bytes],
runtime->dma_area, (period_size - frames1) * frame_bytes);
}
pSCOSnd->playback.buffer_pos += period_size;
if ( pSCOSnd->playback.buffer_pos >= runtime->buffer_size)
pSCOSnd->playback.buffer_pos -= runtime->buffer_size;
for(i = 0; i < count; i++) {
*((__u16 *)(skb->data + i * (sco_packet_bytes + HCI_SCO_HDR_SIZE))) = pSCOSnd->usb_data->sco_handle;
*((__u8 *)(skb->data + i*(sco_packet_bytes + HCI_SCO_HDR_SIZE) + 2)) = sco_packet_bytes;
memcpy((skb->data + i * (sco_packet_bytes + HCI_SCO_HDR_SIZE) + HCI_SCO_HDR_SIZE),
&buffer[sco_packet_bytes * i], sco_packet_bytes);
}
if(test_bit(ALSA_PLAYBACK_RUNNING, &pSCOSnd->states)) {
snd_pcm_period_elapsed(pSCOSnd->playback.substream);
}
snd_send_sco_frame(skb);
return true;
}
static void btusb_isoc_snd_tx_complete(struct urb *urb)
{
struct sk_buff *skb = urb->context;
struct hci_dev *hdev = (struct hci_dev *) skb->dev;
struct btusb_data *data = GET_DRV_DATA(hdev);
RTK_sco_card_t *pSCOSnd = data->pSCOSnd;
RTKBT_DBG("%s: status %d count %d",
__func__,urb->status, urb->actual_length);
if (skb && hdev) {
if (!test_bit(HCI_RUNNING, &hdev->flags))
goto done;
if (!urb->status)
hdev->stat.byte_tx += urb->transfer_buffer_length;
else
hdev->stat.err_tx++;
} else
RTKBT_ERR("%s: skb 0x%p hdev 0x%p", __func__, skb, hdev);
done:
kfree(urb->setup_packet);
kfree_skb(skb);
if(test_bit(ALSA_PLAYBACK_RUNNING, &pSCOSnd->states)){
snd_copy_send_sco_data(pSCOSnd);
//schedule_work(&pSCOSnd->send_sco_work);
}
}
static void playback_work(struct work_struct *work)
{
RTK_sco_card_t *pSCOSnd = container_of(work, RTK_sco_card_t, send_sco_work);
snd_copy_send_sco_data(pSCOSnd);
}
#endif
static int btusb_send_frame(struct sk_buff *skb)
{
struct hci_dev *hdev = (struct hci_dev *) skb->dev;
struct btusb_data *data = GET_DRV_DATA(hdev);
struct usb_ctrlrequest *dr;
struct urb *urb;
unsigned int pipe;
int err;
int retries = 0;
RTKBT_DBG("%s: hdev %p, btusb data %p, pkt type %d",
__func__, hdev, data, bt_cb(skb)->pkt_type);
if (!test_bit(HCI_RUNNING, &hdev->flags))
return -EBUSY;
switch (bt_cb(skb)->pkt_type) {
case HCI_COMMAND_PKT:
print_command(skb);
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!urb)
return -ENOMEM;
dr = kmalloc(sizeof(*dr), GFP_ATOMIC);
if (!dr) {
usb_free_urb(urb);
return -ENOMEM;
}
dr->bRequestType = data->cmdreq_type;
dr->bRequest = 0;
dr->wIndex = 0;
dr->wValue = 0;
dr->wLength = __cpu_to_le16(skb->len);
pipe = usb_sndctrlpipe(data->udev, 0x00);
usb_fill_control_urb(urb, data->udev, pipe, (void *) dr,
skb->data, skb->len, btusb_tx_complete, skb);
hdev->stat.cmd_tx++;
break;
case HCI_ACLDATA_PKT:
print_acl(skb, 1);
if (!data->bulk_tx_ep)
return -ENODEV;
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!urb)
return -ENOMEM;
pipe = usb_sndbulkpipe(data->udev,
data->bulk_tx_ep->bEndpointAddress);
usb_fill_bulk_urb(urb, data->udev, pipe,
skb->data, skb->len, btusb_tx_complete, skb);
hdev->stat.acl_tx++;
break;
case HCI_SCODATA_PKT:
print_sco(skb, 1);
if (!data->isoc_tx_ep || hdev->conn_hash.sco_num < 1) {
kfree(skb);
return -ENODEV;
}
urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, GFP_ATOMIC);
if (!urb) {
RTKBT_ERR("%s: Failed to allocate mem for sco pkts", __func__);
kfree(skb);
return -ENOMEM;
}
pipe = usb_sndisocpipe(data->udev, data->isoc_tx_ep->bEndpointAddress);
usb_fill_int_urb(urb, data->udev, pipe,
skb->data, skb->len, btusb_isoc_tx_complete,
skb, data->isoc_tx_ep->bInterval);
urb->transfer_flags = URB_ISO_ASAP;
fill_isoc_descriptor(urb, skb->len,
le16_to_cpu(data->isoc_tx_ep->wMaxPacketSize));
hdev->stat.sco_tx++;
goto skip_waking;
default:
return -EILSEQ;
}
err = inc_tx(data);
if (err) {
usb_anchor_urb(urb, &data->deferred);
schedule_work(&data->waker);
err = 0;
goto done;
}
skip_waking:
usb_anchor_urb(urb, &data->tx_anchor);
retry:
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err < 0) {
RTKBT_ERR("%s: Failed to submit urb %p, pkt type %d, err %d, retries %d",
__func__, urb, bt_cb(skb)->pkt_type, err, retries);
if ((bt_cb(skb)->pkt_type != HCI_SCODATA_PKT) && (retries < 10)) {
mdelay(1);
if (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT)
print_error_command(skb);
retries++;
goto retry;
}
kfree(urb->setup_packet);
usb_unanchor_urb(urb);
} else
usb_mark_last_busy(data->udev);
usb_free_urb(urb);
done:
return err;
}
#if LINUX_VERSION_CODE <= KERNEL_VERSION(3, 4, 0)
static void btusb_destruct(struct hci_dev *hdev)
{
struct btusb_data *data = GET_DRV_DATA(hdev);
RTKBT_DBG("%s: name %s", __func__, hdev->name);
kfree(data);
}
#endif
static void btusb_notify(struct hci_dev *hdev, unsigned int evt)
{
struct btusb_data *data = GET_DRV_DATA(hdev);
RTKBT_DBG("%s: name %s, evt %d", __func__, hdev->name, evt);
RTKBT_INFO("%s: hdev->conn_hash.sco_num= %d, data->sco_num = %d", __func__, hdev->conn_hash.sco_num,
data->sco_num);
if (hdev->conn_hash.sco_num != data->sco_num) {
data->sco_num = hdev->conn_hash.sco_num;
schedule_work(&data->work);
}
}
static inline int set_isoc_interface(struct hci_dev *hdev, int altsetting)
{
struct btusb_data *data = GET_DRV_DATA(hdev);
struct usb_interface *intf = data->isoc;
struct usb_endpoint_descriptor *ep_desc;
int i, err;
if (!data->isoc)
return -ENODEV;
err = usb_set_interface(data->udev, 1, altsetting);
if (err < 0) {
RTKBT_ERR("%s: Failed to set interface, altsetting %d, err %d",
__func__, altsetting, err);
return err;
}
data->isoc_altsetting = altsetting;
data->isoc_tx_ep = NULL;
data->isoc_rx_ep = NULL;
for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
ep_desc = &intf->cur_altsetting->endpoint[i].desc;
if (!data->isoc_tx_ep && usb_endpoint_is_isoc_out(ep_desc)) {
data->isoc_tx_ep = ep_desc;
continue;
}
if (!data->isoc_rx_ep && usb_endpoint_is_isoc_in(ep_desc)) {
data->isoc_rx_ep = ep_desc;
continue;
}
}
if (!data->isoc_tx_ep || !data->isoc_rx_ep) {
RTKBT_ERR("%s: Invalid SCO descriptors", __func__);
return -ENODEV;
}
return 0;
}
static int check_controller_support_msbc( struct usb_device *udev)
{
//fix this in the future,when new card support msbc decode and encode
RTKBT_INFO("%s:pid = 0x%02x, vid = 0x%02x",__func__,udev->descriptor.idProduct, udev->descriptor.idVendor);
switch (udev->descriptor.idProduct) {
default:
return 0;
}
return 0;
}
static void btusb_work(struct work_struct *work)
{
struct btusb_data *data = container_of(work, struct btusb_data, work);
struct hci_dev *hdev = data->hdev;
struct sk_buff *skb;
int err;
int new_alts;
if (data->sco_num > 0) {
if (!test_bit(BTUSB_DID_ISO_RESUME, &data->flags)) {
err = usb_autopm_get_interface(data->isoc ? data->isoc : data->intf);
if (err < 0) {
clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
mdelay(URB_CANCELING_DELAY_MS);
usb_kill_anchored_urbs(&data->isoc_anchor);
return;
}
set_bit(BTUSB_DID_ISO_RESUME, &data->flags);
}
RTKBT_INFO("%s voice settings = 0x%04x", __func__, hdev->voice_setting);
if (!(hdev->voice_setting & 0x0003)) {
if(data->sco_num == 1)
new_alts = 2;
else {
RTKBT_ERR("%s: we don't support mutiple sco link for cvsd", __func__);
return;
}
} else{
if(check_controller_support_msbc(data->udev)) {
if(data->sco_num == 1)
new_alts = 4;
else {
RTKBT_ERR("%s: we don't support mutiple sco link for msbc", __func__);
return;
}
} else {
new_alts = 2;
}
}
if (data->isoc_altsetting != new_alts) {
clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
mdelay(URB_CANCELING_DELAY_MS);
usb_kill_anchored_urbs(&data->isoc_anchor);
if(hdev->reassembly[HCI_SCODATA_PKT - 1]) {
skb = hdev->reassembly[HCI_SCODATA_PKT - 1];
hdev->reassembly[HCI_SCODATA_PKT - 1] = NULL;
kfree_skb(skb);
}
if (set_isoc_interface(hdev, new_alts) < 0)
return;
}
if (!test_and_set_bit(BTUSB_ISOC_RUNNING, &data->flags)) {
if (btusb_submit_isoc_urb(hdev, GFP_KERNEL) < 0)
clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
else
btusb_submit_isoc_urb(hdev, GFP_KERNEL);
}
#ifdef CONFIG_SCO_OVER_HCI
if(test_bit(BTUSB_ISOC_RUNNING, &data->flags)) {
set_bit(USB_CAPTURE_RUNNING, &data->pSCOSnd->states);
set_bit(USB_PLAYBACK_RUNNING, &data->pSCOSnd->states);
}
#endif
} else {
clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
#ifdef CONFIG_SCO_OVER_HCI
clear_bit(USB_CAPTURE_RUNNING, &data->pSCOSnd->states);
clear_bit(USB_PLAYBACK_RUNNING, &data->pSCOSnd->states);
#endif
mdelay(URB_CANCELING_DELAY_MS);
usb_kill_anchored_urbs(&data->isoc_anchor);
set_isoc_interface(hdev, 0);
if (test_and_clear_bit(BTUSB_DID_ISO_RESUME, &data->flags))
usb_autopm_put_interface(data->isoc ? data->isoc : data->intf);
}
}
static void btusb_waker(struct work_struct *work)
{
struct btusb_data *data = container_of(work, struct btusb_data, waker);
int err;
RTKBT_DBG("%s: PM usage count %d", __func__,
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 9, 0)
atomic_read(&data->intf->pm_usage_cnt)
#else
0
#endif
);
err = usb_autopm_get_interface(data->intf);
if (err < 0)
return;
usb_autopm_put_interface(data->intf);
}
//#ifdef CONFIG_HAS_EARLYSUSPEND
#if 0
static void btusb_early_suspend(struct early_suspend *h)
{
struct btusb_data *data;
firmware_info *fw_info;
patch_info *patch_entry;
RTKBT_INFO("%s", __func__);
data = container_of(h, struct btusb_data, early_suspend);
fw_info = data->fw_info;
patch_entry = fw_info->patch_entry;
patch_entry->fw_len = load_firmware(fw_info, &patch_entry->fw_cache);
if (patch_entry->fw_len <= 0) {
/* We may encount failure in loading firmware, just give a warning */
RTKBT_WARN("%s: Failed to load firmware", __func__);
}
}
static void btusb_late_resume(struct early_suspend *h)
{
struct btusb_data *data;
firmware_info *fw_info;
patch_info *patch_entry;
RTKBT_INFO("%s", __func__);
data = container_of(h, struct btusb_data, early_suspend);
fw_info = data->fw_info;
patch_entry = fw_info->patch_entry;
/* Reclaim fw buffer when bt usb resumed */
if (patch_entry->fw_len > 0) {
kfree(patch_entry->fw_cache);
patch_entry->fw_cache = NULL;
patch_entry->fw_len = 0;
}
}
#else
static int bt_pm_notify(struct notifier_block *notifier, ulong pm_event, void *unused)
{
struct btusb_data *data;
firmware_info *fw_info;
patch_info *patch_entry;
struct usb_device *udev;
RTKBT_INFO("%s: pm event %ld", __func__, pm_event);
data = container_of(notifier, struct btusb_data, pm_notifier);
fw_info = data->fw_info;
patch_entry = fw_info->patch_entry;
udev = fw_info->udev;
switch (pm_event) {
case PM_SUSPEND_PREPARE:
case PM_HIBERNATION_PREPARE:
#if 0
patch_entry->fw_len = load_firmware(fw_info, &patch_entry->fw_cache);
if (patch_entry->fw_len <= 0) {
/* We may encount failure in loading firmware, just give a warning */
RTKBT_WARN("%s: Failed to load firmware", __func__);
}
#endif
if (!device_may_wakeup(&udev->dev)) {
#if (CONFIG_RESET_RESUME || CONFIG_BLUEDROID)
RTKBT_INFO("%s:remote wakeup not supported, reset resume supported", __func__);
#else
fw_info->intf->needs_binding = 1;
RTKBT_INFO("%s:remote wakeup not supported, binding needed", __func__);
#endif
}
break;
case PM_POST_SUSPEND:
case PM_POST_HIBERNATION:
case PM_POST_RESTORE:
#if 0
/* Reclaim fw buffer when bt usb resumed */
if (patch_entry->fw_len > 0) {
kfree(patch_entry->fw_cache);
patch_entry->fw_cache = NULL;
patch_entry->fw_len = 0;
}
#endif
#if BTUSB_RPM
usb_disable_autosuspend(udev);
usb_enable_autosuspend(udev);
pm_runtime_set_autosuspend_delay(&(udev->dev), 2000);
#endif
break;
default:
break;
}
return NOTIFY_DONE;
}
static int bt_reboot_notify(struct notifier_block *notifier, ulong pm_event, void *unused)
{
struct btusb_data *data;
firmware_info *fw_info;
patch_info *patch_entry;
struct usb_device *udev;
RTKBT_INFO("%s: pm event %ld", __func__, pm_event);
data = container_of(notifier, struct btusb_data, reboot_notifier);
fw_info = data->fw_info;
patch_entry = fw_info->patch_entry;
udev = fw_info->udev;
switch (pm_event) {
case SYS_DOWN:
RTKBT_DBG("%s:system down or restart", __func__);
break;
case SYS_HALT:
case SYS_POWER_OFF:
#if SUSPNED_DW_FW
cancel_work_sync(&data->work);
btusb_stop_traffic(data);
mdelay(URB_CANCELING_DELAY_MS);
usb_kill_anchored_urbs(&data->tx_anchor);
if(fw_info_4_suspend) {
download_suspend_patch(fw_info_4_suspend,1);
}
else
RTKBT_ERR("%s: Failed to download suspend fw", __func__);
#endif
#if SET_WAKEUP_DEVICE
set_wakeup_device_from_conf(fw_info_4_suspend);
#endif
RTKBT_DBG("%s:system halt or power off", __func__);
break;
default:
break;
}
return NOTIFY_DONE;
}
#endif
#ifdef CONFIG_SCO_OVER_HCI
static const struct snd_pcm_hardware snd_card_sco_capture_default =
{
.info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_NONINTERLEAVED |
SNDRV_PCM_ACCESS_RW_INTERLEAVED | SNDRV_PCM_INFO_FIFO_IN_FRAMES),
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8,
.rates = (SNDRV_PCM_RATE_8000),
.rate_min = 8000,
.rate_max = 8000,
.channels_min = 1,
.channels_max = 1,
.buffer_bytes_max = 8 * 768,
.period_bytes_min = 48,
.period_bytes_max = 768,
.periods_min = 1,
.periods_max = 8,
.fifo_size = 8,
};
static int snd_sco_capture_pcm_open(struct snd_pcm_substream * substream)
{
RTK_sco_card_t *pSCOSnd = substream->private_data;
RTKBT_INFO("%s", __FUNCTION__);
pSCOSnd->capture.substream = substream;
memcpy(&substream->runtime->hw, &snd_card_sco_capture_default, sizeof(struct snd_pcm_hardware));
if(check_controller_support_msbc(pSCOSnd->dev)) {
substream->runtime->hw.rates |= SNDRV_PCM_RATE_16000;
substream->runtime->hw.rate_max = 16000;
substream->runtime->hw.period_bytes_min = 96;
substream->runtime->hw.period_bytes_max = 16 * 96;
substream->runtime->hw.buffer_bytes_max = 8 * 16 * 96;
}
set_bit(ALSA_CAPTURE_OPEN, &pSCOSnd->states);
return 0;
}
static int snd_sco_capture_pcm_close(struct snd_pcm_substream *substream)
{
RTK_sco_card_t *pSCOSnd = substream->private_data;
clear_bit(ALSA_CAPTURE_OPEN, &pSCOSnd->states);
return 0;
}
static int snd_sco_capture_ioctl(struct snd_pcm_substream *substream, unsigned int cmd, void *arg)
{
RTKBT_DBG("%s, cmd = %d", __FUNCTION__, cmd);
switch (cmd)
{
default:
return snd_pcm_lib_ioctl(substream, cmd, arg);
}
return 0;
}
static int snd_sco_capture_pcm_hw_params(struct snd_pcm_substream * substream, struct snd_pcm_hw_params * hw_params)
{
int err;
struct snd_pcm_runtime *runtime = substream->runtime;
err = snd_pcm_lib_alloc_vmalloc_buffer(substream, params_buffer_bytes(hw_params));
RTKBT_INFO("%s,err : %d, runtime state : %d", __FUNCTION__, err, runtime->status->state);
return err;
}
static int snd_sco_capture_pcm_hw_free(struct snd_pcm_substream * substream)
{
RTKBT_DBG("%s", __FUNCTION__);
return snd_pcm_lib_free_vmalloc_buffer(substream);;
}
static int snd_sco_capture_pcm_prepare(struct snd_pcm_substream *substream)
{
RTK_sco_card_t *pSCOSnd = substream->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
RTKBT_INFO("%s", __FUNCTION__);
if (test_bit(DISCONNECTED, &pSCOSnd->states))
return -ENODEV;
if (!test_bit(USB_CAPTURE_RUNNING, &pSCOSnd->states))
return -EIO;
if(runtime->rate == 8000) {
if(pSCOSnd->usb_data->isoc_altsetting != 2)
return -ENOEXEC;
pSCOSnd->capture.sco_packet_bytes = 48;
}
else if(runtime->rate == 16000 && check_controller_support_msbc(pSCOSnd->dev)) {
if(pSCOSnd->usb_data->isoc_altsetting != 4)
return -ENOEXEC;
pSCOSnd->capture.sco_packet_bytes = 96;
}
else if(pSCOSnd->usb_data->isoc_altsetting == 2) {
pSCOSnd->capture.sco_packet_bytes = 48;
}
else if(pSCOSnd->usb_data->isoc_altsetting == 1) {
pSCOSnd->capture.sco_packet_bytes = 24;
}
return 0;
}
static int snd_sco_capture_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
RTK_sco_card_t *pSCOSnd = substream->private_data;
RTKBT_INFO("%s, cmd : %d", __FUNCTION__, cmd);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
if (!test_bit(USB_CAPTURE_RUNNING, &pSCOSnd->states))
return -EIO;
set_bit(ALSA_CAPTURE_RUNNING, &pSCOSnd->states);
return 0;
case SNDRV_PCM_TRIGGER_STOP:
clear_bit(ALSA_CAPTURE_RUNNING, &pSCOSnd->states);
return 0;
default:
return -EINVAL;
}
}
static snd_pcm_uframes_t snd_sco_capture_pcm_pointer(struct snd_pcm_substream *substream)
{
RTK_sco_card_t *pSCOSnd = substream->private_data;
return pSCOSnd->capture.buffer_pos;
}
static struct snd_pcm_ops snd_sco_capture_pcm_ops = {
.open = snd_sco_capture_pcm_open,
.close = snd_sco_capture_pcm_close,
.ioctl = snd_sco_capture_ioctl,
.hw_params = snd_sco_capture_pcm_hw_params,
.hw_free = snd_sco_capture_pcm_hw_free,
.prepare = snd_sco_capture_pcm_prepare,
.trigger = snd_sco_capture_pcm_trigger,
.pointer = snd_sco_capture_pcm_pointer,
};
static const struct snd_pcm_hardware snd_card_sco_playback_default =
{
.info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_NONINTERLEAVED |
SNDRV_PCM_ACCESS_RW_INTERLEAVED | SNDRV_PCM_INFO_FIFO_IN_FRAMES),
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = (SNDRV_PCM_RATE_8000),
.rate_min = 8000,
.rate_max = 8000,
.channels_min = 1,
.channels_max = 1,
.buffer_bytes_max = 8 * 768,
.period_bytes_min = 48,
.period_bytes_max = 768,
.periods_min = 1,
.periods_max = 8,
.fifo_size = 8,
};
static int snd_sco_playback_pcm_open(struct snd_pcm_substream * substream)
{
RTK_sco_card_t *pSCOSnd = substream->private_data;
int err = 0;
RTKBT_INFO("%s, rate : %d", __FUNCTION__, substream->runtime->rate);
memcpy(&substream->runtime->hw, &snd_card_sco_playback_default, sizeof(struct snd_pcm_hardware));
if(check_controller_support_msbc(pSCOSnd->dev)) {
substream->runtime->hw.rates |= SNDRV_PCM_RATE_16000;
substream->runtime->hw.rate_max = 16000;
substream->runtime->hw.period_bytes_min = 96;
substream->runtime->hw.period_bytes_max = 16 * 96;
substream->runtime->hw.buffer_bytes_max = 8 * 16 * 96;
}
pSCOSnd->playback.substream = substream;
set_bit(ALSA_PLAYBACK_OPEN, &pSCOSnd->states);
return err;
}
static int snd_sco_playback_pcm_close(struct snd_pcm_substream *substream)
{
RTK_sco_card_t *pSCOSnd = substream->private_data;
clear_bit(ALSA_PLAYBACK_OPEN, &pSCOSnd->states);
cancel_work_sync(&pSCOSnd->send_sco_work);
return 0;
}
static int snd_sco_playback_ioctl(struct snd_pcm_substream *substream, unsigned int cmd, void *arg)
{
RTKBT_DBG("%s, cmd : %d", __FUNCTION__, cmd);
switch (cmd)
{
default:
return snd_pcm_lib_ioctl(substream, cmd, arg);
break;
}
return 0;
}
static int snd_sco_playback_pcm_hw_params(struct snd_pcm_substream * substream, struct snd_pcm_hw_params * hw_params)
{
int err;
err = snd_pcm_lib_alloc_vmalloc_buffer(substream, params_buffer_bytes(hw_params));
return err;
}
static int snd_sco_palyback_pcm_hw_free(struct snd_pcm_substream * substream)
{
RTKBT_DBG("%s", __FUNCTION__);
return snd_pcm_lib_free_vmalloc_buffer(substream);
}
static int snd_sco_playback_pcm_prepare(struct snd_pcm_substream *substream)
{
RTK_sco_card_t *pSCOSnd = substream->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
RTKBT_INFO("%s, bound_rate = %d", __FUNCTION__, runtime->rate);
if (test_bit(DISCONNECTED, &pSCOSnd->states))
return -ENODEV;
if (!test_bit(USB_PLAYBACK_RUNNING, &pSCOSnd->states))
return -EIO;
if(runtime->rate == 8000) {
if(pSCOSnd->usb_data->isoc_altsetting != 2)
return -ENOEXEC;
pSCOSnd->playback.sco_packet_bytes = 48;
}
else if(runtime->rate == 16000) {
if(pSCOSnd->usb_data->isoc_altsetting != 4)
return -ENOEXEC;
pSCOSnd->playback.sco_packet_bytes = 96;
}
return 0;
}
static int snd_sco_playback_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
RTK_sco_card_t *pSCOSnd = substream->private_data;
RTKBT_INFO("%s, cmd = %d", __FUNCTION__, cmd);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
if (!test_bit(USB_PLAYBACK_RUNNING, &pSCOSnd->states))
return -EIO;
set_bit(ALSA_PLAYBACK_RUNNING, &pSCOSnd->states);
schedule_work(&pSCOSnd->send_sco_work);
return 0;
case SNDRV_PCM_TRIGGER_STOP:
clear_bit(ALSA_PLAYBACK_RUNNING, &pSCOSnd->states);
return 0;
default:
return -EINVAL;
}
}
static snd_pcm_uframes_t snd_sco_playback_pcm_pointer(struct snd_pcm_substream *substream)
{
RTK_sco_card_t *pSCOSnd = substream->private_data;
return pSCOSnd->playback.buffer_pos;
}
static struct snd_pcm_ops snd_sco_playback_pcm_ops = {
.open = snd_sco_playback_pcm_open,
.close = snd_sco_playback_pcm_close,
.ioctl = snd_sco_playback_ioctl,
.hw_params = snd_sco_playback_pcm_hw_params,
.hw_free = snd_sco_palyback_pcm_hw_free,
.prepare = snd_sco_playback_pcm_prepare,
.trigger = snd_sco_playback_pcm_trigger,
.pointer = snd_sco_playback_pcm_pointer,
};
static RTK_sco_card_t* btusb_snd_init(struct usb_interface *intf, const struct usb_device_id *id, struct btusb_data *data)
{
struct snd_card *card;
RTK_sco_card_t *pSCOSnd;
int err=0;
RTKBT_INFO("%s", __func__);
err = snd_card_new(&intf->dev,
-1, RTK_SCO_ID, THIS_MODULE,
sizeof(RTK_sco_card_t), &card);
if (err < 0) {
RTKBT_ERR("%s: sco snd card create fail", __func__);
return NULL;
}
// private data
pSCOSnd = (RTK_sco_card_t *)card->private_data;
pSCOSnd->card = card;
pSCOSnd->dev = interface_to_usbdev(intf);
pSCOSnd->usb_data = data;
strcpy(card->driver, RTK_SCO_ID);
strcpy(card->shortname, "Realtek sco snd");
sprintf(card->longname, "Realtek sco over hci: VID:0x%04x, PID:0x%04x",
id->idVendor, pSCOSnd->dev->descriptor.idProduct);
err = snd_pcm_new(card, RTK_SCO_ID, 0, 1, 1, &pSCOSnd->pcm);
if (err < 0) {
RTKBT_ERR("%s: sco snd card new pcm fail", __func__);
snd_card_free(card);
return NULL;
}
pSCOSnd->pcm->private_data = pSCOSnd;
sprintf(pSCOSnd->pcm->name, "sco_pcm:VID:0x%04x, PID:0x%04x",
id->idVendor, pSCOSnd->dev->descriptor.idProduct);
snd_pcm_set_ops(pSCOSnd->pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_sco_playback_pcm_ops);
snd_pcm_set_ops(pSCOSnd->pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_sco_capture_pcm_ops);
err = snd_card_register(card);
if (err < 0) {
RTKBT_ERR("%s: sco snd card register card fail", __func__);
snd_card_free(card);
return NULL;
}
spin_lock_init(&pSCOSnd->capture_lock);
spin_lock_init(&pSCOSnd->playback_lock);
INIT_WORK(&pSCOSnd->send_sco_work, playback_work);
return pSCOSnd;
}
static void btusb_snd_remove(RTK_sco_card_t *pSCOSnd)
{
if(!pSCOSnd) {
RTKBT_ERR("%s: sco private data is null", __func__);
return;
}
set_bit(DISCONNECTED, &pSCOSnd->states);
snd_card_disconnect(pSCOSnd->card);
snd_card_free_when_closed(pSCOSnd->card);
}
#endif
static int btusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
struct usb_device *udev = interface_to_usbdev(intf);
struct usb_endpoint_descriptor *ep_desc;
struct btusb_data *data;
struct hci_dev *hdev;
firmware_info *fw_info;
int i, err=0;
RTKBT_INFO("%s: usb_interface11111111 %p, bInterfaceNumber %d, idVendor 0x%04x, "
"idProduct 0x%04x", __func__, intf,
intf->cur_altsetting->desc.bInterfaceNumber,
id->idVendor, id->idProduct);
/* interface numbers are hardcoded in the spec */
if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
return -ENODEV;
RTKBT_DBG("%s: can wakeup = %x, may wakeup = %x", __func__,
device_can_wakeup(&udev->dev), device_may_wakeup(&udev->dev));
data = rtk_alloc(intf);
if (!data)
return -ENOMEM;
for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
ep_desc = &intf->cur_altsetting->endpoint[i].desc;
if (!data->intr_ep && usb_endpoint_is_int_in(ep_desc)) {
data->intr_ep = ep_desc;
continue;
}
if (!data->bulk_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) {
data->bulk_tx_ep = ep_desc;
continue;
}
if (!data->bulk_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) {
data->bulk_rx_ep = ep_desc;
continue;
}
}
if (!data->intr_ep || !data->bulk_tx_ep || !data->bulk_rx_ep) {
rtk_free(data);
return -ENODEV;
}
data->cmdreq_type = USB_TYPE_CLASS;
data->udev = udev;
data->intf = intf;
spin_lock_init(&data->lock);
INIT_WORK(&data->work, btusb_work);
INIT_WORK(&data->waker, btusb_waker);
spin_lock_init(&data->txlock);
init_usb_anchor(&data->tx_anchor);
init_usb_anchor(&data->intr_anchor);
init_usb_anchor(&data->bulk_anchor);
init_usb_anchor(&data->isoc_anchor);
init_usb_anchor(&data->deferred);
fw_info = firmware_info_init(intf);
if (fw_info)
data->fw_info = fw_info;
else {
RTKBT_WARN("%s: Failed to initialize fw info", __func__);
/* Skip download patch */
goto end;
}
hdev = hci_alloc_dev();
if (!hdev) {
rtk_free(data);
data = NULL;
return -ENOMEM;
}
HDEV_BUS = HCI_USB;
data->hdev = hdev;
SET_HCIDEV_DEV(hdev, &intf->dev);
hdev->open = btusb_open;
hdev->close = btusb_close;
hdev->flush = btusb_flush;
hdev->send = btusb_send_frame;
hdev->notify = btusb_notify;
#if LINUX_VERSION_CODE > KERNEL_VERSION(3, 4, 0)
hci_set_drvdata(hdev, data);
#else
hdev->driver_data = data;
hdev->destruct = btusb_destruct;
hdev->owner = THIS_MODULE;
#endif
/* Interface numbers are hardcoded in the specification */
data->isoc = usb_ifnum_to_if(data->udev, 1);
if (data->isoc) {
err = usb_driver_claim_interface(&btusb_driver,
data->isoc, data);
if (err < 0) {
hci_free_dev(hdev);
hdev = NULL;
rtk_free(data);
data = NULL;
return err;
}
#ifdef CONFIG_SCO_OVER_HCI
data->pSCOSnd = btusb_snd_init(intf, id, data);
#endif
}
err = hci_register_dev(hdev);
if (err < 0) {
hci_free_dev(hdev);
hdev = NULL;
rtk_free(data);
data = NULL;
return err;
}
usb_set_intfdata(intf, data);
//#ifdef CONFIG_HAS_EARLYSUSPEND
#if 0
data->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN;
data->early_suspend.suspend = btusb_early_suspend;
data->early_suspend.resume = btusb_late_resume;
register_early_suspend(&data->early_suspend);
#else
data->pm_notifier.notifier_call = bt_pm_notify;
data->reboot_notifier.notifier_call = bt_reboot_notify;
register_pm_notifier(&data->pm_notifier);
register_reboot_notifier(&data->reboot_notifier);
#endif
#if CONFIG_BLUEDROID
RTKBT_INFO("%s: Check bt reset flag %d", __func__, bt_reset);
/* Report hci hardware error after everthing is ready,
* especially hci register is completed. Or, btchr_poll
* will get null hci dev when hotplug in.
*/
if (bt_reset == 1) {
hci_hardware_error();
bt_reset = 0;
} else
bt_reset = 0; /* Clear and reset it anyway */
#endif
load_firmware_info(fw_info);
end:
set_driver_state_value(DEVICE_PROBED);
return 0;
}
static void btusb_disconnect(struct usb_interface *intf)
{
struct btusb_data *data;
struct hci_dev *hdev = NULL;
if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
return;
clear_driver_state(DEVICE_PROBED);
if((get_driver_state_value() & CHAR_OPENED) == CHAR_OPENED)
wake_up_interruptible(&btchr_read_wait);
wait_event_interruptible(bt_drv_state_wait, ((get_driver_state_value() & CHAR_OPENED) == 0));
RTKBT_INFO("%s: usb_interface %p, bInterfaceNumber %d",
__func__, intf, intf->cur_altsetting->desc.bInterfaceNumber);
data = usb_get_intfdata(intf);
if (data)
hdev = data->hdev;
else {
RTKBT_WARN("%s: Failed to get bt usb data[Null]", __func__);
return;
}
#ifdef CONFIG_SCO_OVER_HCI
if (intf->cur_altsetting->desc.bInterfaceNumber == 0) {
RTK_sco_card_t *pSCOSnd = data->pSCOSnd;
btusb_snd_remove(pSCOSnd);
}
#endif
//#ifdef CONFIG_HAS_EARLYSUSPEND
#if 0
unregister_early_suspend(&data->early_suspend);
#else
unregister_pm_notifier(&data->pm_notifier);
unregister_reboot_notifier(&data->reboot_notifier);
#endif
firmware_info_destroy(intf);
#if CONFIG_BLUEDROID
if (test_bit(HCI_RUNNING, &hdev->flags)) {
RTKBT_INFO("%s: Set BT reset flag", __func__);
bt_reset = 1;
}
#endif
usb_set_intfdata(data->intf, NULL);
if (data->isoc)
usb_set_intfdata(data->isoc, NULL);
hci_unregister_dev(hdev);
if (intf == data->isoc)
usb_driver_release_interface(&btusb_driver, data->intf);
else if (data->isoc)
usb_driver_release_interface(&btusb_driver, data->isoc);
#if !CONFIG_BLUEDROID
#if LINUX_VERSION_CODE <= KERNEL_VERSION(3, 4, 0)
__hci_dev_put(hdev);
#endif
#endif
hci_free_dev(hdev);
rtk_free(data);
data = NULL;
set_driver_state_value(0);
}
#ifdef CONFIG_PM
static int btusb_suspend(struct usb_interface *intf, pm_message_t message)
{
struct btusb_data *data = usb_get_intfdata(intf);
firmware_info *fw_info = data->fw_info;
RTKBT_INFO("%s: event 0x%x, suspend count %d", __func__,
message.event, data->suspend_count);
if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
return 0;
if (!test_bit(HCI_RUNNING, &data->hdev->flags))
set_bt_onoff(fw_info, 1);
if (data->suspend_count++)
return 0;
spin_lock_irq(&data->txlock);
if (!((message.event & PM_EVENT_AUTO) && data->tx_in_flight)) {
set_bit(BTUSB_SUSPENDING, &data->flags);
spin_unlock_irq(&data->txlock);
} else {
spin_unlock_irq(&data->txlock);
data->suspend_count--;
RTKBT_ERR("%s: Failed to enter suspend", __func__);
return -EBUSY;
}
cancel_work_sync(&data->work);
btusb_stop_traffic(data);
mdelay(URB_CANCELING_DELAY_MS);
usb_kill_anchored_urbs(&data->tx_anchor);
#if SUSPNED_DW_FW
if(fw_info_4_suspend) {
download_suspend_patch(fw_info_4_suspend,1);
}
else
RTKBT_ERR("%s: Failed to download suspend fw", __func__);
#endif
#if SET_WAKEUP_DEVICE
set_wakeup_device_from_conf(fw_info_4_suspend);
#endif
return 0;
}
static void play_deferred(struct btusb_data *data)
{
struct urb *urb;
int err;
while ((urb = usb_get_from_anchor(&data->deferred))) {
usb_anchor_urb(urb, &data->tx_anchor);
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err < 0) {
RTKBT_ERR("%s: Failed to submit urb %p, err %d",
__func__, urb, err);
kfree(urb->setup_packet);
usb_unanchor_urb(urb);
} else {
usb_mark_last_busy(data->udev);
}
usb_free_urb(urb);
data->tx_in_flight++;
}
mdelay(URB_CANCELING_DELAY_MS);
usb_scuttle_anchored_urbs(&data->deferred);
}
static int btusb_resume(struct usb_interface *intf)
{
struct btusb_data *data = usb_get_intfdata(intf);
struct hci_dev *hdev = data->hdev;
firmware_info *fw_info = data->fw_info;
int err = 0;
RTKBT_INFO("%s: Suspend count %d", __func__, data->suspend_count);
if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
return 0;
if (--data->suspend_count)
return 0;
/*check_fw_version to check the status of the BT Controller after USB Resume*/
err = check_fw_version(fw_info, true);
if (err !=0)
{
RTKBT_INFO("%s: BT Controller Power OFF And Return hci_hardware_error:%d", __func__, err);
hci_hardware_error();
}
if (test_bit(BTUSB_INTR_RUNNING, &data->flags)) {
err = btusb_submit_intr_urb(hdev, GFP_NOIO);
if (err < 0) {
clear_bit(BTUSB_INTR_RUNNING, &data->flags);
goto failed;
}
}
if (test_bit(BTUSB_BULK_RUNNING, &data->flags)) {
err = btusb_submit_bulk_urb(hdev, GFP_NOIO);
if (err < 0) {
clear_bit(BTUSB_BULK_RUNNING, &data->flags);
goto failed;
}
btusb_submit_bulk_urb(hdev, GFP_NOIO);
}
if (test_bit(BTUSB_ISOC_RUNNING, &data->flags)) {
if (btusb_submit_isoc_urb(hdev, GFP_NOIO) < 0)
clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
else
btusb_submit_isoc_urb(hdev, GFP_NOIO);
}
spin_lock_irq(&data->txlock);
play_deferred(data);
clear_bit(BTUSB_SUSPENDING, &data->flags);
spin_unlock_irq(&data->txlock);
schedule_work(&data->work);
return 0;
failed:
mdelay(URB_CANCELING_DELAY_MS);
usb_scuttle_anchored_urbs(&data->deferred);
spin_lock_irq(&data->txlock);
clear_bit(BTUSB_SUSPENDING, &data->flags);
spin_unlock_irq(&data->txlock);
return err;
}
#endif
static struct usb_driver btusb_driver = {
.name = "rtk_btusb",
.probe = btusb_probe,
.disconnect = btusb_disconnect,
#ifdef CONFIG_PM
.suspend = btusb_suspend,
.resume = btusb_resume,
#endif
#if CONFIG_RESET_RESUME
.reset_resume = btusb_resume,
#endif
.id_table = btusb_table,
.supports_autosuspend = 1,
#if LINUX_VERSION_CODE > KERNEL_VERSION(3, 7, 1)
.disable_hub_initiated_lpm = 1,
#endif
};
static int __init btusb_init(void)
{
int err;
RTKBT_INFO("RTKBT_RELEASE_NAME: %s",RTKBT_RELEASE_NAME);
RTKBT_INFO("Realtek Bluetooth USB driver module init, version %s", VERSION);
driver_state = 0;
#if CONFIG_BLUEDROID
err = btchr_init();
if (err < 0) {
/* usb register will go on, even bt char register failed */
RTKBT_ERR("Failed to register usb char device interfaces");
}
else
set_driver_state_value(DRIVER_ON);
#endif
err = usb_register(&btusb_driver);
if (err < 0)
RTKBT_ERR("Failed to register RTK bluetooth USB driver");
return err;
}
static void __exit btusb_exit(void)
{
struct hci_dev *hdev;
RTKBT_INFO("Realtek Bluetooth USB driver module exit");
#if CONFIG_BLUEDROID
clear_driver_state(DRIVER_ON);
hdev = hci_dev_get(0);
while(hdev && atomic_read(&hdev->promisc)) {
RTKBT_ERR("%s: rtkbt driver is being removed, but application is still running!", __func__);
RTKBT_ERR("%s: wait bt application to stop, or the driver can't be removed", __func__);
mdelay(100);
}
btchr_exit();
#endif
usb_deregister(&btusb_driver);
}
module_init(btusb_init);
module_exit(btusb_exit);
module_param(mp_drv_mode, int, 0644);
MODULE_PARM_DESC(mp_drv_mode, "0: NORMAL; 1: MP MODE");
MODULE_AUTHOR("Realtek Corporation");
MODULE_DESCRIPTION("Realtek Bluetooth USB driver version");
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");
5.2 通过vid 匹配
5.3 驱动加载成功。
六、实际测试发现,如果上面两个驱动都打开,有个驱动无法匹配,不能进入probe函数,原因不明。
七、参考文章
USB描述符_usb 描述符类型_Ink bone的博客-CSDN博客
USB设备创建过程与驱动学习笔记_hello_ludy的博客-CSDN博客