2023-09-05 Linux 蓝牙驱动匹配USB 蓝牙的过程简单分析,方法一通过接口描述:USB_INTERFACE_INFO 进行匹配;方法二:通过厂家ID 和device ID匹配。

一、我这个板子的WIFI蓝牙模块是RTL8821CU,这里简单分析一下系统识别模块和驱动加载的过程。主机控制接口(Host Controller Interface) HCI,即主机控制接口,属于蓝牙协议栈的一部分

二、使用 cat /sys/kernel/debug/usb/devices 命令查看USB 设备信息,请注意有这么一行Cls=e0(wlcon) Sub=01 Prot=01,分别代表:bInterfaceClass : 类型代码(由USB组织分配)。 bInterfaceSunClass : 子类型代码(由USB组织分配)。 bInterfaceProtocol : 协议代码(由USB组织分配)

2023-09-05 Linux 蓝牙驱动匹配USB 蓝牙的过程简单分析,方法一通过接口描述:USB_INTERFACE_INFO 进行匹配;方法二:通过厂家ID 和device ID匹配。_第1张图片

三、驱动的idtable匹配方法有2种类型来匹配:

       3.1 方法一:通过接口描述:USB_INTERFACE_INFO(类,子类,协议) 完成device匹配
       3.2 方法二:通过厂家ID 和device ID:USB_DEVICE(厂家ID ,device ID) 完成device匹配
 

四、方法一:通过接口描述完成驱动匹配实例。

        4.1 usb 蓝牙驱动 kernel\drivers\bluetooth\btusb.c

/*
 *
 *  Generic Bluetooth USB driver
 *
 *  Copyright (C) 2005-2008  Marcel Holtmann 
 *
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#include 
#include 
#include 
#include 
#include 

#include 
#include 

#include "btintel.h"
#include "btbcm.h"
#include "btrtl.h"

#define VERSION "0.8"

static bool disable_scofix;
static bool force_scofix;

static bool reset = true;

static struct usb_driver btusb_driver;

#define BTUSB_IGNORE		0x01
#define BTUSB_DIGIANSWER	0x02
#define BTUSB_CSR		0x04
#define BTUSB_SNIFFER		0x08
#define BTUSB_BCM92035		0x10
#define BTUSB_BROKEN_ISOC	0x20
#define BTUSB_WRONG_SCO_MTU	0x40
#define BTUSB_ATH3012		0x80
#define BTUSB_INTEL		0x100
#define BTUSB_INTEL_BOOT	0x200
#define BTUSB_BCM_PATCHRAM	0x400
#define BTUSB_MARVELL		0x800
#define BTUSB_SWAVE		0x1000
#define BTUSB_INTEL_NEW		0x2000
#define BTUSB_AMP		0x4000
#define BTUSB_QCA_ROME		0x8000
#define BTUSB_BCM_APPLE		0x10000
#define BTUSB_REALTEK		0x20000
#define BTUSB_BCM2045		0x40000
#define BTUSB_IFNUM_2		0x80000

static const struct usb_device_id btusb_table[] = {
	/* Generic Bluetooth USB device */
	{ USB_DEVICE_INFO(0xe0, 0x01, 0x01) },

	/* Generic Bluetooth AMP device */
	{ USB_DEVICE_INFO(0xe0, 0x01, 0x04), .driver_info = BTUSB_AMP },

	/* Generic Bluetooth USB interface */
	{ USB_INTERFACE_INFO(0xe0, 0x01, 0x01) },

	/* Apple-specific (Broadcom) devices */
	{ USB_VENDOR_AND_INTERFACE_INFO(0x05ac, 0xff, 0x01, 0x01),
	  .driver_info = BTUSB_BCM_APPLE | BTUSB_IFNUM_2 },

	/* MediaTek MT76x0E */
	{ USB_DEVICE(0x0e8d, 0x763f) },

	/* Broadcom SoftSailing reporting vendor specific */
	{ USB_DEVICE(0x0a5c, 0x21e1) },

	/* Apple MacBookPro 7,1 */
	{ USB_DEVICE(0x05ac, 0x8213) },

	/* Apple iMac11,1 */
	{ USB_DEVICE(0x05ac, 0x8215) },

	/* Apple MacBookPro6,2 */
	{ USB_DEVICE(0x05ac, 0x8218) },

	/* Apple MacBookAir3,1, MacBookAir3,2 */
	{ USB_DEVICE(0x05ac, 0x821b) },

	/* Apple MacBookAir4,1 */
	{ USB_DEVICE(0x05ac, 0x821f) },

	/* Apple MacBookPro8,2 */
	{ USB_DEVICE(0x05ac, 0x821a) },

	/* Apple MacMini5,1 */
	{ USB_DEVICE(0x05ac, 0x8281) },

	/* AVM BlueFRITZ! USB v2.0 */
	{ USB_DEVICE(0x057c, 0x3800), .driver_info = BTUSB_SWAVE },

	/* Bluetooth Ultraport Module from IBM */
	{ USB_DEVICE(0x04bf, 0x030a) },

	/* ALPS Modules with non-standard id */
	{ USB_DEVICE(0x044e, 0x3001) },
	{ USB_DEVICE(0x044e, 0x3002) },

	/* Ericsson with non-standard id */
	{ USB_DEVICE(0x0bdb, 0x1002) },

	/* Canyon CN-BTU1 with HID interfaces */
	{ USB_DEVICE(0x0c10, 0x0000) },

	/* Broadcom BCM20702A0 */
	{ USB_DEVICE(0x413c, 0x8197) },

	/* Broadcom BCM20702B0 (Dynex/Insignia) */
	{ USB_DEVICE(0x19ff, 0x0239), .driver_info = BTUSB_BCM_PATCHRAM },

	/* Broadcom BCM43142A0 (Foxconn/Lenovo) */
	{ USB_DEVICE(0x105b, 0xe065), .driver_info = BTUSB_BCM_PATCHRAM },

	/* Foxconn - Hon Hai */
	{ USB_VENDOR_AND_INTERFACE_INFO(0x0489, 0xff, 0x01, 0x01),
	  .driver_info = BTUSB_BCM_PATCHRAM },

	/* Lite-On Technology - Broadcom based */
	{ USB_VENDOR_AND_INTERFACE_INFO(0x04ca, 0xff, 0x01, 0x01),
	  .driver_info = BTUSB_BCM_PATCHRAM },

	/* Broadcom devices with vendor specific id */
	{ USB_VENDOR_AND_INTERFACE_INFO(0x0a5c, 0xff, 0x01, 0x01),
	  .driver_info = BTUSB_BCM_PATCHRAM },

	/* ASUSTek Computer - Broadcom based */
	{ USB_VENDOR_AND_INTERFACE_INFO(0x0b05, 0xff, 0x01, 0x01),
	  .driver_info = BTUSB_BCM_PATCHRAM },

	/* Belkin F8065bf - Broadcom based */
	{ USB_VENDOR_AND_INTERFACE_INFO(0x050d, 0xff, 0x01, 0x01),
	  .driver_info = BTUSB_BCM_PATCHRAM },

	/* IMC Networks - Broadcom based */
	{ USB_VENDOR_AND_INTERFACE_INFO(0x13d3, 0xff, 0x01, 0x01),
	  .driver_info = BTUSB_BCM_PATCHRAM },

	/* Toshiba Corp - Broadcom based */
	{ USB_VENDOR_AND_INTERFACE_INFO(0x0930, 0xff, 0x01, 0x01),
	  .driver_info = BTUSB_BCM_PATCHRAM },

	/* Intel Bluetooth USB Bootloader (RAM module) */
	{ USB_DEVICE(0x8087, 0x0a5a),
	  .driver_info = BTUSB_INTEL_BOOT | BTUSB_BROKEN_ISOC },

	{ }	/* Terminating entry */
};

MODULE_DEVICE_TABLE(usb, btusb_table);

static const struct usb_device_id blacklist_table[] = {
	/* CSR BlueCore devices */
	{ USB_DEVICE(0x0a12, 0x0001), .driver_info = BTUSB_CSR },

	/* Broadcom BCM2033 without firmware */
	{ USB_DEVICE(0x0a5c, 0x2033), .driver_info = BTUSB_IGNORE },

	/* Broadcom BCM2045 devices */
	{ USB_DEVICE(0x0a5c, 0x2045), .driver_info = BTUSB_BCM2045 },

	/* Atheros 3011 with sflash firmware */
	{ USB_DEVICE(0x0489, 0xe027), .driver_info = BTUSB_IGNORE },
	{ USB_DEVICE(0x0489, 0xe03d), .driver_info = BTUSB_IGNORE },
	{ USB_DEVICE(0x04f2, 0xaff1), .driver_info = BTUSB_IGNORE },
	{ USB_DEVICE(0x0930, 0x0215), .driver_info = BTUSB_IGNORE },
	{ USB_DEVICE(0x0cf3, 0x3002), .driver_info = BTUSB_IGNORE },
	{ USB_DEVICE(0x0cf3, 0xe019), .driver_info = BTUSB_IGNORE },
	{ USB_DEVICE(0x13d3, 0x3304), .driver_info = BTUSB_IGNORE },

	/* Atheros AR9285 Malbec with sflash firmware */
	{ USB_DEVICE(0x03f0, 0x311d), .driver_info = BTUSB_IGNORE },

	/* Atheros 3012 with sflash firmware */
	{ USB_DEVICE(0x0489, 0xe04d), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0489, 0xe04e), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0489, 0xe056), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0489, 0xe057), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0489, 0xe05f), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0489, 0xe076), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0489, 0xe078), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0489, 0xe095), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x04c5, 0x1330), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x04ca, 0x3004), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x04ca, 0x3005), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x04ca, 0x3006), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x04ca, 0x3007), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x04ca, 0x3008), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x04ca, 0x300b), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x04ca, 0x300d), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x04ca, 0x300f), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x04ca, 0x3010), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x04ca, 0x3014), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x04ca, 0x3018), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0930, 0x0219), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0930, 0x021c), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0930, 0x0220), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0930, 0x0227), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0b05, 0x17d0), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0cf3, 0x0036), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0cf3, 0x3004), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0cf3, 0x3008), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0cf3, 0x311d), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0cf3, 0x311e), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0cf3, 0x311f), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0cf3, 0x3121), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0cf3, 0x817a), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0cf3, 0x817b), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0cf3, 0xe003), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0cf3, 0xe004), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0cf3, 0xe005), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0cf3, 0xe006), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x13d3, 0x3362), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x13d3, 0x3375), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x13d3, 0x3393), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x13d3, 0x3395), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x13d3, 0x3402), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x13d3, 0x3408), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x13d3, 0x3423), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x13d3, 0x3432), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x13d3, 0x3472), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x13d3, 0x3474), .driver_info = BTUSB_ATH3012 },

	/* Atheros AR5BBU12 with sflash firmware */
	{ USB_DEVICE(0x0489, 0xe02c), .driver_info = BTUSB_IGNORE },

	/* Atheros AR5BBU12 with sflash firmware */
	{ USB_DEVICE(0x0489, 0xe036), .driver_info = BTUSB_ATH3012 },
	{ USB_DEVICE(0x0489, 0xe03c), .driver_info = BTUSB_ATH3012 },

	/* QCA ROME chipset */
	{ USB_DEVICE(0x0cf3, 0xe007), .driver_info = BTUSB_QCA_ROME },
	{ USB_DEVICE(0x0cf3, 0xe300), .driver_info = BTUSB_QCA_ROME },
	{ USB_DEVICE(0x0cf3, 0xe360), .driver_info = BTUSB_QCA_ROME },

	/* Broadcom BCM2035 */
	{ USB_DEVICE(0x0a5c, 0x2009), .driver_info = BTUSB_BCM92035 },
	{ USB_DEVICE(0x0a5c, 0x200a), .driver_info = BTUSB_WRONG_SCO_MTU },
	{ USB_DEVICE(0x0a5c, 0x2035), .driver_info = BTUSB_WRONG_SCO_MTU },

	/* Broadcom BCM2045 */
	{ USB_DEVICE(0x0a5c, 0x2039), .driver_info = BTUSB_WRONG_SCO_MTU },
	{ USB_DEVICE(0x0a5c, 0x2101), .driver_info = BTUSB_WRONG_SCO_MTU },

	/* IBM/Lenovo ThinkPad with Broadcom chip */
	{ USB_DEVICE(0x0a5c, 0x201e), .driver_info = BTUSB_WRONG_SCO_MTU },
	{ USB_DEVICE(0x0a5c, 0x2110), .driver_info = BTUSB_WRONG_SCO_MTU },

	/* HP laptop with Broadcom chip */
	{ USB_DEVICE(0x03f0, 0x171d), .driver_info = BTUSB_WRONG_SCO_MTU },

	/* Dell laptop with Broadcom chip */
	{ USB_DEVICE(0x413c, 0x8126), .driver_info = BTUSB_WRONG_SCO_MTU },

	/* Dell Wireless 370 and 410 devices */
	{ USB_DEVICE(0x413c, 0x8152), .driver_info = BTUSB_WRONG_SCO_MTU },
	{ USB_DEVICE(0x413c, 0x8156), .driver_info = BTUSB_WRONG_SCO_MTU },

	/* Belkin F8T012 and F8T013 devices */
	{ USB_DEVICE(0x050d, 0x0012), .driver_info = BTUSB_WRONG_SCO_MTU },
	{ USB_DEVICE(0x050d, 0x0013), .driver_info = BTUSB_WRONG_SCO_MTU },

	/* Asus WL-BTD202 device */
	{ USB_DEVICE(0x0b05, 0x1715), .driver_info = BTUSB_WRONG_SCO_MTU },

	/* Kensington Bluetooth USB adapter */
	{ USB_DEVICE(0x047d, 0x105e), .driver_info = BTUSB_WRONG_SCO_MTU },

	/* RTX Telecom based adapters with buggy SCO support */
	{ USB_DEVICE(0x0400, 0x0807), .driver_info = BTUSB_BROKEN_ISOC },
	{ USB_DEVICE(0x0400, 0x080a), .driver_info = BTUSB_BROKEN_ISOC },

	/* CONWISE Technology based adapters with buggy SCO support */
	{ USB_DEVICE(0x0e5e, 0x6622), .driver_info = BTUSB_BROKEN_ISOC },

	/* Roper Class 1 Bluetooth Dongle (Silicon Wave based) */
	{ USB_DEVICE(0x1310, 0x0001), .driver_info = BTUSB_SWAVE },

	/* Digianswer devices */
	{ USB_DEVICE(0x08fd, 0x0001), .driver_info = BTUSB_DIGIANSWER },
	{ USB_DEVICE(0x08fd, 0x0002), .driver_info = BTUSB_IGNORE },

	/* CSR BlueCore Bluetooth Sniffer */
	{ USB_DEVICE(0x0a12, 0x0002),
	  .driver_info = BTUSB_SNIFFER | BTUSB_BROKEN_ISOC },

	/* Frontline ComProbe Bluetooth Sniffer */
	{ USB_DEVICE(0x16d3, 0x0002),
	  .driver_info = BTUSB_SNIFFER | BTUSB_BROKEN_ISOC },

	/* Marvell Bluetooth devices */
	{ USB_DEVICE(0x1286, 0x2044), .driver_info = BTUSB_MARVELL },
	{ USB_DEVICE(0x1286, 0x2046), .driver_info = BTUSB_MARVELL },

	/* Intel Bluetooth devices */
	{ USB_DEVICE(0x8087, 0x07da), .driver_info = BTUSB_CSR },
	{ USB_DEVICE(0x8087, 0x07dc), .driver_info = BTUSB_INTEL },
	{ USB_DEVICE(0x8087, 0x0a2a), .driver_info = BTUSB_INTEL },
	{ USB_DEVICE(0x8087, 0x0a2b), .driver_info = BTUSB_INTEL_NEW },

	/* Other Intel Bluetooth devices */
	{ USB_VENDOR_AND_INTERFACE_INFO(0x8087, 0xe0, 0x01, 0x01),
	  .driver_info = BTUSB_IGNORE },

	/* Realtek Bluetooth devices */
	{ USB_VENDOR_AND_INTERFACE_INFO(0x0bda, 0xe0, 0x01, 0x01),
	  .driver_info = BTUSB_REALTEK },

	/* Additional Realtek 8723AE Bluetooth devices */
	{ USB_DEVICE(0x0930, 0x021d), .driver_info = BTUSB_REALTEK },
	{ USB_DEVICE(0x13d3, 0x3394), .driver_info = BTUSB_REALTEK },

	/* Additional Realtek 8723BE Bluetooth devices */
	{ USB_DEVICE(0x0489, 0xe085), .driver_info = BTUSB_REALTEK },
	{ USB_DEVICE(0x0489, 0xe08b), .driver_info = BTUSB_REALTEK },
	{ USB_DEVICE(0x13d3, 0x3410), .driver_info = BTUSB_REALTEK },
	{ USB_DEVICE(0x13d3, 0x3416), .driver_info = BTUSB_REALTEK },
	{ USB_DEVICE(0x13d3, 0x3459), .driver_info = BTUSB_REALTEK },
	{ USB_DEVICE(0x13d3, 0x3494), .driver_info = BTUSB_REALTEK },

	/* Additional Realtek 8723BU Bluetooth devices */
	{ USB_DEVICE(0x7392, 0xa611), .driver_info = BTUSB_REALTEK },

	/* Additional Realtek 8723DE Bluetooth devices */
	{ USB_DEVICE(0x0bda, 0xb009), .driver_info = BTUSB_REALTEK },
	{ USB_DEVICE(0x2ff8, 0xb011), .driver_info = BTUSB_REALTEK },

	/* Additional Realtek 8821AE Bluetooth devices */
	{ USB_DEVICE(0x0b05, 0x17dc), .driver_info = BTUSB_REALTEK },
	{ USB_DEVICE(0x13d3, 0x3414), .driver_info = BTUSB_REALTEK },
	{ USB_DEVICE(0x13d3, 0x3458), .driver_info = BTUSB_REALTEK },
	{ USB_DEVICE(0x13d3, 0x3461), .driver_info = BTUSB_REALTEK },
	{ USB_DEVICE(0x13d3, 0x3462), .driver_info = BTUSB_REALTEK },

	/* Additional Realtek 8822BE Bluetooth devices */
	{ USB_DEVICE(0x0b05, 0x185c), .driver_info = BTUSB_REALTEK },

	/* Silicon Wave based devices */
	{ USB_DEVICE(0x0c10, 0x0000), .driver_info = BTUSB_SWAVE },

	{ }	/* Terminating entry */
};

#define BTUSB_MAX_ISOC_FRAMES	10

#define BTUSB_INTR_RUNNING	0
#define BTUSB_BULK_RUNNING	1
#define BTUSB_ISOC_RUNNING	2
#define BTUSB_SUSPENDING	3
#define BTUSB_DID_ISO_RESUME	4
#define BTUSB_BOOTLOADER	5
#define BTUSB_DOWNLOADING	6
#define BTUSB_FIRMWARE_LOADED	7
#define BTUSB_FIRMWARE_FAILED	8
#define BTUSB_BOOTING		9
#define BTUSB_DIAG_RUNNING	10
#define BTUSB_OOB_WAKE_ENABLED	11

struct btusb_data {
	struct hci_dev       *hdev;
	struct usb_device    *udev;
	struct usb_interface *intf;
	struct usb_interface *isoc;
	struct usb_interface *diag;

	unsigned long flags;

	struct work_struct work;
	struct work_struct waker;

	struct usb_anchor deferred;
	struct usb_anchor tx_anchor;
	int tx_in_flight;
	spinlock_t txlock;

	struct usb_anchor intr_anchor;
	struct usb_anchor bulk_anchor;
	struct usb_anchor isoc_anchor;
	struct usb_anchor diag_anchor;
	spinlock_t rxlock;

	struct sk_buff *evt_skb;
	struct sk_buff *acl_skb;
	struct sk_buff *sco_skb;

	struct usb_endpoint_descriptor *intr_ep;
	struct usb_endpoint_descriptor *bulk_tx_ep;
	struct usb_endpoint_descriptor *bulk_rx_ep;
	struct usb_endpoint_descriptor *isoc_tx_ep;
	struct usb_endpoint_descriptor *isoc_rx_ep;
	struct usb_endpoint_descriptor *diag_tx_ep;
	struct usb_endpoint_descriptor *diag_rx_ep;

	__u8 cmdreq_type;
	__u8 cmdreq;

	unsigned int sco_num;
	int isoc_altsetting;
	int suspend_count;

	int (*recv_event)(struct hci_dev *hdev, struct sk_buff *skb);
	int (*recv_bulk)(struct btusb_data *data, void *buffer, int count);

	int (*setup_on_usb)(struct hci_dev *hdev);
};

static inline void btusb_free_frags(struct btusb_data *data)
{
	unsigned long flags;

	spin_lock_irqsave(&data->rxlock, flags);

	kfree_skb(data->evt_skb);
	data->evt_skb = NULL;

	kfree_skb(data->acl_skb);
	data->acl_skb = NULL;

	kfree_skb(data->sco_skb);
	data->sco_skb = NULL;

	spin_unlock_irqrestore(&data->rxlock, flags);
}

static int btusb_recv_intr(struct btusb_data *data, void *buffer, int count)
{
	struct sk_buff *skb;
	int err = 0;

	spin_lock(&data->rxlock);
	skb = data->evt_skb;

	while (count) {
		int len;

		if (!skb) {
			skb = bt_skb_alloc(HCI_MAX_EVENT_SIZE, GFP_ATOMIC);
			if (!skb) {
				err = -ENOMEM;
				break;
			}

			bt_cb(skb)->pkt_type = HCI_EVENT_PKT;
			bt_cb(skb)->expect = HCI_EVENT_HDR_SIZE;
		}

		len = min_t(uint, bt_cb(skb)->expect, count);
		memcpy(skb_put(skb, len), buffer, len);

		count -= len;
		buffer += len;
		bt_cb(skb)->expect -= len;

		if (skb->len == HCI_EVENT_HDR_SIZE) {
			/* Complete event header */
			bt_cb(skb)->expect = hci_event_hdr(skb)->plen;

			if (skb_tailroom(skb) < bt_cb(skb)->expect) {
				kfree_skb(skb);
				skb = NULL;

				err = -EILSEQ;
				break;
			}
		}

		if (bt_cb(skb)->expect == 0) {
			/* Complete frame */
			data->recv_event(data->hdev, skb);
			skb = NULL;
		}
	}

	data->evt_skb = skb;
	spin_unlock(&data->rxlock);

	return err;
}

static int btusb_recv_bulk(struct btusb_data *data, void *buffer, int count)
{
	struct sk_buff *skb;
	int err = 0;

	spin_lock(&data->rxlock);
	skb = data->acl_skb;

	while (count) {
		int len;

		if (!skb) {
			skb = bt_skb_alloc(HCI_MAX_FRAME_SIZE, GFP_ATOMIC);
			if (!skb) {
				err = -ENOMEM;
				break;
			}

			bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
			bt_cb(skb)->expect = HCI_ACL_HDR_SIZE;
		}

		len = min_t(uint, bt_cb(skb)->expect, count);
		memcpy(skb_put(skb, len), buffer, len);

		count -= len;
		buffer += len;
		bt_cb(skb)->expect -= len;

		if (skb->len == HCI_ACL_HDR_SIZE) {
			__le16 dlen = hci_acl_hdr(skb)->dlen;

			/* Complete ACL header */
			bt_cb(skb)->expect = __le16_to_cpu(dlen);

			if (skb_tailroom(skb) < bt_cb(skb)->expect) {
				kfree_skb(skb);
				skb = NULL;

				err = -EILSEQ;
				break;
			}
		}

		if (bt_cb(skb)->expect == 0) {
			/* Complete frame */
			hci_recv_frame(data->hdev, skb);
			skb = NULL;
		}
	}

	data->acl_skb = skb;
	spin_unlock(&data->rxlock);

	return err;
}

static int btusb_recv_isoc(struct btusb_data *data, void *buffer, int count)
{
	struct sk_buff *skb;
	int err = 0;

	spin_lock(&data->rxlock);
	skb = data->sco_skb;

	while (count) {
		int len;

		if (!skb) {
			skb = bt_skb_alloc(HCI_MAX_SCO_SIZE, GFP_ATOMIC);
			if (!skb) {
				err = -ENOMEM;
				break;
			}

			bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
			bt_cb(skb)->expect = HCI_SCO_HDR_SIZE;
		}

		len = min_t(uint, bt_cb(skb)->expect, count);
		memcpy(skb_put(skb, len), buffer, len);

		count -= len;
		buffer += len;
		bt_cb(skb)->expect -= len;

		if (skb->len == HCI_SCO_HDR_SIZE) {
			/* Complete SCO header */
			bt_cb(skb)->expect = hci_sco_hdr(skb)->dlen;

			if (skb_tailroom(skb) < bt_cb(skb)->expect) {
				kfree_skb(skb);
				skb = NULL;

				err = -EILSEQ;
				break;
			}
		}

		if (bt_cb(skb)->expect == 0) {
			/* Complete frame */
			hci_recv_frame(data->hdev, skb);
			skb = NULL;
		}
	}

	data->sco_skb = skb;
	spin_unlock(&data->rxlock);

	return err;
}

static void btusb_intr_complete(struct urb *urb)
{
	struct hci_dev *hdev = urb->context;
	struct btusb_data *data = hci_get_drvdata(hdev);
	int err;

	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
	       urb->actual_length);

	if (!test_bit(HCI_RUNNING, &hdev->flags))
		return;

	if (urb->status == 0) {
		hdev->stat.byte_rx += urb->actual_length;

		if (btusb_recv_intr(data, urb->transfer_buffer,
				    urb->actual_length) < 0) {
			BT_ERR("%s corrupted event packet", hdev->name);
			hdev->stat.err_rx++;
		}
	} else if (urb->status == -ENOENT) {
		/* Avoid suspend failed when usb_kill_urb */
		return;
	}

	if (!test_bit(BTUSB_INTR_RUNNING, &data->flags))
		return;

	usb_mark_last_busy(data->udev);
	usb_anchor_urb(urb, &data->intr_anchor);

	err = usb_submit_urb(urb, GFP_ATOMIC);
	if (err < 0) {
		/* -EPERM: urb is being killed;
		 * -ENODEV: device got disconnected */
		if (err != -EPERM && err != -ENODEV)
			BT_ERR("%s urb %p failed to resubmit (%d)",
			       hdev->name, urb, -err);
		usb_unanchor_urb(urb);
	}
}

static int btusb_submit_intr_urb(struct hci_dev *hdev, gfp_t mem_flags)
{
	struct btusb_data *data = hci_get_drvdata(hdev);
	struct urb *urb;
	unsigned char *buf;
	unsigned int pipe;
	int err, size;

	BT_DBG("%s", hdev->name);

	if (!data->intr_ep)
		return -ENODEV;

	urb = usb_alloc_urb(0, mem_flags);
	if (!urb)
		return -ENOMEM;

	size = le16_to_cpu(data->intr_ep->wMaxPacketSize);

	buf = kmalloc(size, mem_flags);
	if (!buf) {
		usb_free_urb(urb);
		return -ENOMEM;
	}

	pipe = usb_rcvintpipe(data->udev, data->intr_ep->bEndpointAddress);

	usb_fill_int_urb(urb, data->udev, pipe, buf, size,
			 btusb_intr_complete, hdev, data->intr_ep->bInterval);

	urb->transfer_flags |= URB_FREE_BUFFER;

	usb_anchor_urb(urb, &data->intr_anchor);

	err = usb_submit_urb(urb, mem_flags);
	if (err < 0) {
		if (err != -EPERM && err != -ENODEV)
			BT_ERR("%s urb %p submission failed (%d)",
			       hdev->name, urb, -err);
		usb_unanchor_urb(urb);
	}

	usb_free_urb(urb);

	return err;
}

static void btusb_bulk_complete(struct urb *urb)
{
	struct hci_dev *hdev = urb->context;
	struct btusb_data *data = hci_get_drvdata(hdev);
	int err;

	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
	       urb->actual_length);

	if (!test_bit(HCI_RUNNING, &hdev->flags))
		return;

	if (urb->status == 0) {
		hdev->stat.byte_rx += urb->actual_length;

		if (data->recv_bulk(data, urb->transfer_buffer,
				    urb->actual_length) < 0) {
			BT_ERR("%s corrupted ACL packet", hdev->name);
			hdev->stat.err_rx++;
		}
	} else if (urb->status == -ENOENT) {
		/* Avoid suspend failed when usb_kill_urb */
		return;
	}

	if (!test_bit(BTUSB_BULK_RUNNING, &data->flags))
		return;

	usb_anchor_urb(urb, &data->bulk_anchor);
	usb_mark_last_busy(data->udev);

	err = usb_submit_urb(urb, GFP_ATOMIC);
	if (err < 0) {
		/* -EPERM: urb is being killed;
		 * -ENODEV: device got disconnected */
		if (err != -EPERM && err != -ENODEV)
			BT_ERR("%s urb %p failed to resubmit (%d)",
			       hdev->name, urb, -err);
		usb_unanchor_urb(urb);
	}
}

static int btusb_submit_bulk_urb(struct hci_dev *hdev, gfp_t mem_flags)
{
	struct btusb_data *data = hci_get_drvdata(hdev);
	struct urb *urb;
	unsigned char *buf;
	unsigned int pipe;
	int err, size = HCI_MAX_FRAME_SIZE;

	BT_DBG("%s", hdev->name);

	if (!data->bulk_rx_ep)
		return -ENODEV;

	urb = usb_alloc_urb(0, mem_flags);
	if (!urb)
		return -ENOMEM;

	buf = kmalloc(size, mem_flags);
	if (!buf) {
		usb_free_urb(urb);
		return -ENOMEM;
	}

	pipe = usb_rcvbulkpipe(data->udev, data->bulk_rx_ep->bEndpointAddress);

	usb_fill_bulk_urb(urb, data->udev, pipe, buf, size,
			  btusb_bulk_complete, hdev);

	urb->transfer_flags |= URB_FREE_BUFFER;

	usb_mark_last_busy(data->udev);
	usb_anchor_urb(urb, &data->bulk_anchor);

	err = usb_submit_urb(urb, mem_flags);
	if (err < 0) {
		if (err != -EPERM && err != -ENODEV)
			BT_ERR("%s urb %p submission failed (%d)",
			       hdev->name, urb, -err);
		usb_unanchor_urb(urb);
	}

	usb_free_urb(urb);

	return err;
}

static void btusb_isoc_complete(struct urb *urb)
{
	struct hci_dev *hdev = urb->context;
	struct btusb_data *data = hci_get_drvdata(hdev);
	int i, err;

	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
	       urb->actual_length);

	if (!test_bit(HCI_RUNNING, &hdev->flags))
		return;

	if (urb->status == 0) {
		for (i = 0; i < urb->number_of_packets; i++) {
			unsigned int offset = urb->iso_frame_desc[i].offset;
			unsigned int length = urb->iso_frame_desc[i].actual_length;

			if (urb->iso_frame_desc[i].status)
				continue;

			hdev->stat.byte_rx += length;

			if (btusb_recv_isoc(data, urb->transfer_buffer + offset,
					    length) < 0) {
				BT_ERR("%s corrupted SCO packet", hdev->name);
				hdev->stat.err_rx++;
			}
		}
	} else if (urb->status == -ENOENT) {
		/* Avoid suspend failed when usb_kill_urb */
		return;
	}

	if (!test_bit(BTUSB_ISOC_RUNNING, &data->flags))
		return;

	usb_anchor_urb(urb, &data->isoc_anchor);

	err = usb_submit_urb(urb, GFP_ATOMIC);
	if (err < 0) {
		/* -EPERM: urb is being killed;
		 * -ENODEV: device got disconnected */
		if (err != -EPERM && err != -ENODEV)
			BT_ERR("%s urb %p failed to resubmit (%d)",
			       hdev->name, urb, -err);
		usb_unanchor_urb(urb);
	}
}

static inline void __fill_isoc_descriptor(struct urb *urb, int len, int mtu)
{
	int i, offset = 0;

	BT_DBG("len %d mtu %d", len, mtu);

	for (i = 0; i < BTUSB_MAX_ISOC_FRAMES && len >= mtu;
					i++, offset += mtu, len -= mtu) {
		urb->iso_frame_desc[i].offset = offset;
		urb->iso_frame_desc[i].length = mtu;
	}

	if (len && i < BTUSB_MAX_ISOC_FRAMES) {
		urb->iso_frame_desc[i].offset = offset;
		urb->iso_frame_desc[i].length = len;
		i++;
	}

	urb->number_of_packets = i;
}

static int btusb_submit_isoc_urb(struct hci_dev *hdev, gfp_t mem_flags)
{
	struct btusb_data *data = hci_get_drvdata(hdev);
	struct urb *urb;
	unsigned char *buf;
	unsigned int pipe;
	int err, size;

	BT_DBG("%s", hdev->name);

	if (!data->isoc_rx_ep)
		return -ENODEV;

	urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, mem_flags);
	if (!urb)
		return -ENOMEM;

	size = le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize) *
						BTUSB_MAX_ISOC_FRAMES;

	buf = kmalloc(size, mem_flags);
	if (!buf) {
		usb_free_urb(urb);
		return -ENOMEM;
	}

	pipe = usb_rcvisocpipe(data->udev, data->isoc_rx_ep->bEndpointAddress);

	usb_fill_int_urb(urb, data->udev, pipe, buf, size, btusb_isoc_complete,
			 hdev, data->isoc_rx_ep->bInterval);

	urb->transfer_flags = URB_FREE_BUFFER | URB_ISO_ASAP;

	__fill_isoc_descriptor(urb, size,
			       le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize));

	usb_anchor_urb(urb, &data->isoc_anchor);

	err = usb_submit_urb(urb, mem_flags);
	if (err < 0) {
		if (err != -EPERM && err != -ENODEV)
			BT_ERR("%s urb %p submission failed (%d)",
			       hdev->name, urb, -err);
		usb_unanchor_urb(urb);
	}

	usb_free_urb(urb);

	return err;
}

static void btusb_diag_complete(struct urb *urb)
{
	struct hci_dev *hdev = urb->context;
	struct btusb_data *data = hci_get_drvdata(hdev);
	int err;

	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
	       urb->actual_length);

	if (urb->status == 0) {
		struct sk_buff *skb;

		skb = bt_skb_alloc(urb->actual_length, GFP_ATOMIC);
		if (skb) {
			memcpy(skb_put(skb, urb->actual_length),
			       urb->transfer_buffer, urb->actual_length);
			hci_recv_diag(hdev, skb);
		}
	} else if (urb->status == -ENOENT) {
		/* Avoid suspend failed when usb_kill_urb */
		return;
	}

	if (!test_bit(BTUSB_DIAG_RUNNING, &data->flags))
		return;

	usb_anchor_urb(urb, &data->diag_anchor);
	usb_mark_last_busy(data->udev);

	err = usb_submit_urb(urb, GFP_ATOMIC);
	if (err < 0) {
		/* -EPERM: urb is being killed;
		 * -ENODEV: device got disconnected */
		if (err != -EPERM && err != -ENODEV)
			BT_ERR("%s urb %p failed to resubmit (%d)",
			       hdev->name, urb, -err);
		usb_unanchor_urb(urb);
	}
}

static int btusb_submit_diag_urb(struct hci_dev *hdev, gfp_t mem_flags)
{
	struct btusb_data *data = hci_get_drvdata(hdev);
	struct urb *urb;
	unsigned char *buf;
	unsigned int pipe;
	int err, size = HCI_MAX_FRAME_SIZE;

	BT_DBG("%s", hdev->name);

	if (!data->diag_rx_ep)
		return -ENODEV;

	urb = usb_alloc_urb(0, mem_flags);
	if (!urb)
		return -ENOMEM;

	buf = kmalloc(size, mem_flags);
	if (!buf) {
		usb_free_urb(urb);
		return -ENOMEM;
	}

	pipe = usb_rcvbulkpipe(data->udev, data->diag_rx_ep->bEndpointAddress);

	usb_fill_bulk_urb(urb, data->udev, pipe, buf, size,
			  btusb_diag_complete, hdev);

	urb->transfer_flags |= URB_FREE_BUFFER;

	usb_mark_last_busy(data->udev);
	usb_anchor_urb(urb, &data->diag_anchor);

	err = usb_submit_urb(urb, mem_flags);
	if (err < 0) {
		if (err != -EPERM && err != -ENODEV)
			BT_ERR("%s urb %p submission failed (%d)",
			       hdev->name, urb, -err);
		usb_unanchor_urb(urb);
	}

	usb_free_urb(urb);

	return err;
}

static void btusb_tx_complete(struct urb *urb)
{
	struct sk_buff *skb = urb->context;
	struct hci_dev *hdev = (struct hci_dev *)skb->dev;
	struct btusb_data *data = hci_get_drvdata(hdev);

	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
	       urb->actual_length);

	if (!test_bit(HCI_RUNNING, &hdev->flags))
		goto done;

	if (!urb->status)
		hdev->stat.byte_tx += urb->transfer_buffer_length;
	else
		hdev->stat.err_tx++;

done:
	spin_lock(&data->txlock);
	data->tx_in_flight--;
	spin_unlock(&data->txlock);

	kfree(urb->setup_packet);

	kfree_skb(skb);
}

static void btusb_isoc_tx_complete(struct urb *urb)
{
	struct sk_buff *skb = urb->context;
	struct hci_dev *hdev = (struct hci_dev *)skb->dev;

	BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
	       urb->actual_length);

	if (!test_bit(HCI_RUNNING, &hdev->flags))
		goto done;

	if (!urb->status)
		hdev->stat.byte_tx += urb->transfer_buffer_length;
	else
		hdev->stat.err_tx++;

done:
	kfree(urb->setup_packet);

	kfree_skb(skb);
}

static int btusb_open(struct hci_dev *hdev)
{
	struct btusb_data *data = hci_get_drvdata(hdev);
	int err;

	BT_DBG("%s", hdev->name);

	/* Patching USB firmware files prior to starting any URBs of HCI path
	 * It is more safe to use USB bulk channel for downloading USB patch
	 */
	if (data->setup_on_usb) {
		err = data->setup_on_usb(hdev);
		if (err < 0)
			return err;
	}

	err = usb_autopm_get_interface(data->intf);
	if (err < 0)
		return err;

	data->intf->needs_remote_wakeup = 1;

	if (test_and_set_bit(BTUSB_INTR_RUNNING, &data->flags))
		goto done;

	err = btusb_submit_intr_urb(hdev, GFP_KERNEL);
	if (err < 0)
		goto failed;

	err = btusb_submit_bulk_urb(hdev, GFP_KERNEL);
	if (err < 0) {
		usb_kill_anchored_urbs(&data->intr_anchor);
		goto failed;
	}

	set_bit(BTUSB_BULK_RUNNING, &data->flags);
	btusb_submit_bulk_urb(hdev, GFP_KERNEL);

	if (data->diag) {
		if (!btusb_submit_diag_urb(hdev, GFP_KERNEL))
			set_bit(BTUSB_DIAG_RUNNING, &data->flags);
	}

done:
	usb_autopm_put_interface(data->intf);
	return 0;

failed:
	clear_bit(BTUSB_INTR_RUNNING, &data->flags);
	usb_autopm_put_interface(data->intf);
	return err;
}

static void btusb_stop_traffic(struct btusb_data *data)
{
	usb_kill_anchored_urbs(&data->intr_anchor);
	usb_kill_anchored_urbs(&data->bulk_anchor);
	usb_kill_anchored_urbs(&data->isoc_anchor);
	usb_kill_anchored_urbs(&data->diag_anchor);
}

static int btusb_close(struct hci_dev *hdev)
{
	struct btusb_data *data = hci_get_drvdata(hdev);
	int err;

	BT_DBG("%s", hdev->name);

	cancel_work_sync(&data->work);
	cancel_work_sync(&data->waker);

	clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
	clear_bit(BTUSB_BULK_RUNNING, &data->flags);
	clear_bit(BTUSB_INTR_RUNNING, &data->flags);
	clear_bit(BTUSB_DIAG_RUNNING, &data->flags);

	btusb_stop_traffic(data);
	btusb_free_frags(data);

	err = usb_autopm_get_interface(data->intf);
	if (err < 0)
		goto failed;

	data->intf->needs_remote_wakeup = 0;
	usb_autopm_put_interface(data->intf);

failed:
	usb_scuttle_anchored_urbs(&data->deferred);
	return 0;
}

static int btusb_flush(struct hci_dev *hdev)
{
	struct btusb_data *data = hci_get_drvdata(hdev);

	BT_DBG("%s", hdev->name);

	usb_kill_anchored_urbs(&data->tx_anchor);
	btusb_free_frags(data);

	return 0;
}

static struct urb *alloc_ctrl_urb(struct hci_dev *hdev, struct sk_buff *skb)
{
	struct btusb_data *data = hci_get_drvdata(hdev);
	struct usb_ctrlrequest *dr;
	struct urb *urb;
	unsigned int pipe;

	urb = usb_alloc_urb(0, GFP_KERNEL);
	if (!urb)
		return ERR_PTR(-ENOMEM);

	dr = kmalloc(sizeof(*dr), GFP_KERNEL);
	if (!dr) {
		usb_free_urb(urb);
		return ERR_PTR(-ENOMEM);
	}

	dr->bRequestType = data->cmdreq_type;
	dr->bRequest     = data->cmdreq;
	dr->wIndex       = 0;
	dr->wValue       = 0;
	dr->wLength      = __cpu_to_le16(skb->len);

	pipe = usb_sndctrlpipe(data->udev, 0x00);

	usb_fill_control_urb(urb, data->udev, pipe, (void *)dr,
			     skb->data, skb->len, btusb_tx_complete, skb);

	skb->dev = (void *)hdev;

	return urb;
}

static struct urb *alloc_bulk_urb(struct hci_dev *hdev, struct sk_buff *skb)
{
	struct btusb_data *data = hci_get_drvdata(hdev);
	struct urb *urb;
	unsigned int pipe;

	if (!data->bulk_tx_ep)
		return ERR_PTR(-ENODEV);

	urb = usb_alloc_urb(0, GFP_KERNEL);
	if (!urb)
		return ERR_PTR(-ENOMEM);

	pipe = usb_sndbulkpipe(data->udev, data->bulk_tx_ep->bEndpointAddress);

	usb_fill_bulk_urb(urb, data->udev, pipe,
			  skb->data, skb->len, btusb_tx_complete, skb);

	skb->dev = (void *)hdev;

	return urb;
}

static struct urb *alloc_isoc_urb(struct hci_dev *hdev, struct sk_buff *skb)
{
	struct btusb_data *data = hci_get_drvdata(hdev);
	struct urb *urb;
	unsigned int pipe;

	if (!data->isoc_tx_ep)
		return ERR_PTR(-ENODEV);

	urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, GFP_KERNEL);
	if (!urb)
		return ERR_PTR(-ENOMEM);

	pipe = usb_sndisocpipe(data->udev, data->isoc_tx_ep->bEndpointAddress);

	usb_fill_int_urb(urb, data->udev, pipe,
			 skb->data, skb->len, btusb_isoc_tx_complete,
			 skb, data->isoc_tx_ep->bInterval);

	urb->transfer_flags  = URB_ISO_ASAP;

	__fill_isoc_descriptor(urb, skb->len,
			       le16_to_cpu(data->isoc_tx_ep->wMaxPacketSize));

	skb->dev = (void *)hdev;

	return urb;
}

static int submit_tx_urb(struct hci_dev *hdev, struct urb *urb)
{
	struct btusb_data *data = hci_get_drvdata(hdev);
	int err;

	usb_anchor_urb(urb, &data->tx_anchor);

	err = usb_submit_urb(urb, GFP_KERNEL);
	if (err < 0) {
		if (err != -EPERM && err != -ENODEV)
			BT_ERR("%s urb %p submission failed (%d)",
			       hdev->name, urb, -err);
		kfree(urb->setup_packet);
		usb_unanchor_urb(urb);
	} else {
		usb_mark_last_busy(data->udev);
	}

	usb_free_urb(urb);
	return err;
}

static int submit_or_queue_tx_urb(struct hci_dev *hdev, struct urb *urb)
{
	struct btusb_data *data = hci_get_drvdata(hdev);
	unsigned long flags;
	bool suspending;

	spin_lock_irqsave(&data->txlock, flags);
	suspending = test_bit(BTUSB_SUSPENDING, &data->flags);
	if (!suspending)
		data->tx_in_flight++;
	spin_unlock_irqrestore(&data->txlock, flags);

	if (!suspending)
		return submit_tx_urb(hdev, urb);

	usb_anchor_urb(urb, &data->deferred);
	schedule_work(&data->waker);

	usb_free_urb(urb);
	return 0;
}

static int btusb_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
{
	struct urb *urb;

	BT_DBG("%s", hdev->name);

	switch (bt_cb(skb)->pkt_type) {
	case HCI_COMMAND_PKT:
		urb = alloc_ctrl_urb(hdev, skb);
		if (IS_ERR(urb))
			return PTR_ERR(urb);

		hdev->stat.cmd_tx++;
		return submit_or_queue_tx_urb(hdev, urb);

	case HCI_ACLDATA_PKT:
		urb = alloc_bulk_urb(hdev, skb);
		if (IS_ERR(urb))
			return PTR_ERR(urb);

		hdev->stat.acl_tx++;
		return submit_or_queue_tx_urb(hdev, urb);

	case HCI_SCODATA_PKT:
		if (hci_conn_num(hdev, SCO_LINK) < 1)
			return -ENODEV;

		urb = alloc_isoc_urb(hdev, skb);
		if (IS_ERR(urb))
			return PTR_ERR(urb);

		hdev->stat.sco_tx++;
		return submit_tx_urb(hdev, urb);
	}

	return -EILSEQ;
}

static void btusb_notify(struct hci_dev *hdev, unsigned int evt)
{
	struct btusb_data *data = hci_get_drvdata(hdev);

	BT_DBG("%s evt %d", hdev->name, evt);

	if (hci_conn_num(hdev, SCO_LINK) != data->sco_num) {
		data->sco_num = hci_conn_num(hdev, SCO_LINK);
		schedule_work(&data->work);
	}
}

static inline int __set_isoc_interface(struct hci_dev *hdev, int altsetting)
{
	struct btusb_data *data = hci_get_drvdata(hdev);
	struct usb_interface *intf = data->isoc;
	struct usb_endpoint_descriptor *ep_desc;
	int i, err;

	if (!data->isoc)
		return -ENODEV;

	err = usb_set_interface(data->udev, 1, altsetting);
	if (err < 0) {
		BT_ERR("%s setting interface failed (%d)", hdev->name, -err);
		return err;
	}

	data->isoc_altsetting = altsetting;

	data->isoc_tx_ep = NULL;
	data->isoc_rx_ep = NULL;

	for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
		ep_desc = &intf->cur_altsetting->endpoint[i].desc;

		if (!data->isoc_tx_ep && usb_endpoint_is_isoc_out(ep_desc)) {
			data->isoc_tx_ep = ep_desc;
			continue;
		}

		if (!data->isoc_rx_ep && usb_endpoint_is_isoc_in(ep_desc)) {
			data->isoc_rx_ep = ep_desc;
			continue;
		}
	}

	if (!data->isoc_tx_ep || !data->isoc_rx_ep) {
		BT_ERR("%s invalid SCO descriptors", hdev->name);
		return -ENODEV;
	}

	return 0;
}

static void btusb_work(struct work_struct *work)
{
	struct btusb_data *data = container_of(work, struct btusb_data, work);
	struct hci_dev *hdev = data->hdev;
	int new_alts;
	int err;

	if (data->sco_num > 0) {
		if (!test_bit(BTUSB_DID_ISO_RESUME, &data->flags)) {
			err = usb_autopm_get_interface(data->isoc ? data->isoc : data->intf);
			if (err < 0) {
				clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
				usb_kill_anchored_urbs(&data->isoc_anchor);
				return;
			}

			set_bit(BTUSB_DID_ISO_RESUME, &data->flags);
		}

		if (hdev->voice_setting & 0x0020) {
			static const int alts[3] = { 2, 4, 5 };

			new_alts = alts[data->sco_num - 1];
		} else {
			new_alts = data->sco_num;
		}

		if (data->isoc_altsetting != new_alts) {
			unsigned long flags;

			clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
			usb_kill_anchored_urbs(&data->isoc_anchor);

			/* When isochronous alternate setting needs to be
			 * changed, because SCO connection has been added
			 * or removed, a packet fragment may be left in the
			 * reassembling state. This could lead to wrongly
			 * assembled fragments.
			 *
			 * Clear outstanding fragment when selecting a new
			 * alternate setting.
			 */
			spin_lock_irqsave(&data->rxlock, flags);
			kfree_skb(data->sco_skb);
			data->sco_skb = NULL;
			spin_unlock_irqrestore(&data->rxlock, flags);

			if (__set_isoc_interface(hdev, new_alts) < 0)
				return;
		}

		if (!test_and_set_bit(BTUSB_ISOC_RUNNING, &data->flags)) {
			if (btusb_submit_isoc_urb(hdev, GFP_KERNEL) < 0)
				clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
			else
				btusb_submit_isoc_urb(hdev, GFP_KERNEL);
		}
	} else {
		clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
		usb_kill_anchored_urbs(&data->isoc_anchor);

		__set_isoc_interface(hdev, 0);
		if (test_and_clear_bit(BTUSB_DID_ISO_RESUME, &data->flags))
			usb_autopm_put_interface(data->isoc ? data->isoc : data->intf);
	}
}

static void btusb_waker(struct work_struct *work)
{
	struct btusb_data *data = container_of(work, struct btusb_data, waker);
	int err;

	err = usb_autopm_get_interface(data->intf);
	if (err < 0)
		return;

	usb_autopm_put_interface(data->intf);
}

static int btusb_setup_bcm92035(struct hci_dev *hdev)
{
	struct sk_buff *skb;
	u8 val = 0x00;

	BT_DBG("%s", hdev->name);

	skb = __hci_cmd_sync(hdev, 0xfc3b, 1, &val, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb))
		BT_ERR("BCM92035 command failed (%ld)", -PTR_ERR(skb));
	else
		kfree_skb(skb);

	return 0;
}

static int btusb_setup_csr(struct hci_dev *hdev)
{
	struct hci_rp_read_local_version *rp;
	struct sk_buff *skb;

	BT_DBG("%s", hdev->name);

	skb = __hci_cmd_sync(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL,
			     HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
		int err = PTR_ERR(skb);
		BT_ERR("%s: CSR: Local version failed (%d)", hdev->name, err);
		return err;
	}

	if (skb->len != sizeof(struct hci_rp_read_local_version)) {
		BT_ERR("%s: CSR: Local version length mismatch", hdev->name);
		kfree_skb(skb);
		return -EIO;
	}

	rp = (struct hci_rp_read_local_version *)skb->data;

	/* Detect controllers which aren't real CSR ones. */
	if (le16_to_cpu(rp->manufacturer) != 10 ||
	    le16_to_cpu(rp->lmp_subver) == 0x0c5c) {
		/* Clear the reset quirk since this is not an actual
		 * early Bluetooth 1.1 device from CSR.
		 */
		clear_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);

		/* These fake CSR controllers have all a broken
		 * stored link key handling and so just disable it.
		 */
		set_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks);
	}

	kfree_skb(skb);

	return 0;
}

static const struct firmware *btusb_setup_intel_get_fw(struct hci_dev *hdev,
						       struct intel_version *ver)
{
	const struct firmware *fw;
	char fwname[64];
	int ret;

	snprintf(fwname, sizeof(fwname),
		 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
		 ver->hw_platform, ver->hw_variant, ver->hw_revision,
		 ver->fw_variant,  ver->fw_revision, ver->fw_build_num,
		 ver->fw_build_ww, ver->fw_build_yy);

	ret = request_firmware(&fw, fwname, &hdev->dev);
	if (ret < 0) {
		if (ret == -EINVAL) {
			BT_ERR("%s Intel firmware file request failed (%d)",
			       hdev->name, ret);
			return NULL;
		}

		BT_ERR("%s failed to open Intel firmware file: %s(%d)",
		       hdev->name, fwname, ret);

		/* If the correct firmware patch file is not found, use the
		 * default firmware patch file instead
		 */
		snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
			 ver->hw_platform, ver->hw_variant);
		if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
			BT_ERR("%s failed to open default Intel fw file: %s",
			       hdev->name, fwname);
			return NULL;
		}
	}

	BT_INFO("%s: Intel Bluetooth firmware file: %s", hdev->name, fwname);

	return fw;
}

static int btusb_setup_intel_patching(struct hci_dev *hdev,
				      const struct firmware *fw,
				      const u8 **fw_ptr, int *disable_patch)
{
	struct sk_buff *skb;
	struct hci_command_hdr *cmd;
	const u8 *cmd_param;
	struct hci_event_hdr *evt = NULL;
	const u8 *evt_param = NULL;
	int remain = fw->size - (*fw_ptr - fw->data);

	/* The first byte indicates the types of the patch command or event.
	 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes
	 * in the current firmware buffer doesn't start with 0x01 or
	 * the size of remain buffer is smaller than HCI command header,
	 * the firmware file is corrupted and it should stop the patching
	 * process.
	 */
	if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
		BT_ERR("%s Intel fw corrupted: invalid cmd read", hdev->name);
		return -EINVAL;
	}
	(*fw_ptr)++;
	remain--;

	cmd = (struct hci_command_hdr *)(*fw_ptr);
	*fw_ptr += sizeof(*cmd);
	remain -= sizeof(*cmd);

	/* Ensure that the remain firmware data is long enough than the length
	 * of command parameter. If not, the firmware file is corrupted.
	 */
	if (remain < cmd->plen) {
		BT_ERR("%s Intel fw corrupted: invalid cmd len", hdev->name);
		return -EFAULT;
	}

	/* If there is a command that loads a patch in the firmware
	 * file, then enable the patch upon success, otherwise just
	 * disable the manufacturer mode, for example patch activation
	 * is not required when the default firmware patch file is used
	 * because there are no patch data to load.
	 */
	if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
		*disable_patch = 0;

	cmd_param = *fw_ptr;
	*fw_ptr += cmd->plen;
	remain -= cmd->plen;

	/* This reads the expected events when the above command is sent to the
	 * device. Some vendor commands expects more than one events, for
	 * example command status event followed by vendor specific event.
	 * For this case, it only keeps the last expected event. so the command
	 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
	 * last expected event.
	 */
	while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
		(*fw_ptr)++;
		remain--;

		evt = (struct hci_event_hdr *)(*fw_ptr);
		*fw_ptr += sizeof(*evt);
		remain -= sizeof(*evt);

		if (remain < evt->plen) {
			BT_ERR("%s Intel fw corrupted: invalid evt len",
			       hdev->name);
			return -EFAULT;
		}

		evt_param = *fw_ptr;
		*fw_ptr += evt->plen;
		remain -= evt->plen;
	}

	/* Every HCI commands in the firmware file has its correspond event.
	 * If event is not found or remain is smaller than zero, the firmware
	 * file is corrupted.
	 */
	if (!evt || !evt_param || remain < 0) {
		BT_ERR("%s Intel fw corrupted: invalid evt read", hdev->name);
		return -EFAULT;
	}

	skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
				cmd_param, evt->evt, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
		BT_ERR("%s sending Intel patch command (0x%4.4x) failed (%ld)",
		       hdev->name, cmd->opcode, PTR_ERR(skb));
		return PTR_ERR(skb);
	}

	/* It ensures that the returned event matches the event data read from
	 * the firmware file. At fist, it checks the length and then
	 * the contents of the event.
	 */
	if (skb->len != evt->plen) {
		BT_ERR("%s mismatch event length (opcode 0x%4.4x)", hdev->name,
		       le16_to_cpu(cmd->opcode));
		kfree_skb(skb);
		return -EFAULT;
	}

	if (memcmp(skb->data, evt_param, evt->plen)) {
		BT_ERR("%s mismatch event parameter (opcode 0x%4.4x)",
		       hdev->name, le16_to_cpu(cmd->opcode));
		kfree_skb(skb);
		return -EFAULT;
	}
	kfree_skb(skb);

	return 0;
}

static int btusb_setup_intel(struct hci_dev *hdev)
{
	struct sk_buff *skb;
	const struct firmware *fw;
	const u8 *fw_ptr;
	int disable_patch;
	struct intel_version *ver;

	const u8 mfg_enable[] = { 0x01, 0x00 };
	const u8 mfg_disable[] = { 0x00, 0x00 };
	const u8 mfg_reset_deactivate[] = { 0x00, 0x01 };
	const u8 mfg_reset_activate[] = { 0x00, 0x02 };

	BT_DBG("%s", hdev->name);

	/* The controller has a bug with the first HCI command sent to it
	 * returning number of completed commands as zero. This would stall the
	 * command processing in the Bluetooth core.
	 *
	 * As a workaround, send HCI Reset command first which will reset the
	 * number of completed commands and allow normal command processing
	 * from now on.
	 */
	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
		BT_ERR("%s sending initial HCI reset command failed (%ld)",
		       hdev->name, PTR_ERR(skb));
		return PTR_ERR(skb);
	}
	kfree_skb(skb);

	/* Read Intel specific controller version first to allow selection of
	 * which firmware file to load.
	 *
	 * The returned information are hardware variant and revision plus
	 * firmware variant, revision and build number.
	 */
	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
		BT_ERR("%s reading Intel fw version command failed (%ld)",
		       hdev->name, PTR_ERR(skb));
		return PTR_ERR(skb);
	}

	if (skb->len != sizeof(*ver)) {
		BT_ERR("%s Intel version event length mismatch", hdev->name);
		kfree_skb(skb);
		return -EIO;
	}

	ver = (struct intel_version *)skb->data;

	BT_INFO("%s: read Intel version: %02x%02x%02x%02x%02x%02x%02x%02x%02x",
		hdev->name, ver->hw_platform, ver->hw_variant,
		ver->hw_revision, ver->fw_variant,  ver->fw_revision,
		ver->fw_build_num, ver->fw_build_ww, ver->fw_build_yy,
		ver->fw_patch_num);

	/* fw_patch_num indicates the version of patch the device currently
	 * have. If there is no patch data in the device, it is always 0x00.
	 * So, if it is other than 0x00, no need to patch the device again.
	 */
	if (ver->fw_patch_num) {
		BT_INFO("%s: Intel device is already patched. patch num: %02x",
			hdev->name, ver->fw_patch_num);
		kfree_skb(skb);
		goto complete;
	}

	/* Opens the firmware patch file based on the firmware version read
	 * from the controller. If it fails to open the matching firmware
	 * patch file, it tries to open the default firmware patch file.
	 * If no patch file is found, allow the device to operate without
	 * a patch.
	 */
	fw = btusb_setup_intel_get_fw(hdev, ver);
	if (!fw) {
		kfree_skb(skb);
		goto complete;
	}
	fw_ptr = fw->data;

	kfree_skb(skb);

	/* This Intel specific command enables the manufacturer mode of the
	 * controller.
	 *
	 * Only while this mode is enabled, the driver can download the
	 * firmware patch data and configuration parameters.
	 */
	skb = __hci_cmd_sync(hdev, 0xfc11, 2, mfg_enable, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
		BT_ERR("%s entering Intel manufacturer mode failed (%ld)",
		       hdev->name, PTR_ERR(skb));
		release_firmware(fw);
		return PTR_ERR(skb);
	}

	kfree_skb(skb);

	disable_patch = 1;

	/* The firmware data file consists of list of Intel specific HCI
	 * commands and its expected events. The first byte indicates the
	 * type of the message, either HCI command or HCI event.
	 *
	 * It reads the command and its expected event from the firmware file,
	 * and send to the controller. Once __hci_cmd_sync_ev() returns,
	 * the returned event is compared with the event read from the firmware
	 * file and it will continue until all the messages are downloaded to
	 * the controller.
	 *
	 * Once the firmware patching is completed successfully,
	 * the manufacturer mode is disabled with reset and activating the
	 * downloaded patch.
	 *
	 * If the firmware patching fails, the manufacturer mode is
	 * disabled with reset and deactivating the patch.
	 *
	 * If the default patch file is used, no reset is done when disabling
	 * the manufacturer.
	 */
	while (fw->size > fw_ptr - fw->data) {
		int ret;

		ret = btusb_setup_intel_patching(hdev, fw, &fw_ptr,
						 &disable_patch);
		if (ret < 0)
			goto exit_mfg_deactivate;
	}

	release_firmware(fw);

	if (disable_patch)
		goto exit_mfg_disable;

	/* Patching completed successfully and disable the manufacturer mode
	 * with reset and activate the downloaded firmware patches.
	 */
	skb = __hci_cmd_sync(hdev, 0xfc11, sizeof(mfg_reset_activate),
			     mfg_reset_activate, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
		BT_ERR("%s exiting Intel manufacturer mode failed (%ld)",
		       hdev->name, PTR_ERR(skb));
		return PTR_ERR(skb);
	}
	kfree_skb(skb);

	BT_INFO("%s: Intel Bluetooth firmware patch completed and activated",
		hdev->name);

	goto complete;

exit_mfg_disable:
	/* Disable the manufacturer mode without reset */
	skb = __hci_cmd_sync(hdev, 0xfc11, sizeof(mfg_disable), mfg_disable,
			     HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
		BT_ERR("%s exiting Intel manufacturer mode failed (%ld)",
		       hdev->name, PTR_ERR(skb));
		return PTR_ERR(skb);
	}
	kfree_skb(skb);

	BT_INFO("%s: Intel Bluetooth firmware patch completed", hdev->name);

	goto complete;

exit_mfg_deactivate:
	release_firmware(fw);

	/* Patching failed. Disable the manufacturer mode with reset and
	 * deactivate the downloaded firmware patches.
	 */
	skb = __hci_cmd_sync(hdev, 0xfc11, sizeof(mfg_reset_deactivate),
			     mfg_reset_deactivate, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
		BT_ERR("%s exiting Intel manufacturer mode failed (%ld)",
		       hdev->name, PTR_ERR(skb));
		return PTR_ERR(skb);
	}
	kfree_skb(skb);

	BT_INFO("%s: Intel Bluetooth firmware patch completed and deactivated",
		hdev->name);

complete:
	/* Set the event mask for Intel specific vendor events. This enables
	 * a few extra events that are useful during general operation.
	 */
	btintel_set_event_mask_mfg(hdev, false);

	btintel_check_bdaddr(hdev);
	return 0;
}

static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
{
	struct sk_buff *skb;
	struct hci_event_hdr *hdr;
	struct hci_ev_cmd_complete *evt;

	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
	if (!skb)
		return -ENOMEM;

	hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
	hdr->evt = HCI_EV_CMD_COMPLETE;
	hdr->plen = sizeof(*evt) + 1;

	evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
	evt->ncmd = 0x01;
	evt->opcode = cpu_to_le16(opcode);

	*skb_put(skb, 1) = 0x00;

	bt_cb(skb)->pkt_type = HCI_EVENT_PKT;

	return hci_recv_frame(hdev, skb);
}

static int btusb_recv_bulk_intel(struct btusb_data *data, void *buffer,
				 int count)
{
	/* When the device is in bootloader mode, then it can send
	 * events via the bulk endpoint. These events are treated the
	 * same way as the ones received from the interrupt endpoint.
	 */
	if (test_bit(BTUSB_BOOTLOADER, &data->flags))
		return btusb_recv_intr(data, buffer, count);

	return btusb_recv_bulk(data, buffer, count);
}

static void btusb_intel_bootup(struct btusb_data *data, const void *ptr,
			       unsigned int len)
{
	const struct intel_bootup *evt = ptr;

	if (len != sizeof(*evt))
		return;

	if (test_and_clear_bit(BTUSB_BOOTING, &data->flags)) {
		smp_mb__after_atomic();
		wake_up_bit(&data->flags, BTUSB_BOOTING);
	}
}

static void btusb_intel_secure_send_result(struct btusb_data *data,
					   const void *ptr, unsigned int len)
{
	const struct intel_secure_send_result *evt = ptr;

	if (len != sizeof(*evt))
		return;

	if (evt->result)
		set_bit(BTUSB_FIRMWARE_FAILED, &data->flags);

	if (test_and_clear_bit(BTUSB_DOWNLOADING, &data->flags) &&
	    test_bit(BTUSB_FIRMWARE_LOADED, &data->flags)) {
		smp_mb__after_atomic();
		wake_up_bit(&data->flags, BTUSB_DOWNLOADING);
	}
}

static int btusb_recv_event_intel(struct hci_dev *hdev, struct sk_buff *skb)
{
	struct btusb_data *data = hci_get_drvdata(hdev);

	if (test_bit(BTUSB_BOOTLOADER, &data->flags)) {
		struct hci_event_hdr *hdr = (void *)skb->data;

		if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
		    hdr->plen > 0) {
			const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
			unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;

			switch (skb->data[2]) {
			case 0x02:
				/* When switching to the operational firmware
				 * the device sends a vendor specific event
				 * indicating that the bootup completed.
				 */
				btusb_intel_bootup(data, ptr, len);
				break;
			case 0x06:
				/* When the firmware loading completes the
				 * device sends out a vendor specific event
				 * indicating the result of the firmware
				 * loading.
				 */
				btusb_intel_secure_send_result(data, ptr, len);
				break;
			}
		}
	}

	return hci_recv_frame(hdev, skb);
}

static int btusb_send_frame_intel(struct hci_dev *hdev, struct sk_buff *skb)
{
	struct btusb_data *data = hci_get_drvdata(hdev);
	struct urb *urb;

	BT_DBG("%s", hdev->name);

	switch (bt_cb(skb)->pkt_type) {
	case HCI_COMMAND_PKT:
		if (test_bit(BTUSB_BOOTLOADER, &data->flags)) {
			struct hci_command_hdr *cmd = (void *)skb->data;
			__u16 opcode = le16_to_cpu(cmd->opcode);

			/* When in bootloader mode and the command 0xfc09
			 * is received, it needs to be send down the
			 * bulk endpoint. So allocate a bulk URB instead.
			 */
			if (opcode == 0xfc09)
				urb = alloc_bulk_urb(hdev, skb);
			else
				urb = alloc_ctrl_urb(hdev, skb);

			/* When the 0xfc01 command is issued to boot into
			 * the operational firmware, it will actually not
			 * send a command complete event. To keep the flow
			 * control working inject that event here.
			 */
			if (opcode == 0xfc01)
				inject_cmd_complete(hdev, opcode);
		} else {
			urb = alloc_ctrl_urb(hdev, skb);
		}
		if (IS_ERR(urb))
			return PTR_ERR(urb);

		hdev->stat.cmd_tx++;
		return submit_or_queue_tx_urb(hdev, urb);

	case HCI_ACLDATA_PKT:
		urb = alloc_bulk_urb(hdev, skb);
		if (IS_ERR(urb))
			return PTR_ERR(urb);

		hdev->stat.acl_tx++;
		return submit_or_queue_tx_urb(hdev, urb);

	case HCI_SCODATA_PKT:
		if (hci_conn_num(hdev, SCO_LINK) < 1)
			return -ENODEV;

		urb = alloc_isoc_urb(hdev, skb);
		if (IS_ERR(urb))
			return PTR_ERR(urb);

		hdev->stat.sco_tx++;
		return submit_tx_urb(hdev, urb);
	}

	return -EILSEQ;
}

static int btusb_setup_intel_new(struct hci_dev *hdev)
{
	static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
					  0x00, 0x08, 0x04, 0x00 };
	struct btusb_data *data = hci_get_drvdata(hdev);
	struct sk_buff *skb;
	struct intel_version *ver;
	struct intel_boot_params *params;
	const struct firmware *fw;
	const u8 *fw_ptr;
	u32 frag_len;
	char fwname[64];
	ktime_t calltime, delta, rettime;
	unsigned long long duration;
	int err;

	BT_DBG("%s", hdev->name);

	calltime = ktime_get();

	/* Read the Intel version information to determine if the device
	 * is in bootloader mode or if it already has operational firmware
	 * loaded.
	 */
	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
		BT_ERR("%s: Reading Intel version information failed (%ld)",
		       hdev->name, PTR_ERR(skb));
		return PTR_ERR(skb);
	}

	if (skb->len != sizeof(*ver)) {
		BT_ERR("%s: Intel version event size mismatch", hdev->name);
		kfree_skb(skb);
		return -EILSEQ;
	}

	ver = (struct intel_version *)skb->data;

	/* The hardware platform number has a fixed value of 0x37 and
	 * for now only accept this single value.
	 */
	if (ver->hw_platform != 0x37) {
		BT_ERR("%s: Unsupported Intel hardware platform (%u)",
		       hdev->name, ver->hw_platform);
		kfree_skb(skb);
		return -EINVAL;
	}

	/* At the moment the iBT 3.0 hardware variants 0x0b (LnP/SfP)
	 * and 0x0c (WsP) are supported by this firmware loading method.
	 *
	 * This check has been put in place to ensure correct forward
	 * compatibility options when newer hardware variants come along.
	 */
	if (ver->hw_variant != 0x0b && ver->hw_variant != 0x0c) {
		BT_ERR("%s: Unsupported Intel hardware variant (%u)",
		       hdev->name, ver->hw_variant);
		kfree_skb(skb);
		return -EINVAL;
	}

	btintel_version_info(hdev, ver);

	/* The firmware variant determines if the device is in bootloader
	 * mode or is running operational firmware. The value 0x06 identifies
	 * the bootloader and the value 0x23 identifies the operational
	 * firmware.
	 *
	 * When the operational firmware is already present, then only
	 * the check for valid Bluetooth device address is needed. This
	 * determines if the device will be added as configured or
	 * unconfigured controller.
	 *
	 * It is not possible to use the Secure Boot Parameters in this
	 * case since that command is only available in bootloader mode.
	 */
	if (ver->fw_variant == 0x23) {
		kfree_skb(skb);
		clear_bit(BTUSB_BOOTLOADER, &data->flags);
		btintel_check_bdaddr(hdev);
		return 0;
	}

	/* If the device is not in bootloader mode, then the only possible
	 * choice is to return an error and abort the device initialization.
	 */
	if (ver->fw_variant != 0x06) {
		BT_ERR("%s: Unsupported Intel firmware variant (%u)",
		       hdev->name, ver->fw_variant);
		kfree_skb(skb);
		return -ENODEV;
	}

	kfree_skb(skb);

	/* Read the secure boot parameters to identify the operating
	 * details of the bootloader.
	 */
	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
		BT_ERR("%s: Reading Intel boot parameters failed (%ld)",
		       hdev->name, PTR_ERR(skb));
		return PTR_ERR(skb);
	}

	if (skb->len != sizeof(*params)) {
		BT_ERR("%s: Intel boot parameters size mismatch", hdev->name);
		kfree_skb(skb);
		return -EILSEQ;
	}

	params = (struct intel_boot_params *)skb->data;

	BT_INFO("%s: Device revision is %u", hdev->name,
		le16_to_cpu(params->dev_revid));

	BT_INFO("%s: Secure boot is %s", hdev->name,
		params->secure_boot ? "enabled" : "disabled");

	BT_INFO("%s: OTP lock is %s", hdev->name,
		params->otp_lock ? "enabled" : "disabled");

	BT_INFO("%s: API lock is %s", hdev->name,
		params->api_lock ? "enabled" : "disabled");

	BT_INFO("%s: Debug lock is %s", hdev->name,
		params->debug_lock ? "enabled" : "disabled");

	BT_INFO("%s: Minimum firmware build %u week %u %u", hdev->name,
		params->min_fw_build_nn, params->min_fw_build_cw,
		2000 + params->min_fw_build_yy);

	/* It is required that every single firmware fragment is acknowledged
	 * with a command complete event. If the boot parameters indicate
	 * that this bootloader does not send them, then abort the setup.
	 */
	if (params->limited_cce != 0x00) {
		BT_ERR("%s: Unsupported Intel firmware loading method (%u)",
		       hdev->name, params->limited_cce);
		kfree_skb(skb);
		return -EINVAL;
	}

	/* If the OTP has no valid Bluetooth device address, then there will
	 * also be no valid address for the operational firmware.
	 */
	if (!bacmp(¶ms->otp_bdaddr, BDADDR_ANY)) {
		BT_INFO("%s: No device address configured", hdev->name);
		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
	}

	/* With this Intel bootloader only the hardware variant and device
	 * revision information are used to select the right firmware.
	 *
	 * Currently this bootloader support is limited to hardware variant
	 * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
	 */
	snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
		 le16_to_cpu(params->dev_revid));

	err = request_firmware(&fw, fwname, &hdev->dev);
	if (err < 0) {
		BT_ERR("%s: Failed to load Intel firmware file (%d)",
		       hdev->name, err);
		kfree_skb(skb);
		return err;
	}

	BT_INFO("%s: Found device firmware: %s", hdev->name, fwname);

	/* Save the DDC file name for later use to apply once the firmware
	 * downloading is done.
	 */
	snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
		 le16_to_cpu(params->dev_revid));

	kfree_skb(skb);

	if (fw->size < 644) {
		BT_ERR("%s: Invalid size of firmware file (%zu)",
		       hdev->name, fw->size);
		err = -EBADF;
		goto done;
	}

	set_bit(BTUSB_DOWNLOADING, &data->flags);

	/* Start the firmware download transaction with the Init fragment
	 * represented by the 128 bytes of CSS header.
	 */
	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
	if (err < 0) {
		BT_ERR("%s: Failed to send firmware header (%d)",
		       hdev->name, err);
		goto done;
	}

	/* Send the 256 bytes of public key information from the firmware
	 * as the PKey fragment.
	 */
	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
	if (err < 0) {
		BT_ERR("%s: Failed to send firmware public key (%d)",
		       hdev->name, err);
		goto done;
	}

	/* Send the 256 bytes of signature information from the firmware
	 * as the Sign fragment.
	 */
	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
	if (err < 0) {
		BT_ERR("%s: Failed to send firmware signature (%d)",
		       hdev->name, err);
		goto done;
	}

	fw_ptr = fw->data + 644;
	frag_len = 0;

	while (fw_ptr - fw->data < fw->size) {
		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);

		frag_len += sizeof(*cmd) + cmd->plen;

		/* The parameter length of the secure send command requires
		 * a 4 byte alignment. It happens so that the firmware file
		 * contains proper Intel_NOP commands to align the fragments
		 * as needed.
		 *
		 * Send set of commands with 4 byte alignment from the
		 * firmware data buffer as a single Data fragement.
		 */
		if (!(frag_len % 4)) {
			err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
			if (err < 0) {
				BT_ERR("%s: Failed to send firmware data (%d)",
				       hdev->name, err);
				goto done;
			}

			fw_ptr += frag_len;
			frag_len = 0;
		}
	}

	set_bit(BTUSB_FIRMWARE_LOADED, &data->flags);

	BT_INFO("%s: Waiting for firmware download to complete", hdev->name);

	/* Before switching the device into operational mode and with that
	 * booting the loaded firmware, wait for the bootloader notification
	 * that all fragments have been successfully received.
	 *
	 * When the event processing receives the notification, then the
	 * BTUSB_DOWNLOADING flag will be cleared.
	 *
	 * The firmware loading should not take longer than 5 seconds
	 * and thus just timeout if that happens and fail the setup
	 * of this device.
	 */
	err = wait_on_bit_timeout(&data->flags, BTUSB_DOWNLOADING,
				  TASK_INTERRUPTIBLE,
				  msecs_to_jiffies(5000));
	if (err == 1) {
		BT_ERR("%s: Firmware loading interrupted", hdev->name);
		err = -EINTR;
		goto done;
	}

	if (err) {
		BT_ERR("%s: Firmware loading timeout", hdev->name);
		err = -ETIMEDOUT;
		goto done;
	}

	if (test_bit(BTUSB_FIRMWARE_FAILED, &data->flags)) {
		BT_ERR("%s: Firmware loading failed", hdev->name);
		err = -ENOEXEC;
		goto done;
	}

	rettime = ktime_get();
	delta = ktime_sub(rettime, calltime);
	duration = (unsigned long long) ktime_to_ns(delta) >> 10;

	BT_INFO("%s: Firmware loaded in %llu usecs", hdev->name, duration);

done:
	release_firmware(fw);

	if (err < 0)
		return err;

	calltime = ktime_get();

	set_bit(BTUSB_BOOTING, &data->flags);

	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
			     HCI_INIT_TIMEOUT);
	if (IS_ERR(skb))
		return PTR_ERR(skb);

	kfree_skb(skb);

	/* The bootloader will not indicate when the device is ready. This
	 * is done by the operational firmware sending bootup notification.
	 *
	 * Booting into operational firmware should not take longer than
	 * 1 second. However if that happens, then just fail the setup
	 * since something went wrong.
	 */
	BT_INFO("%s: Waiting for device to boot", hdev->name);

	err = wait_on_bit_timeout(&data->flags, BTUSB_BOOTING,
				  TASK_INTERRUPTIBLE,
				  msecs_to_jiffies(1000));

	if (err == 1) {
		BT_ERR("%s: Device boot interrupted", hdev->name);
		return -EINTR;
	}

	if (err) {
		BT_ERR("%s: Device boot timeout", hdev->name);
		return -ETIMEDOUT;
	}

	rettime = ktime_get();
	delta = ktime_sub(rettime, calltime);
	duration = (unsigned long long) ktime_to_ns(delta) >> 10;

	BT_INFO("%s: Device booted in %llu usecs", hdev->name, duration);

	clear_bit(BTUSB_BOOTLOADER, &data->flags);

	/* Once the device is running in operational mode, it needs to apply
	 * the device configuration (DDC) parameters.
	 *
	 * The device can work without DDC parameters, so even if it fails
	 * to load the file, no need to fail the setup.
	 */
	btintel_load_ddc_config(hdev, fwname);

	/* Set the event mask for Intel specific vendor events. This enables
	 * a few extra events that are useful during general operation. It
	 * does not enable any debugging related events.
	 *
	 * The device will function correctly without these events enabled
	 * and thus no need to fail the setup.
	 */
	btintel_set_event_mask(hdev, false);

	return 0;
}

static int btusb_shutdown_intel(struct hci_dev *hdev)
{
	struct sk_buff *skb;
	long ret;

	/* Some platforms have an issue with BT LED when the interface is
	 * down or BT radio is turned off, which takes 5 seconds to BT LED
	 * goes off. This command turns off the BT LED immediately.
	 */
	skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
		ret = PTR_ERR(skb);
		BT_ERR("%s: turning off Intel device LED failed (%ld)",
		       hdev->name, ret);
		return ret;
	}
	kfree_skb(skb);

	return 0;
}

static int btusb_set_bdaddr_marvell(struct hci_dev *hdev,
				    const bdaddr_t *bdaddr)
{
	struct sk_buff *skb;
	u8 buf[8];
	long ret;

	buf[0] = 0xfe;
	buf[1] = sizeof(bdaddr_t);
	memcpy(buf + 2, bdaddr, sizeof(bdaddr_t));

	skb = __hci_cmd_sync(hdev, 0xfc22, sizeof(buf), buf, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
		ret = PTR_ERR(skb);
		BT_ERR("%s: changing Marvell device address failed (%ld)",
		       hdev->name, ret);
		return ret;
	}
	kfree_skb(skb);

	return 0;
}

static int btusb_set_bdaddr_ath3012(struct hci_dev *hdev,
				    const bdaddr_t *bdaddr)
{
	struct sk_buff *skb;
	u8 buf[10];
	long ret;

	buf[0] = 0x01;
	buf[1] = 0x01;
	buf[2] = 0x00;
	buf[3] = sizeof(bdaddr_t);
	memcpy(buf + 4, bdaddr, sizeof(bdaddr_t));

	skb = __hci_cmd_sync(hdev, 0xfc0b, sizeof(buf), buf, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
		ret = PTR_ERR(skb);
		BT_ERR("%s: Change address command failed (%ld)",
		       hdev->name, ret);
		return ret;
	}
	kfree_skb(skb);

	return 0;
}

#define QCA_DFU_PACKET_LEN	4096

#define QCA_GET_TARGET_VERSION	0x09
#define QCA_CHECK_STATUS	0x05
#define QCA_DFU_DOWNLOAD	0x01

#define QCA_SYSCFG_UPDATED	0x40
#define QCA_PATCH_UPDATED	0x80
#define QCA_DFU_TIMEOUT		3000

struct qca_version {
	__le32	rom_version;
	__le32	patch_version;
	__le32	ram_version;
	__le32	ref_clock;
	__u8	reserved[4];
} __packed;

struct qca_rampatch_version {
	__le16	rom_version;
	__le16	patch_version;
} __packed;

struct qca_device_info {
	u32	rom_version;
	u8	rampatch_hdr;	/* length of header in rampatch */
	u8	nvm_hdr;	/* length of header in NVM */
	u8	ver_offset;	/* offset of version structure in rampatch */
};

static const struct qca_device_info qca_devices_table[] = {
	{ 0x00000100, 20, 4, 10 }, /* Rome 1.0 */
	{ 0x00000101, 20, 4, 10 }, /* Rome 1.1 */
	{ 0x00000200, 28, 4, 18 }, /* Rome 2.0 */
	{ 0x00000201, 28, 4, 18 }, /* Rome 2.1 */
	{ 0x00000300, 28, 4, 18 }, /* Rome 3.0 */
	{ 0x00000302, 28, 4, 18 }, /* Rome 3.2 */
};

static int btusb_qca_send_vendor_req(struct hci_dev *hdev, u8 request,
				     void *data, u16 size)
{
	struct btusb_data *btdata = hci_get_drvdata(hdev);
	struct usb_device *udev = btdata->udev;
	int pipe, err;
	u8 *buf;

	buf = kmalloc(size, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* Found some of USB hosts have IOT issues with ours so that we should
	 * not wait until HCI layer is ready.
	 */
	pipe = usb_rcvctrlpipe(udev, 0);
	err = usb_control_msg(udev, pipe, request, USB_TYPE_VENDOR | USB_DIR_IN,
			      0, 0, buf, size, USB_CTRL_SET_TIMEOUT);
	if (err < 0) {
		BT_ERR("%s: Failed to access otp area (%d)", hdev->name, err);
		goto done;
	}

	memcpy(data, buf, size);

done:
	kfree(buf);

	return err;
}

static int btusb_setup_qca_download_fw(struct hci_dev *hdev,
				       const struct firmware *firmware,
				       size_t hdr_size)
{
	struct btusb_data *btdata = hci_get_drvdata(hdev);
	struct usb_device *udev = btdata->udev;
	size_t count, size, sent = 0;
	int pipe, len, err;
	u8 *buf;

	buf = kmalloc(QCA_DFU_PACKET_LEN, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	count = firmware->size;

	size = min_t(size_t, count, hdr_size);
	memcpy(buf, firmware->data, size);

	/* USB patches should go down to controller through USB path
	 * because binary format fits to go down through USB channel.
	 * USB control path is for patching headers and USB bulk is for
	 * patch body.
	 */
	pipe = usb_sndctrlpipe(udev, 0);
	err = usb_control_msg(udev, pipe, QCA_DFU_DOWNLOAD, USB_TYPE_VENDOR,
			      0, 0, buf, size, USB_CTRL_SET_TIMEOUT);
	if (err < 0) {
		BT_ERR("%s: Failed to send headers (%d)", hdev->name, err);
		goto done;
	}

	sent += size;
	count -= size;

	while (count) {
		size = min_t(size_t, count, QCA_DFU_PACKET_LEN);

		memcpy(buf, firmware->data + sent, size);

		pipe = usb_sndbulkpipe(udev, 0x02);
		err = usb_bulk_msg(udev, pipe, buf, size, &len,
				   QCA_DFU_TIMEOUT);
		if (err < 0) {
			BT_ERR("%s: Failed to send body at %zd of %zd (%d)",
			       hdev->name, sent, firmware->size, err);
			break;
		}

		if (size != len) {
			BT_ERR("%s: Failed to get bulk buffer", hdev->name);
			err = -EILSEQ;
			break;
		}

		sent  += size;
		count -= size;
	}

done:
	kfree(buf);
	return err;
}

static int btusb_setup_qca_load_rampatch(struct hci_dev *hdev,
					 struct qca_version *ver,
					 const struct qca_device_info *info)
{
	struct qca_rampatch_version *rver;
	const struct firmware *fw;
	u32 ver_rom, ver_patch;
	u16 rver_rom, rver_patch;
	char fwname[64];
	int err;

	ver_rom = le32_to_cpu(ver->rom_version);
	ver_patch = le32_to_cpu(ver->patch_version);

	snprintf(fwname, sizeof(fwname), "qca/rampatch_usb_%08x.bin", ver_rom);

	err = request_firmware(&fw, fwname, &hdev->dev);
	if (err) {
		BT_ERR("%s: failed to request rampatch file: %s (%d)",
		       hdev->name, fwname, err);
		return err;
	}

	BT_INFO("%s: using rampatch file: %s", hdev->name, fwname);

	rver = (struct qca_rampatch_version *)(fw->data + info->ver_offset);
	rver_rom = le16_to_cpu(rver->rom_version);
	rver_patch = le16_to_cpu(rver->patch_version);

	BT_INFO("%s: QCA: patch rome 0x%x build 0x%x, firmware rome 0x%x "
		"build 0x%x", hdev->name, rver_rom, rver_patch, ver_rom,
		ver_patch);

	if (rver_rom != ver_rom || rver_patch <= ver_patch) {
		BT_ERR("%s: rampatch file version did not match with firmware",
		       hdev->name);
		err = -EINVAL;
		goto done;
	}

	err = btusb_setup_qca_download_fw(hdev, fw, info->rampatch_hdr);

done:
	release_firmware(fw);

	return err;
}

static int btusb_setup_qca_load_nvm(struct hci_dev *hdev,
				    struct qca_version *ver,
				    const struct qca_device_info *info)
{
	const struct firmware *fw;
	char fwname[64];
	int err;

	snprintf(fwname, sizeof(fwname), "qca/nvm_usb_%08x.bin",
		 le32_to_cpu(ver->rom_version));

	err = request_firmware(&fw, fwname, &hdev->dev);
	if (err) {
		BT_ERR("%s: failed to request NVM file: %s (%d)",
		       hdev->name, fwname, err);
		return err;
	}

	BT_INFO("%s: using NVM file: %s", hdev->name, fwname);

	err = btusb_setup_qca_download_fw(hdev, fw, info->nvm_hdr);

	release_firmware(fw);

	return err;
}

static int btusb_setup_qca(struct hci_dev *hdev)
{
	const struct qca_device_info *info = NULL;
	struct qca_version ver;
	u32 ver_rom;
	u8 status;
	int i, err;

	err = btusb_qca_send_vendor_req(hdev, QCA_GET_TARGET_VERSION, &ver,
					sizeof(ver));
	if (err < 0)
		return err;

	ver_rom = le32_to_cpu(ver.rom_version);
	for (i = 0; i < ARRAY_SIZE(qca_devices_table); i++) {
		if (ver_rom == qca_devices_table[i].rom_version)
			info = &qca_devices_table[i];
	}
	if (!info) {
		BT_ERR("%s: don't support firmware rome 0x%x", hdev->name,
		       ver_rom);
		return -ENODEV;
	}

	err = btusb_qca_send_vendor_req(hdev, QCA_CHECK_STATUS, &status,
					sizeof(status));
	if (err < 0)
		return err;

	if (!(status & QCA_PATCH_UPDATED)) {
		err = btusb_setup_qca_load_rampatch(hdev, &ver, info);
		if (err < 0)
			return err;
	}

	if (!(status & QCA_SYSCFG_UPDATED)) {
		err = btusb_setup_qca_load_nvm(hdev, &ver, info);
		if (err < 0)
			return err;
	}

	return 0;
}

#ifdef CONFIG_BT_HCIBTUSB_BCM
static inline int __set_diag_interface(struct hci_dev *hdev)
{
	struct btusb_data *data = hci_get_drvdata(hdev);
	struct usb_interface *intf = data->diag;
	int i;

	if (!data->diag)
		return -ENODEV;

	data->diag_tx_ep = NULL;
	data->diag_rx_ep = NULL;

	for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
		struct usb_endpoint_descriptor *ep_desc;

		ep_desc = &intf->cur_altsetting->endpoint[i].desc;

		if (!data->diag_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) {
			data->diag_tx_ep = ep_desc;
			continue;
		}

		if (!data->diag_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) {
			data->diag_rx_ep = ep_desc;
			continue;
		}
	}

	if (!data->diag_tx_ep || !data->diag_rx_ep) {
		BT_ERR("%s invalid diagnostic descriptors", hdev->name);
		return -ENODEV;
	}

	return 0;
}

static struct urb *alloc_diag_urb(struct hci_dev *hdev, bool enable)
{
	struct btusb_data *data = hci_get_drvdata(hdev);
	struct sk_buff *skb;
	struct urb *urb;
	unsigned int pipe;

	if (!data->diag_tx_ep)
		return ERR_PTR(-ENODEV);

	urb = usb_alloc_urb(0, GFP_KERNEL);
	if (!urb)
		return ERR_PTR(-ENOMEM);

	skb = bt_skb_alloc(2, GFP_KERNEL);
	if (!skb) {
		usb_free_urb(urb);
		return ERR_PTR(-ENOMEM);
	}

	*skb_put(skb, 1) = 0xf0;
	*skb_put(skb, 1) = enable;

	pipe = usb_sndbulkpipe(data->udev, data->diag_tx_ep->bEndpointAddress);

	usb_fill_bulk_urb(urb, data->udev, pipe,
			  skb->data, skb->len, btusb_tx_complete, skb);

	skb->dev = (void *)hdev;

	return urb;
}

static int btusb_bcm_set_diag(struct hci_dev *hdev, bool enable)
{
	struct btusb_data *data = hci_get_drvdata(hdev);
	struct urb *urb;

	if (!data->diag)
		return -ENODEV;

	if (!test_bit(HCI_RUNNING, &hdev->flags))
		return -ENETDOWN;

	urb = alloc_diag_urb(hdev, enable);
	if (IS_ERR(urb))
		return PTR_ERR(urb);

	return submit_or_queue_tx_urb(hdev, urb);
}
#endif

static int btusb_probe(struct usb_interface *intf,
		       const struct usb_device_id *id)
{
	struct usb_endpoint_descriptor *ep_desc;
	struct btusb_data *data;
	struct hci_dev *hdev;
	unsigned ifnum_base;
	int i, err;

	BT_DBG("intf %p id %p", intf, id);
    printk("btusb_probe995522\n");
	/* interface numbers are hardcoded in the spec */
	if (intf->cur_altsetting->desc.bInterfaceNumber != 0) {
		if (!(id->driver_info & BTUSB_IFNUM_2))
			return -ENODEV;
		if (intf->cur_altsetting->desc.bInterfaceNumber != 2)
			return -ENODEV;
	}

	ifnum_base = intf->cur_altsetting->desc.bInterfaceNumber;

	if (!id->driver_info) {
		const struct usb_device_id *match;

		match = usb_match_id(intf, blacklist_table);
		if (match)
			id = match;
	}

	if (id->driver_info == BTUSB_IGNORE)
		return -ENODEV;

	if (id->driver_info & BTUSB_ATH3012) {
		struct usb_device *udev = interface_to_usbdev(intf);

		/* Old firmware would otherwise let ath3k driver load
		 * patch and sysconfig files */
		if (le16_to_cpu(udev->descriptor.bcdDevice) <= 0x0001)
			return -ENODEV;
	}

	data = devm_kzalloc(&intf->dev, sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
		ep_desc = &intf->cur_altsetting->endpoint[i].desc;

		if (!data->intr_ep && usb_endpoint_is_int_in(ep_desc)) {
			data->intr_ep = ep_desc;
			continue;
		}

		if (!data->bulk_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) {
			data->bulk_tx_ep = ep_desc;
			continue;
		}

		if (!data->bulk_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) {
			data->bulk_rx_ep = ep_desc;
			continue;
		}
	}

	if (!data->intr_ep || !data->bulk_tx_ep || !data->bulk_rx_ep)
		return -ENODEV;

	if (id->driver_info & BTUSB_AMP) {
		data->cmdreq_type = USB_TYPE_CLASS | 0x01;
		data->cmdreq = 0x2b;
	} else {
		data->cmdreq_type = USB_TYPE_CLASS;
		data->cmdreq = 0x00;
	}

	data->udev = interface_to_usbdev(intf);
	data->intf = intf;

	INIT_WORK(&data->work, btusb_work);
	INIT_WORK(&data->waker, btusb_waker);
	init_usb_anchor(&data->deferred);
	init_usb_anchor(&data->tx_anchor);
	spin_lock_init(&data->txlock);

	init_usb_anchor(&data->intr_anchor);
	init_usb_anchor(&data->bulk_anchor);
	init_usb_anchor(&data->isoc_anchor);
	init_usb_anchor(&data->diag_anchor);
	spin_lock_init(&data->rxlock);

	if (id->driver_info & BTUSB_INTEL_NEW) {
		data->recv_event = btusb_recv_event_intel;
		data->recv_bulk = btusb_recv_bulk_intel;
		set_bit(BTUSB_BOOTLOADER, &data->flags);
	} else {
		data->recv_event = hci_recv_frame;
		data->recv_bulk = btusb_recv_bulk;
	}

	hdev = hci_alloc_dev();
	if (!hdev)
		return -ENOMEM;

	hdev->bus = HCI_USB;
	hci_set_drvdata(hdev, data);

	if (id->driver_info & BTUSB_AMP)
		hdev->dev_type = HCI_AMP;
	else
		hdev->dev_type = HCI_BREDR;

	data->hdev = hdev;

	SET_HCIDEV_DEV(hdev, &intf->dev);

	hdev->open   = btusb_open;
	hdev->close  = btusb_close;
	hdev->flush  = btusb_flush;
	hdev->send   = btusb_send_frame;
	hdev->notify = btusb_notify;

	if (id->driver_info & BTUSB_BCM2045)
		set_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks);

	if (id->driver_info & BTUSB_BCM92035)
		hdev->setup = btusb_setup_bcm92035;

#ifdef CONFIG_BT_HCIBTUSB_BCM
	if (id->driver_info & BTUSB_BCM_PATCHRAM) {
		hdev->manufacturer = 15;
		hdev->setup = btbcm_setup_patchram;
		hdev->set_diag = btusb_bcm_set_diag;
		hdev->set_bdaddr = btbcm_set_bdaddr;

		/* Broadcom LM_DIAG Interface numbers are hardcoded */
		data->diag = usb_ifnum_to_if(data->udev, ifnum_base + 2);
	}

	if (id->driver_info & BTUSB_BCM_APPLE) {
		hdev->manufacturer = 15;
		hdev->setup = btbcm_setup_apple;
		hdev->set_diag = btusb_bcm_set_diag;

		/* Broadcom LM_DIAG Interface numbers are hardcoded */
		data->diag = usb_ifnum_to_if(data->udev, ifnum_base + 2);
	}
#endif

	if (id->driver_info & BTUSB_INTEL) {
		hdev->manufacturer = 2;
		hdev->setup = btusb_setup_intel;
		hdev->shutdown = btusb_shutdown_intel;
		hdev->set_diag = btintel_set_diag_mfg;
		hdev->set_bdaddr = btintel_set_bdaddr;
		set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
		set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
		set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
	}

	if (id->driver_info & BTUSB_INTEL_NEW) {
		hdev->manufacturer = 2;
		hdev->send = btusb_send_frame_intel;
		hdev->setup = btusb_setup_intel_new;
		hdev->hw_error = btintel_hw_error;
		hdev->set_diag = btintel_set_diag;
		hdev->set_bdaddr = btintel_set_bdaddr;
		set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
		set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
	}

	if (id->driver_info & BTUSB_MARVELL)
		hdev->set_bdaddr = btusb_set_bdaddr_marvell;

	if (id->driver_info & BTUSB_SWAVE) {
		set_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks);
		set_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks);
	}

	if (id->driver_info & BTUSB_INTEL_BOOT) {
		hdev->manufacturer = 2;
		set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks);
	}

	if (id->driver_info & BTUSB_ATH3012) {
		hdev->set_bdaddr = btusb_set_bdaddr_ath3012;
		set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
		set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
	}

	if (id->driver_info & BTUSB_QCA_ROME) {
		data->setup_on_usb = btusb_setup_qca;
		hdev->set_bdaddr = btusb_set_bdaddr_ath3012;

		/* QCA Rome devices lose their updated firmware over suspend,
		 * but the USB hub doesn't notice any status change.
		 * explicitly request a device reset on resume.
		 */
		interface_to_usbdev(intf)->quirks |= USB_QUIRK_RESET_RESUME;
	}

#ifdef CONFIG_BT_HCIBTUSB_RTL
	if (id->driver_info & BTUSB_REALTEK) {
		hdev->setup = btrtl_setup_realtek;

		/* Realtek devices lose their updated firmware over suspend,
		 * but the USB hub doesn't notice any status change.
		 * Explicitly request a device reset on resume.
		 */
		interface_to_usbdev(intf)->quirks |= USB_QUIRK_RESET_RESUME;
	}
#endif

	if (id->driver_info & BTUSB_AMP) {
		/* AMP controllers do not support SCO packets */
		data->isoc = NULL;
	} else {
		/* Interface orders are hardcoded in the specification */
		data->isoc = usb_ifnum_to_if(data->udev, ifnum_base + 1);
	}

	if (!reset)
		set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);

	if (force_scofix || id->driver_info & BTUSB_WRONG_SCO_MTU) {
		if (!disable_scofix)
			set_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks);
	}

	if (id->driver_info & BTUSB_BROKEN_ISOC)
		data->isoc = NULL;

	if (id->driver_info & BTUSB_DIGIANSWER) {
		data->cmdreq_type = USB_TYPE_VENDOR;
		set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
	}

	if (id->driver_info & BTUSB_CSR) {
		struct usb_device *udev = data->udev;
		u16 bcdDevice = le16_to_cpu(udev->descriptor.bcdDevice);

		/* Old firmware would otherwise execute USB reset */
		if (bcdDevice < 0x117)
			set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);

		/* Fake CSR devices with broken commands */
		if (bcdDevice <= 0x100 || bcdDevice == 0x134)
			hdev->setup = btusb_setup_csr;

		set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
	}

	if (id->driver_info & BTUSB_SNIFFER) {
		struct usb_device *udev = data->udev;

		/* New sniffer firmware has crippled HCI interface */
		if (le16_to_cpu(udev->descriptor.bcdDevice) > 0x997)
			set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks);
	}

	if (id->driver_info & BTUSB_INTEL_BOOT) {
		/* A bug in the bootloader causes that interrupt interface is
		 * only enabled after receiving SetInterface(0, AltSetting=0).
		 */
		err = usb_set_interface(data->udev, 0, 0);
		if (err < 0) {
			BT_ERR("failed to set interface 0, alt 0 %d", err);
			hci_free_dev(hdev);
			return err;
		}
	}

	if (data->isoc) {
		err = usb_driver_claim_interface(&btusb_driver,
						 data->isoc, data);
		if (err < 0) {
			hci_free_dev(hdev);
			return err;
		}
	}

#ifdef CONFIG_BT_HCIBTUSB_BCM
	if (data->diag) {
		if (!usb_driver_claim_interface(&btusb_driver,
						data->diag, data))
			__set_diag_interface(hdev);
		else
			data->diag = NULL;
	}
#endif

	err = hci_register_dev(hdev);
	if (err < 0) {
		hci_free_dev(hdev);
		return err;
	}

	usb_set_intfdata(intf, data);

	return 0;
}

static void btusb_disconnect(struct usb_interface *intf)
{
	struct btusb_data *data = usb_get_intfdata(intf);
	struct hci_dev *hdev;

	BT_DBG("intf %p", intf);

	if (!data)
		return;

	hdev = data->hdev;
	usb_set_intfdata(data->intf, NULL);

	if (data->isoc)
		usb_set_intfdata(data->isoc, NULL);

	if (data->diag)
		usb_set_intfdata(data->diag, NULL);

	hci_unregister_dev(hdev);

	if (intf == data->intf) {
		if (data->isoc)
			usb_driver_release_interface(&btusb_driver, data->isoc);
		if (data->diag)
			usb_driver_release_interface(&btusb_driver, data->diag);
	} else if (intf == data->isoc) {
		if (data->diag)
			usb_driver_release_interface(&btusb_driver, data->diag);
		usb_driver_release_interface(&btusb_driver, data->intf);
	} else if (intf == data->diag) {
		usb_driver_release_interface(&btusb_driver, data->intf);
		if (data->isoc)
			usb_driver_release_interface(&btusb_driver, data->isoc);
	}

	hci_free_dev(hdev);
}

#ifdef CONFIG_PM
static int btusb_suspend(struct usb_interface *intf, pm_message_t message)
{
	struct btusb_data *data = usb_get_intfdata(intf);

	BT_DBG("intf %p", intf);

	if (data->suspend_count++)
		return 0;

	spin_lock_irq(&data->txlock);
	if (!(PMSG_IS_AUTO(message) && data->tx_in_flight)) {
		set_bit(BTUSB_SUSPENDING, &data->flags);
		spin_unlock_irq(&data->txlock);
	} else {
		spin_unlock_irq(&data->txlock);
		data->suspend_count--;
		return -EBUSY;
	}

	cancel_work_sync(&data->work);

	btusb_stop_traffic(data);
	usb_kill_anchored_urbs(&data->tx_anchor);

	return 0;
}

static void play_deferred(struct btusb_data *data)
{
	struct urb *urb;
	int err;

	while ((urb = usb_get_from_anchor(&data->deferred))) {
		err = usb_submit_urb(urb, GFP_ATOMIC);
		if (err < 0)
			break;

		data->tx_in_flight++;
	}
	usb_scuttle_anchored_urbs(&data->deferred);
}

static int btusb_resume(struct usb_interface *intf)
{
	struct btusb_data *data = usb_get_intfdata(intf);
	struct hci_dev *hdev = data->hdev;
	int err = 0;

	BT_DBG("intf %p", intf);

	if (--data->suspend_count)
		return 0;

	if (!test_bit(HCI_RUNNING, &hdev->flags))
		goto done;

	if (test_bit(BTUSB_INTR_RUNNING, &data->flags)) {
		err = btusb_submit_intr_urb(hdev, GFP_NOIO);
		if (err < 0) {
			clear_bit(BTUSB_INTR_RUNNING, &data->flags);
			goto failed;
		}
	}

	if (test_bit(BTUSB_BULK_RUNNING, &data->flags)) {
		err = btusb_submit_bulk_urb(hdev, GFP_NOIO);
		if (err < 0) {
			clear_bit(BTUSB_BULK_RUNNING, &data->flags);
			goto failed;
		}

		btusb_submit_bulk_urb(hdev, GFP_NOIO);
	}

	if (test_bit(BTUSB_ISOC_RUNNING, &data->flags)) {
		if (btusb_submit_isoc_urb(hdev, GFP_NOIO) < 0)
			clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
		else
			btusb_submit_isoc_urb(hdev, GFP_NOIO);
	}

	spin_lock_irq(&data->txlock);
	play_deferred(data);
	clear_bit(BTUSB_SUSPENDING, &data->flags);
	spin_unlock_irq(&data->txlock);
	schedule_work(&data->work);

	return 0;

failed:
	usb_scuttle_anchored_urbs(&data->deferred);
done:
	spin_lock_irq(&data->txlock);
	clear_bit(BTUSB_SUSPENDING, &data->flags);
	spin_unlock_irq(&data->txlock);

	return err;
}
#endif

static struct usb_driver btusb_driver = {
	.name		= "btusb",
	.probe		= btusb_probe,
	.disconnect	= btusb_disconnect,
#ifdef CONFIG_PM
	.suspend	= btusb_suspend,
	.resume		= btusb_resume,
#endif
	.id_table	= btusb_table,
	.supports_autosuspend = 1,
	.disable_hub_initiated_lpm = 1,
};

module_usb_driver(btusb_driver);

module_param(disable_scofix, bool, 0644);
MODULE_PARM_DESC(disable_scofix, "Disable fixup of wrong SCO buffer size");

module_param(force_scofix, bool, 0644);
MODULE_PARM_DESC(force_scofix, "Force fixup of wrong SCO buffers size");

module_param(reset, bool, 0644);
MODULE_PARM_DESC(reset, "Send HCI reset command on initialization");

MODULE_AUTHOR("Marcel Holtmann ");
MODULE_DESCRIPTION("Generic Bluetooth USB driver ver " VERSION);
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");

        4.2 声明 usb驱动 usb_driver btusb_driver

2023-09-05 Linux 蓝牙驱动匹配USB 蓝牙的过程简单分析,方法一通过接口描述:USB_INTERFACE_INFO 进行匹配;方法二:通过厂家ID 和device ID匹配。_第2张图片

        4.3 0xe0, 0x01, 0x01 是通用的蓝牙接口描述信息。

2023-09-05 Linux 蓝牙驱动匹配USB 蓝牙的过程简单分析,方法一通过接口描述:USB_INTERFACE_INFO 进行匹配;方法二:通过厂家ID 和device ID匹配。_第3张图片

        4.4 驱动匹配完成,进入probe函数。

2023-09-05 Linux 蓝牙驱动匹配USB 蓝牙的过程简单分析,方法一通过接口描述:USB_INTERFACE_INFO 进行匹配;方法二:通过厂家ID 和device ID匹配。_第4张图片

五、方法二:通过厂家ID 和device ID:USB_DEVICE(厂家ID ,device ID) 完成device匹配实例

        5.1 kernel\drivers\bluetooth\rtk_btusb.c

/*
 *
 *  Realtek Bluetooth USB driver
 *
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include "rtk_btusb.h"

#define RTKBT_RELEASE_NAME "20200318_BT_ANDROID_9.0"
#define VERSION "5.2.1"

#define SUSPNED_DW_FW 0
#define SET_WAKEUP_DEVICE 0


static DEFINE_SPINLOCK(queue_lock);
static DEFINE_SPINLOCK(running_flag_lock);
static volatile uint16_t    driver_state = 0;

#if SUSPNED_DW_FW
static firmware_info *fw_info_4_suspend = NULL;
#endif

static uint32_t usb_info;

static patch_info fw_patch_table[] = {
/* { vid, pid, lmp_sub_default, lmp_sub, everion, mp_fw_name, fw_name, config_name, fw_cache, fw_len, mac_offset } */
{ 0x0BDA, 0x1724, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723A */
{ 0x0BDA, 0x8723, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* 8723AE */
{ 0x0BDA, 0xA723, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* 8723AE for LI */
{ 0x0BDA, 0x0723, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* 8723AE */
{ 0x13D3, 0x3394, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* 8723AE for Azurewave*/

{ 0x0BDA, 0x0724, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* 8723AU */
{ 0x0BDA, 0x8725, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* 8723AU */
{ 0x0BDA, 0x872A, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* 8723AU */
{ 0x0BDA, 0x872B, 0x1200, 0, 0, "mp_rtl8723a_fw", "rtl8723a_fw", "rtl8723a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* 8723AU */

{ 0x0BDA, 0xb720, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723bu_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BU */
{ 0x0BDA, 0xb72A, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723bu_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BU */
{ 0x0BDA, 0xb728, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE for LC */
{ 0x0BDA, 0xb723, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE */
{ 0x0BDA, 0xb72B, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE */
{ 0x0BDA, 0xb001, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE for HP */
{ 0x0BDA, 0xb002, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE */
{ 0x0BDA, 0xb003, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE */
{ 0x0BDA, 0xb004, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE */
{ 0x0BDA, 0xb005, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE */

{ 0x13D3, 0x3410, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE for Azurewave */
{ 0x13D3, 0x3416, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE for Azurewave */
{ 0x13D3, 0x3459, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE for Azurewave */
{ 0x0489, 0xE085, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE for Foxconn */
{ 0x0489, 0xE08B, 0x8723, 0, 0, "mp_rtl8723b_fw", "rtl8723b_fw", "rtl8723b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8723BE for Foxconn */

{ 0x0BDA, 0x2850, 0x8761, 0, 0, "mp_rtl8761a_fw", "rtl8761au_fw", "rtl8761a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8761AU */
{ 0x0BDA, 0xA761, 0x8761, 0, 0, "mp_rtl8761a_fw", "rtl8761au_fw", "rtl8761a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8761AU only */
{ 0x0BDA, 0x818B, 0x8761, 0, 0, "mp_rtl8761a_fw", "rtl8761aw8192eu_fw", "rtl8761aw8192eu_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8761AW + 8192EU */
{ 0x0BDA, 0x818C, 0x8761, 0, 0, "mp_rtl8761a_fw", "rtl8761aw8192eu_fw", "rtl8761aw8192eu_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8761AW + 8192EU */
{ 0x0BDA, 0x8760, 0x8761, 0, 0, "mp_rtl8761a_fw", "rtl8761au8192ee_fw", "rtl8761a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8761AU + 8192EE */
{ 0x0BDA, 0xB761, 0x8761, 0, 0, "mp_rtl8761a_fw", "rtl8761au_fw", "rtl8761a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8761AUV only */
{ 0x0BDA, 0x8761, 0x8761, 0, 0, "mp_rtl8761a_fw", "rtl8761au8192ee_fw", "rtl8761a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8761AU + 8192EE for LI */
{ 0x0BDA, 0x8A60, 0x8761, 0, 0, "mp_rtl8761a_fw", "rtl8761au8812ae_fw", "rtl8761a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8761AU + 8812AE */
{ 0x0BDA, 0x8771, 0x8761, 0, 0, "mp_rtl8761b_fw", "rtl8761b_fw", "rtl8761b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8761BU */
{ 0x0BDA, 0xa725, 0x8761, 0, 0, "mp_rtl8725a_fw", "rtl8725a_fw", "rtl8725a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8725AU */
{ 0x0BDA, 0xa72A, 0x8761, 0, 0, "mp_rtl8725a_fw", "rtl8725a_fw", "rtl8725a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8725AU BT only */

{ 0x0BDA, 0x8821, 0x8821, 0, 0, "mp_rtl8821a_fw", "rtl8821a_fw", "rtl8821a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8821AE */
{ 0x0BDA, 0x0821, 0x8821, 0, 0, "mp_rtl8821a_fw", "rtl8821a_fw", "rtl8821a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8821AE */
{ 0x0BDA, 0x0823, 0x8821, 0, 0, "mp_rtl8821a_fw", "rtl8821a_fw", "rtl8821a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8821AU */
{ 0x13D3, 0x3414, 0x8821, 0, 0, "mp_rtl8821a_fw", "rtl8821a_fw", "rtl8821a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8821AE */
{ 0x13D3, 0x3458, 0x8821, 0, 0, "mp_rtl8821a_fw", "rtl8821a_fw", "rtl8821a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8821AE */
{ 0x13D3, 0x3461, 0x8821, 0, 0, "mp_rtl8821a_fw", "rtl8821a_fw", "rtl8821a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8821AE */
{ 0x13D3, 0x3462, 0x8821, 0, 0, "mp_rtl8821a_fw", "rtl8821a_fw", "rtl8821a_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_1_2, MAX_PATCH_SIZE_24K}, /* RTL8821AE */

{ 0x0BDA, 0xB822, 0x8822, 0, 0, "mp_rtl8822b_fw", "rtl8822b_fw", "rtl8822b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_25K}, /* RTL8822BE */
{ 0x0BDA, 0xB82C, 0x8822, 0, 0, "mp_rtl8822b_fw", "rtl8822b_fw", "rtl8822b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_25K}, /* RTL8822BU */
{ 0x0BDA, 0xB81D, 0x8822, 0, 0, "mp_rtl8822b_fw", "rtl8822b_fw", "rtl8822b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_25K}, /* RTL8822BU BT only */
{ 0x0BDA, 0xB82E, 0x8822, 0, 0, "mp_rtl8822b_fw", "rtl8822b_fw", "rtl8822b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_25K}, /* RTL8822BU-VN */
{ 0x0BDA, 0xB023, 0x8822, 0, 0, "mp_rtl8822b_fw", "rtl8822b_fw", "rtl8822b_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_25K}, /* RTL8822BE */
{ 0x0BDA, 0xB703, 0x8703, 0, 0, "mp_rtl8723c_fw", "rtl8723c_fw", "rtl8723c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_24K}, /* RTL8723CU */
/* todo: RTL8703BU */

{ 0x0BDA, 0xD723, 0x8723, 0, 0, "mp_rtl8723d_fw", "rtl8723d_fw", "rtl8723d_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_40K}, /* RTL8723DU */
{ 0x0BDA, 0xD72A, 0x8723, 0, 0, "mp_rtl8723d_fw", "rtl8723d_fw", "rtl8723d_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_40K}, /* RTL8723DU BT only */
{ 0x0BDA, 0xD720, 0x8723, 0, 0, "mp_rtl8723d_fw", "rtl8723d_fw", "rtl8723d_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_40K}, /* RTL8723DE */
{ 0x0BDA, 0xB820, 0x8821, 0, 0, "mp_rtl8821c_fw", "rtl8821c_fw", "rtl8821c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_40K}, /* RTL8821CU */
{ 0x0BDA, 0xC820, 0x8821, 0, 0, "mp_rtl8821c_fw", "rtl8821c_fw", "rtl8821c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_40K}, /* RTL8821CU */
{ 0x0BDA, 0xC82A, 0x8821, 0, 0, "mp_rtl8821c_fw", "rtl8821c_fw", "rtl8821c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_40K}, /* RTL8821CU BT only */
{ 0x0BDA, 0xC821, 0x8821, 0, 0, "mp_rtl8821c_fw", "rtl8821c_fw", "rtl8821c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_3PLUS, MAX_PATCH_SIZE_40K}, /* RTL8821CE */
/* todo: RTL8703CU */
{ 0x0BDA, 0xC82C, 0x8822, 0, 0, "mp_rtl8822c_fw", "rtl8822c_fw", "rtl8822c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8822CU */
{ 0x0BDA, 0xC82E, 0x8822, 0, 0, "mp_rtl8822c_fw", "rtl8822c_fw", "rtl8822c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8822CU-VN */
{ 0x0BDA, 0xC81D, 0x8822, 0, 0, "mp_rtl8822c_fw", "rtl8822c_fw", "rtl8822c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8822CU BT only */
{ 0x0BDA, 0xC82F, 0x8822, 0, 0, "mp_rtl8822c_fw", "rtl8822c_fw", "rtl8822c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8822CE-VS */
{ 0x0BDA, 0xC822, 0x8822, 0, 0, "mp_rtl8822c_fw", "rtl8822c_fw", "rtl8822c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8822CE */
{ 0x0BDA, 0xB00C, 0x8822, 0, 0, "mp_rtl8822c_fw", "rtl8822c_fw", "rtl8822c_config", NULL, 0 ,CONFIG_MAC_OFFSET_GEN_4PLUS, MAX_PATCH_SIZE_40K}, /* RTL8822CE */
/* NOTE: must append patch entries above the null entry */
{ 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0, 0, 0 }
};

struct btusb_data {
    struct hci_dev       *hdev;
    struct usb_device    *udev;
    struct usb_interface *intf;
    struct usb_interface *isoc;

    spinlock_t lock;

    unsigned long flags;

    struct work_struct work;
    struct work_struct waker;

    struct usb_anchor tx_anchor;
    struct usb_anchor intr_anchor;
    struct usb_anchor bulk_anchor;
    struct usb_anchor isoc_anchor;
    struct usb_anchor deferred;
    int tx_in_flight;
    spinlock_t txlock;

    struct usb_endpoint_descriptor *intr_ep;
    struct usb_endpoint_descriptor *bulk_tx_ep;
    struct usb_endpoint_descriptor *bulk_rx_ep;
    struct usb_endpoint_descriptor *isoc_tx_ep;
    struct usb_endpoint_descriptor *isoc_rx_ep;

    __u8 cmdreq_type;

    unsigned int sco_num;
    int isoc_altsetting;
    int suspend_count;
    uint16_t sco_handle;
//#ifdef CONFIG_HAS_EARLYSUSPEND
#if 0
    struct early_suspend early_suspend;
#else
    struct notifier_block pm_notifier;
    struct notifier_block reboot_notifier;
#endif
    firmware_info *fw_info;

#ifdef CONFIG_SCO_OVER_HCI
    RTK_sco_card_t  *pSCOSnd;
#endif
};

int download_patch(firmware_info *fw_info, int cached);
int reset_controller(firmware_info* fw_info);


/********************************************************
**    this function first check the value, if true then set value
**
*********************************************************/
static inline bool check_set_driver_state_value(uint16_t check_value, uint16_t change_value)
{
    bool res;
    spin_lock(&running_flag_lock);
    if((driver_state & check_value) != check_value) {
        res = false;
    }
    else {
        driver_state |= change_value;
        res = true;
    }
    spin_unlock(&running_flag_lock);
    return res;
}

static inline uint16_t get_driver_state_value(void)
{
    uint16_t state;
    spin_lock(&running_flag_lock);
    state = driver_state;
    spin_unlock(&running_flag_lock);
    return state;
}

static inline void clear_driver_state(uint16_t clear_value)
{
    spin_lock(&running_flag_lock);
    driver_state &= (~clear_value);
    spin_unlock(&running_flag_lock);
}

static inline void set_driver_state_value(uint16_t change_value)
{
    spin_lock(&running_flag_lock);
    driver_state |= change_value;
    spin_unlock(&running_flag_lock);
}

#if SUSPNED_DW_FW
static int download_suspend_patch(firmware_info *fw_info, int cached);
#endif
#if SET_WAKEUP_DEVICE
static void set_wakeup_device_from_conf(firmware_info *fw_info);
int set_wakeup_device(firmware_info* fw_info, uint8_t* wakeup_bdaddr);
#endif

static void rtk_free( struct btusb_data *data)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 1)
    kfree(data);
#endif
    return;
}

static struct btusb_data *rtk_alloc(struct usb_interface *intf)
{
    struct btusb_data *data;
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 1)
    data = kzalloc(sizeof(*data), GFP_KERNEL);
#else
    data = devm_kzalloc(&intf->dev, sizeof(*data), GFP_KERNEL);
#endif
    return data;
}

static void print_acl(struct sk_buff *skb, int direction)
{
#if PRINT_ACL_DATA
    uint wlength = skb->len;
    u16 *handle = (u16 *)(skb->data);
    u16 len = *(handle+1);
    u8 *acl_data = (u8 *)(skb->data);

    RTK_INFO("%s: direction %d, handle %04x, len %d",
            __func__, direction, *handle, len);
#endif
}

static void print_sco(struct sk_buff *skb, int direction)
{
#if PRINT_SCO_DATA
    uint wlength = skb->len;
    u16 *handle = (u16 *)(skb->data);
    u8 len = *(u8 *)(handle+1);
    u8 *sco_data =(u8 *)(skb->data);

    RTKBT_INFO("%s: direction %d, handle %04x, len %d",
            __func__, direction, *handle, len);
#endif
}

static void print_error_command(struct sk_buff *skb)
{
    uint wlength = skb->len;
    uint icount = 0;
    u16 *opcode = (u16*)(skb->data);
    u8 *cmd_data = (u8*)(skb->data);
    u8 len = *(cmd_data+2);

    switch (*opcode) {
    case HCI_OP_INQUIRY:
        printk("HCI_OP_INQUIRY");
        break;
    case HCI_OP_INQUIRY_CANCEL:
        printk("HCI_OP_INQUIRY_CANCEL");
        break;
    case HCI_OP_EXIT_PERIODIC_INQ:
        printk("HCI_OP_EXIT_PERIODIC_INQ");
        break;
    case HCI_OP_CREATE_CONN:
        printk("HCI_OP_CREATE_CONN");
        break;
    case HCI_OP_DISCONNECT:
        printk("HCI_OP_DISCONNECT");
        break;
    case HCI_OP_CREATE_CONN_CANCEL:
        printk("HCI_OP_CREATE_CONN_CANCEL");
        break;
    case HCI_OP_ACCEPT_CONN_REQ:
        printk("HCI_OP_ACCEPT_CONN_REQ");
        break;
    case HCI_OP_REJECT_CONN_REQ:
        printk("HCI_OP_REJECT_CONN_REQ");
        break;
    case HCI_OP_AUTH_REQUESTED:
        printk("HCI_OP_AUTH_REQUESTED");
        break;
    case HCI_OP_SET_CONN_ENCRYPT:
        printk("HCI_OP_SET_CONN_ENCRYPT");
        break;
    case HCI_OP_REMOTE_NAME_REQ:
        printk("HCI_OP_REMOTE_NAME_REQ");
        break;
    case HCI_OP_READ_REMOTE_FEATURES:
        printk("HCI_OP_READ_REMOTE_FEATURES");
        break;
    case HCI_OP_SNIFF_MODE:
        printk("HCI_OP_SNIFF_MODE");
        break;
    case HCI_OP_EXIT_SNIFF_MODE:
        printk("HCI_OP_EXIT_SNIFF_MODE");
        break;
    case HCI_OP_SWITCH_ROLE:
        printk("HCI_OP_SWITCH_ROLE");
        break;
    case HCI_OP_SNIFF_SUBRATE:
        printk("HCI_OP_SNIFF_SUBRATE");
        break;
    case HCI_OP_RESET:
        printk("HCI_OP_RESET");
        break;
    case HCI_OP_Write_Extended_Inquiry_Response:
        printk("HCI_Write_Extended_Inquiry_Response");
        break;

    default:
        printk("CMD");
        break;
    }
    printk(":%04x,len:%d,", *opcode,len);
    for (icount = 3; (icount < wlength) && (icount < 24); icount++)
        printk("%02x ", *(cmd_data+icount));
    printk("\n");
}

static void print_command(struct sk_buff *skb)
{
#if PRINT_CMD_EVENT
    print_error_command(skb);
#endif
}

#if CONFIG_BLUEDROID
/* Global parameters for bt usb char driver */
#define BT_CHAR_DEVICE_NAME "rtkbt_dev"
static struct sk_buff_head btchr_readq;
static wait_queue_head_t btchr_read_wait;
static wait_queue_head_t bt_drv_state_wait;
static dev_t bt_devid; /* bt char device number */
static struct cdev bt_char_dev; /* bt character device structure */
static struct class *bt_char_class; /* device class for usb char driver */
static int bt_reset = 0;
/* HCI device & lock */
DEFINE_RWLOCK(hci_dev_lock);
struct hci_dev *ghdev = NULL;

static void print_event(struct sk_buff *skb)
{
#if PRINT_CMD_EVENT
    uint wlength = skb->len;
    uint icount = 0;
    u8 *opcode = (u8*)(skb->data);
    u8 len = *(opcode+1);

    switch (*opcode) {
    case HCI_EV_INQUIRY_COMPLETE:
        printk("HCI_EV_INQUIRY_COMPLETE");
        break;
    case HCI_EV_INQUIRY_RESULT:
        printk("HCI_EV_INQUIRY_RESULT");
        break;
    case HCI_EV_CONN_COMPLETE:
        printk("HCI_EV_CONN_COMPLETE");
        break;
    case HCI_EV_CONN_REQUEST:
        printk("HCI_EV_CONN_REQUEST");
        break;
    case HCI_EV_DISCONN_COMPLETE:
        printk("HCI_EV_DISCONN_COMPLETE");
        break;
    case HCI_EV_AUTH_COMPLETE:
        printk("HCI_EV_AUTH_COMPLETE");
        break;
    case HCI_EV_REMOTE_NAME:
        printk("HCI_EV_REMOTE_NAME");
        break;
    case HCI_EV_ENCRYPT_CHANGE:
        printk("HCI_EV_ENCRYPT_CHANGE");
        break;
    case HCI_EV_CHANGE_LINK_KEY_COMPLETE:
        printk("HCI_EV_CHANGE_LINK_KEY_COMPLETE");
        break;
    case HCI_EV_REMOTE_FEATURES:
        printk("HCI_EV_REMOTE_FEATURES");
        break;
    case HCI_EV_REMOTE_VERSION:
        printk("HCI_EV_REMOTE_VERSION");
        break;
    case HCI_EV_QOS_SETUP_COMPLETE:
        printk("HCI_EV_QOS_SETUP_COMPLETE");
        break;
    case HCI_EV_CMD_COMPLETE:
        printk("HCI_EV_CMD_COMPLETE");
        break;
    case HCI_EV_CMD_STATUS:
        printk("HCI_EV_CMD_STATUS");
        break;
    case HCI_EV_ROLE_CHANGE:
        printk("HCI_EV_ROLE_CHANGE");
        break;
    case HCI_EV_NUM_COMP_PKTS:
        printk("HCI_EV_NUM_COMP_PKTS");
        break;
    case HCI_EV_MODE_CHANGE:
        printk("HCI_EV_MODE_CHANGE");
        break;
    case HCI_EV_PIN_CODE_REQ:
        printk("HCI_EV_PIN_CODE_REQ");
        break;
    case HCI_EV_LINK_KEY_REQ:
        printk("HCI_EV_LINK_KEY_REQ");
        break;
    case HCI_EV_LINK_KEY_NOTIFY:
        printk("HCI_EV_LINK_KEY_NOTIFY");
        break;
    case HCI_EV_CLOCK_OFFSET:
        printk("HCI_EV_CLOCK_OFFSET");
        break;
    case HCI_EV_PKT_TYPE_CHANGE:
        printk("HCI_EV_PKT_TYPE_CHANGE");
        break;
    case HCI_EV_PSCAN_REP_MODE:
        printk("HCI_EV_PSCAN_REP_MODE");
        break;
    case HCI_EV_INQUIRY_RESULT_WITH_RSSI:
        printk("HCI_EV_INQUIRY_RESULT_WITH_RSSI");
        break;
    case HCI_EV_REMOTE_EXT_FEATURES:
        printk("HCI_EV_REMOTE_EXT_FEATURES");
        break;
    case HCI_EV_SYNC_CONN_COMPLETE:
        printk("HCI_EV_SYNC_CONN_COMPLETE");
        break;
    case HCI_EV_SYNC_CONN_CHANGED:
        printk("HCI_EV_SYNC_CONN_CHANGED");
        break;
    case HCI_EV_SNIFF_SUBRATE:
        printk("HCI_EV_SNIFF_SUBRATE");
        break;
    case HCI_EV_EXTENDED_INQUIRY_RESULT:
        printk("HCI_EV_EXTENDED_INQUIRY_RESULT");
        break;
    case HCI_EV_IO_CAPA_REQUEST:
        printk("HCI_EV_IO_CAPA_REQUEST");
        break;
    case HCI_EV_SIMPLE_PAIR_COMPLETE:
        printk("HCI_EV_SIMPLE_PAIR_COMPLETE");
        break;
    case HCI_EV_REMOTE_HOST_FEATURES:
        printk("HCI_EV_REMOTE_HOST_FEATURES");
        break;
    default:
        printk("event");
        break;
    }
    printk(":%02x,len:%d,", *opcode,len);
    for (icount = 2; (icount < wlength) && (icount < 24); icount++)
        printk("%02x ", *(opcode+icount));
    printk("\n");
#endif
}

static inline ssize_t usb_put_user(struct sk_buff *skb,
        char __user *buf, int count)
{
    char __user *ptr = buf;
    int len = min_t(unsigned int, skb->len, count);

    if (copy_to_user(ptr, skb->data, len))
        return -EFAULT;

    return len;
}

static struct sk_buff *rtk_skb_queue[QUEUE_SIZE];
static int rtk_skb_queue_front = 0;
static int rtk_skb_queue_rear = 0;

static void rtk_enqueue(struct sk_buff *skb)
{
    unsigned long flags;
    spin_lock_irqsave(&queue_lock, flags);
    if (rtk_skb_queue_front == (rtk_skb_queue_rear + 1) % QUEUE_SIZE) {
        /*
         * If queue is full, current solution is to drop
         * the following entries.
         */
        RTKBT_WARN("%s: Queue is full, entry will be dropped", __func__);
    } else {
        rtk_skb_queue[rtk_skb_queue_rear] = skb;

        rtk_skb_queue_rear++;
        rtk_skb_queue_rear %= QUEUE_SIZE;

    }
    spin_unlock_irqrestore(&queue_lock, flags);
}

static struct sk_buff *rtk_dequeue_try(unsigned int deq_len)
{
    struct sk_buff *skb;
    struct sk_buff *skb_copy;

    if (rtk_skb_queue_front == rtk_skb_queue_rear) {
        RTKBT_WARN("%s: Queue is empty", __func__);
        return NULL;
    }

    skb = rtk_skb_queue[rtk_skb_queue_front];
    if (deq_len >= skb->len) {
        rtk_skb_queue[rtk_skb_queue_front] = NULL;
        rtk_skb_queue_front++;
        rtk_skb_queue_front %= QUEUE_SIZE;

        /*
         * Return skb addr to be dequeued, and the caller
         * should free the skb eventually.
         */
        return skb;
    } else {
        skb_copy = pskb_copy(skb, GFP_ATOMIC);
        skb_pull(skb, deq_len);
        /* Return its copy to be freed */
        return skb_copy;
    }
}

static inline int is_queue_empty(void)
{
    return (rtk_skb_queue_front == rtk_skb_queue_rear) ? 1 : 0;
}

static void rtk_clear_queue(void)
{
    struct sk_buff *skb;
    unsigned long flags;
    spin_lock_irqsave(&queue_lock, flags);
    while(!is_queue_empty()) {
        skb = rtk_skb_queue[rtk_skb_queue_front];
        rtk_skb_queue[rtk_skb_queue_front] = NULL;
        rtk_skb_queue_front++;
        rtk_skb_queue_front %= QUEUE_SIZE;
        if (skb) {
            kfree_skb(skb);
        }
    }
    spin_unlock_irqrestore(&queue_lock, flags);
}

/*
 * Realtek - Integrate from hci_core.c
 */

/* Get HCI device by index.
 * Device is held on return. */
static struct hci_dev *hci_dev_get(int index)
{
    if (index != 0)
        return NULL;

    return ghdev;
}

/* ---- HCI ioctl helpers ---- */
static int hci_dev_open(__u16 dev)
{
    struct hci_dev *hdev;
    int ret = 0;

    RTKBT_DBG("%s: dev %d", __func__, dev);

    hdev = hci_dev_get(dev);
    if (!hdev) {
        RTKBT_ERR("%s: Failed to get hci dev[Null]", __func__);
        return -ENODEV;
    }

    if (test_bit(HCI_UNREGISTER, &hdev->flags)) {
        ret = -ENODEV;
        goto done;
    }

    if (test_bit(HCI_UP, &hdev->flags)) {
        ret = -EALREADY;
        goto done;
    }

done:
    return ret;
}

static int hci_dev_do_close(struct hci_dev *hdev)
{
    if (hdev->flush)
        hdev->flush(hdev);
    /* After this point our queues are empty
     * and no tasks are scheduled. */
    hdev->close(hdev);
    /* Clear flags */
    hdev->flags = 0;
    memset(&hdev->conn_hash, 0, sizeof(struct hci_conn_hash));
    return 0;
}

static int hci_dev_close(__u16 dev)
{
    struct hci_dev *hdev;
    int err;
    hdev = hci_dev_get(dev);
    if (!hdev) {
        RTKBT_ERR("%s: failed to get hci dev[Null]", __func__);
        return -ENODEV;
    }

    err = hci_dev_do_close(hdev);

    return err;
}

static struct hci_dev *hci_alloc_dev(void)
{
    struct hci_dev *hdev;

    hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
    if (!hdev)
        return NULL;

    return hdev;
}

/* Free HCI device */
static void hci_free_dev(struct hci_dev *hdev)
{
    kfree(hdev);
}

/* Register HCI device */
static int hci_register_dev(struct hci_dev *hdev)
{
    int i, id;

    RTKBT_DBG("%s: %p name %s bus %d", __func__, hdev, hdev->name, hdev->bus);
    /* Do not allow HCI_AMP devices to register at index 0,
     * so the index can be used as the AMP controller ID.
     */
    id = (hdev->dev_type == HCI_BREDR) ? 0 : 1;

    write_lock(&hci_dev_lock);

    sprintf(hdev->name, "hci%d", id);
    hdev->id = id;
    hdev->flags = 0;
    mutex_init(&hdev->lock);

    RTKBT_DBG("%s: id %d, name %s", __func__, hdev->id, hdev->name);


    for (i = 0; i < NUM_REASSEMBLY; i++)
        hdev->reassembly[i] = NULL;

    memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
    atomic_set(&hdev->promisc, 0);

    if (ghdev) {
        write_unlock(&hci_dev_lock);
        RTKBT_ERR("%s: Hci device has been registered already", __func__);
        return -1;
    } else
        ghdev = hdev;

    write_unlock(&hci_dev_lock);

    return id;
}

/* Unregister HCI device */
static void hci_unregister_dev(struct hci_dev *hdev)
{
    int i;

    RTKBT_DBG("%s: hdev %p name %s bus %d", __func__, hdev, hdev->name, hdev->bus);
    set_bit(HCI_UNREGISTER, &hdev->flags);

    write_lock(&hci_dev_lock);
    ghdev = NULL;
    write_unlock(&hci_dev_lock);

    hci_dev_do_close(hdev);
    for (i = 0; i < NUM_REASSEMBLY; i++)
        kfree_skb(hdev->reassembly[i]);
}


#ifdef CONFIG_SCO_OVER_HCI
/* copy data from the URB buffer into the ALSA ring buffer */
static bool rtk_copy_capture_data_to_alsa(struct btusb_data *data, uint8_t* p_data, unsigned int frames)
{
  	struct snd_pcm_runtime *runtime;
  	unsigned int frame_bytes, frames1;
  	u8 *dest;
    RTK_sco_card_t  *pSCOSnd = data->pSCOSnd;

  	runtime = pSCOSnd->capture.substream->runtime;
  	frame_bytes = 2;

  	dest = runtime->dma_area + pSCOSnd->capture.buffer_pos * frame_bytes;
  	if (pSCOSnd->capture.buffer_pos + frames <= runtime->buffer_size) {
  		memcpy(dest, p_data, frames * frame_bytes);
  	} else {
  		/* wrap around at end of ring buffer */
  		frames1 = runtime->buffer_size - pSCOSnd->capture.buffer_pos;
  		memcpy(dest, p_data, frames1 * frame_bytes);
  		memcpy(runtime->dma_area,
  		       p_data + frames1 * frame_bytes,
  		       (frames - frames1) * frame_bytes);
  	}

  	pSCOSnd->capture.buffer_pos += frames;
  	if (pSCOSnd->capture.buffer_pos >= runtime->buffer_size) {
  		pSCOSnd->capture.buffer_pos -= runtime->buffer_size;
  	}

    if((pSCOSnd->capture.buffer_pos%runtime->period_size) == 0) {
        snd_pcm_period_elapsed(pSCOSnd->capture.substream);
    }

  	return false;
}


static void hci_send_to_alsa_ringbuffer(struct hci_dev *hdev, struct sk_buff *skb)
{
    struct btusb_data *data = GET_DRV_DATA(hdev);
    RTK_sco_card_t  *pSCOSnd = data->pSCOSnd;
    uint8_t* p_data;
    int sco_length = skb->len - HCI_SCO_HDR_SIZE;

    RTKBT_DBG("%s", __func__);

    if (!hdev) {
        RTKBT_ERR("%s: Frame for unknown HCI device", __func__);
        return;
    }

    if (!test_bit(ALSA_CAPTURE_RUNNING, &pSCOSnd->states)) {
        //RTKBT_WARN("%s: ALSA is not running", __func__);
        return;
    }

    p_data = (uint8_t *)skb->data + HCI_SCO_HDR_SIZE;
    rtk_copy_capture_data_to_alsa(data, p_data, sco_length/2);
}

#endif

static void hci_send_to_stack(struct hci_dev *hdev, struct sk_buff *skb)
{
    struct sk_buff *rtk_skb_copy = NULL;

    RTKBT_DBG("%s", __func__);

    if (!hdev) {
        RTKBT_ERR("%s: Frame for unknown HCI device", __func__);
        return;
    }

    if (!test_bit(HCI_RUNNING, &hdev->flags)) {
        RTKBT_ERR("%s: HCI not running", __func__);
        return;
    }

    rtk_skb_copy = pskb_copy(skb, GFP_ATOMIC);
    if (!rtk_skb_copy) {
        RTKBT_ERR("%s: Copy skb error", __func__);
        return;
    }

    memcpy(skb_push(rtk_skb_copy, 1), &bt_cb(skb)->pkt_type, 1);
    rtk_enqueue(rtk_skb_copy);

    /* Make sure bt char device existing before wakeup read queue */
    hdev = hci_dev_get(0);
    if (hdev) {
        RTKBT_DBG("%s: Try to wakeup read queue", __func__);
        wake_up_interruptible(&btchr_read_wait);
    }

    return;
}

/* Receive frame from HCI drivers */
static int hci_recv_frame(struct sk_buff *skb)
{
    struct hci_dev *hdev = (struct hci_dev *) skb->dev;

    if (!hdev || !test_bit(HCI_UP, &hdev->flags)) {
        kfree_skb(skb);
        return -ENXIO;
    }

    /* Incomming skb */
    bt_cb(skb)->incoming = 1;

    /* Time stamp */
    __net_timestamp(skb);

    if (atomic_read(&hdev->promisc)) {
#ifdef CONFIG_SCO_OVER_HCI
        if(bt_cb(skb)->pkt_type == HCI_SCODATA_PKT)
            hci_send_to_alsa_ringbuffer(hdev, skb);
#endif
        /* Send copy to the sockets */
        hci_send_to_stack(hdev, skb);
    }

    kfree_skb(skb);
    return 0;
}

/* Receive frame from HCI drivers */
static int hci_recv_sco_frame(struct sk_buff *skb)
{
    struct hci_dev *hdev = (struct hci_dev *) skb->dev;

    if (!hdev || !test_bit(HCI_UP, &hdev->flags)) {
        kfree_skb(skb);
        return -ENXIO;
    }

    /* Incomming skb */
    bt_cb(skb)->incoming = 1;

    /* Time stamp */
    __net_timestamp(skb);

    if (atomic_read(&hdev->promisc)) {
#ifdef CONFIG_SCO_OVER_HCI
        if(bt_cb(skb)->pkt_type == HCI_SCODATA_PKT)
            hci_send_to_alsa_ringbuffer(hdev, skb);
#endif
        /* Send copy to the sockets */
        hci_send_to_stack(hdev, skb);
    }

    kfree_skb(skb);
    return 0;
}

static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
                          int count, __u8 index)
{
    int len = 0;
    int hlen = 0;
    int remain = count;
    struct sk_buff *skb;
    struct bt_skb_cb *scb;

    RTKBT_DBG("%s", __func__);

    if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
            index >= NUM_REASSEMBLY)
        return -EILSEQ;

    skb = hdev->reassembly[index];

    if (!skb) {
        switch (type) {
        case HCI_ACLDATA_PKT:
            len = HCI_MAX_FRAME_SIZE;
            hlen = HCI_ACL_HDR_SIZE;
            break;
        case HCI_EVENT_PKT:
            len = HCI_MAX_EVENT_SIZE;
            hlen = HCI_EVENT_HDR_SIZE;
            break;
        case HCI_SCODATA_PKT:
            len = HCI_MAX_SCO_SIZE;
            hlen = HCI_SCO_HDR_SIZE;
            break;
        }

        skb = bt_skb_alloc(len, GFP_ATOMIC);
        if (!skb)
            return -ENOMEM;

        scb = (void *) skb->cb;
        scb->expect = hlen;
        scb->pkt_type = type;

        skb->dev = (void *) hdev;
        hdev->reassembly[index] = skb;

    }

    while (count) {
        scb = (void *) skb->cb;
        len = min_t(uint, scb->expect, count);

        memcpy(skb_put(skb, len), data, len);

        count -= len;
        data += len;
        scb->expect -= len;
        remain = count;

        switch (type) {
        case HCI_EVENT_PKT:
            if (skb->len == HCI_EVENT_HDR_SIZE) {
                struct hci_event_hdr *h = hci_event_hdr(skb);
                scb->expect = h->plen;

                if (skb_tailroom(skb) < scb->expect) {
                    kfree_skb(skb);
                    hdev->reassembly[index] = NULL;
                    return -ENOMEM;
                }
            }
            break;

        case HCI_ACLDATA_PKT:
            if (skb->len  == HCI_ACL_HDR_SIZE) {
                struct hci_acl_hdr *h = hci_acl_hdr(skb);
                scb->expect = __le16_to_cpu(h->dlen);

                if (skb_tailroom(skb) < scb->expect) {
                    kfree_skb(skb);
                    hdev->reassembly[index] = NULL;
                    return -ENOMEM;
                }
            }
            break;

        case HCI_SCODATA_PKT:
            if (skb->len == HCI_SCO_HDR_SIZE) {
                struct hci_sco_hdr *h = hci_sco_hdr(skb);
                scb->expect = h->dlen;

                if (skb_tailroom(skb) < scb->expect) {
                    kfree_skb(skb);
                    hdev->reassembly[index] = NULL;
                    return -ENOMEM;
                }
            }
            break;
        }

        if (scb->expect == 0) {
            /* Complete frame */
            if(HCI_ACLDATA_PKT == type)
                print_acl(skb,0);
            if(HCI_SCODATA_PKT == type)
                print_sco(skb,0);
            if(HCI_EVENT_PKT == type)
                print_event(skb);

            bt_cb(skb)->pkt_type = type;
            if(type == HCI_SCODATA_PKT) {
                hci_recv_sco_frame(skb);
            }
            else
                hci_recv_frame(skb);

            hdev->reassembly[index] = NULL;
            return remain;
        }
    }

    return remain;
}

static int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
{
    int rem = 0;

    if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
        return -EILSEQ;

    while (count) {
        rem = hci_reassembly(hdev, type, data, count, type - 1);
        if (rem < 0)
            return rem;

        data += (count - rem);
        count = rem;
    }

    return rem;
}

static void hci_hardware_error(void)
{
    struct sk_buff *rtk_skb_copy = NULL;
    int len = 4;
    uint8_t hardware_err_pkt[4] = {HCI_EVENT_PKT, 0x10, 0x01, HCI_VENDOR_USB_DISC_HARDWARE_ERROR};

    rtk_skb_copy = alloc_skb(len, GFP_ATOMIC);
    if (!rtk_skb_copy) {
        RTKBT_ERR("%s: Failed to allocate mem", __func__);
        return;
    }

    memcpy(skb_put(rtk_skb_copy, len), hardware_err_pkt, len);
    rtk_enqueue(rtk_skb_copy);

    wake_up_interruptible(&btchr_read_wait);
}

static int btchr_open(struct inode *inode_p, struct file  *file_p)
{
    struct btusb_data *data;
    struct hci_dev *hdev;
    struct sk_buff *skb;
    int i;

    RTKBT_INFO("%s: BT usb char device is opening", __func__);

    if(!check_set_driver_state_value(DEVICE_PROBED, CHAR_OPENED)) {
        RTKBT_ERR("%s: Device not probed", __func__);
        return -ENODEV;
    }


    hdev = hci_dev_get(0);
    if (!hdev) {
        RTKBT_ERR("%s: Failed to get hci dev[NULL]", __func__);
        return -ENODEV;
    }

    set_bit(HCI_UP, &hdev->flags);
    data = GET_DRV_DATA(hdev);

    atomic_inc(&hdev->promisc);
    /*
     * As bt device is not re-opened when hotplugged out, we cannot
     * trust on file's private data(may be null) when other file ops
     * are invoked.
     */
    file_p->private_data = data;

    hci_dev_open(0);
    rtk_clear_queue();
    for(i = 0; i < NUM_REASSEMBLY; i++) {
        skb = hdev->reassembly[i];
        if(skb) {
            hdev->reassembly[i] = NULL;
            kfree_skb(skb);
        }
    }
    return nonseekable_open(inode_p, file_p);
}

static int btchr_close(struct inode  *inode_p, struct file   *file_p)
{
    struct btusb_data *data;
    struct hci_dev *hdev;

    RTKBT_INFO("%s: BT usb char device is closing", __func__);

    data = file_p->private_data;
    file_p->private_data = NULL;

#if CONFIG_BLUEDROID
    /*
     * If the upper layer closes bt char interfaces, no reset
     * action required even bt device hotplugged out.
     */
    bt_reset = 0;
#endif


    hdev = hci_dev_get(0);
    if (hdev) {
        atomic_set(&hdev->promisc, 0);
        hci_dev_close(0);
        clear_bit(HCI_UP, &hdev->flags);
    }

    clear_driver_state(CHAR_OPENED);
    //if the state is not probed, the driver may be in the disconnecting state
    //and waitting for signal to wake up
    if((get_driver_state_value() & DEVICE_PROBED) == 0)
        wake_up_interruptible(&bt_drv_state_wait);
    return 0;
}

static ssize_t btchr_read(struct file *file_p,
        char __user *buf_p,
        size_t count,
        loff_t *pos_p)
{
    struct hci_dev *hdev;
    struct sk_buff *skb;
    ssize_t ret = 0;

    RTKBT_DBG("%s: BT usb char device is reading", __func__);

    while (count) {
        hdev = hci_dev_get(0);
        if (!hdev) {
            /*
             * Note: Only when BT device hotplugged out, we wil get
             * into such situation. In order to keep the upper layer
             * stack alive (blocking the read), we should never return
             * EFAULT or break the loop.
             */
            RTKBT_ERR("%s: Failed to get hci dev[Null]", __func__);
        }

        ret = wait_event_interruptible(btchr_read_wait, !is_queue_empty());
        if (ret < 0) {
            RTKBT_ERR("%s: wait event is signaled %zu", __func__, ret);
            break;
        }

        skb = rtk_dequeue_try(count);
        if (skb) {
            ret = usb_put_user(skb, buf_p, count);
            if (ret < 0)
                RTKBT_ERR("%s: Failed to put data to user space", __func__);
            kfree_skb(skb);
            break;
        }
    }

    return ret;
}

static ssize_t btchr_write(struct file *file_p,
        const char __user *buf_p,
        size_t count,
        loff_t *pos_p)
{
    struct btusb_data *data = file_p->private_data;
    struct hci_dev *hdev;
    struct sk_buff *skb;

    RTKBT_DBG("%s: BT usb char device is writing", __func__);

    if((get_driver_state_value() & DEVICE_PROBED) == 0) {
        RTKBT_ERR("%s: Device not probed", __func__);
        return POLLERR | POLLHUP;
    }

    hdev = hci_dev_get(0);
    if (!hdev) {
        RTKBT_WARN("%s: Failed to get hci dev[Null]", __func__);
        /*
         * Note: we bypass the data from the upper layer if bt device
         * is hotplugged out. Fortunatelly, H4 or H5 HCI stack does
         * NOT check btchr_write's return value. However, returning
         * count instead of EFAULT is preferable.
         */
        /* return -EFAULT; */
        return count;
    }

    /* Never trust on btusb_data, as bt device may be hotplugged out */
    data = GET_DRV_DATA(hdev);
    if (!data) {
        RTKBT_WARN("%s: Failed to get bt usb driver data[Null]", __func__);
        return count;
    }

    if (count > HCI_MAX_FRAME_SIZE)
        return -EINVAL;

    skb = bt_skb_alloc(count, GFP_ATOMIC);
    if (!skb)
        return -ENOMEM;
    skb_reserve(skb, -1); // Add this line

    if (copy_from_user(skb_put(skb, count), buf_p, count)) {
        RTKBT_ERR("%s: Failed to get data from user space", __func__);
        kfree_skb(skb);
        return -EFAULT;
    }

    skb->dev = (void *)hdev;
    bt_cb(skb)->pkt_type = *((__u8 *)skb->data);
    skb_pull(skb, 1);
    data->hdev->send(skb);

    return count;
}

static unsigned int btchr_poll(struct file *file_p, poll_table *wait)
{
    struct btusb_data *data = file_p->private_data;
    struct hci_dev *hdev;

    RTKBT_DBG("%s: BT usb char device is polling", __func__);

    if((get_driver_state_value() & DRIVER_ON) == 0 ||
          (get_driver_state_value() & DEVICE_PROBED) == 0) {
        RTKBT_ERR("%s: Device not probed", __func__);
        return POLLERR | POLLHUP;
    }

    poll_wait(file_p, &btchr_read_wait, wait);

    hdev = hci_dev_get(0);
    if (!hdev) {
        RTKBT_ERR("%s: Failed to get hci dev[Null]", __func__);
        mdelay(URB_CANCELING_DELAY_MS);
        return POLLOUT | POLLWRNORM;
    }

    /* Never trust on btusb_data, as bt device may be hotplugged out */
    data = GET_DRV_DATA(hdev);
    if (!data) {
        /*
         * When bt device is hotplugged out, btusb_data will
         * be freed in disconnect.
         */
        RTKBT_ERR("%s: Failed to get bt usb driver data[Null]", __func__);
        mdelay(URB_CANCELING_DELAY_MS);
        return POLLOUT | POLLWRNORM;
    }

    if (!is_queue_empty())
        return POLLIN | POLLRDNORM;

    return POLLOUT | POLLWRNORM;
}

static long btchr_ioctl(struct file *file_p, unsigned int cmd, unsigned long arg){
    int ret = 0;
    struct hci_dev *hdev;
    struct btusb_data *data;
    firmware_info *fw_info;

    if((get_driver_state_value() & DRIVER_ON) == 0 ||
          (get_driver_state_value() & DEVICE_PROBED) == 0) {
        RTKBT_ERR("%s bt controller is disconnect!", __func__);
        return -ENODEV;
    }

    hdev = hci_dev_get(0);
    if(!hdev) {
        RTKBT_ERR("%s device is NULL!", __func__);
        return 0;
    }
    data = GET_DRV_DATA(hdev);
    fw_info = data->fw_info;

    RTKBT_INFO(" btchr_ioctl with Cmd:%d",cmd);
    switch (cmd) {
        case DOWN_FW_CFG:
            ret = usb_autopm_get_interface(data->intf);
            if (ret < 0){
                goto failed;
            }

            ret = download_patch(fw_info,1);
            usb_autopm_put_interface(data->intf);
            if(ret < 0){
                RTKBT_ERR("%s:Failed in download_patch with ret:%d",__func__,ret);
                goto failed;
            }

            ret = hdev->open(hdev);
            if(ret < 0){
                RTKBT_ERR("%s:Failed in hdev->open(hdev):%d",__func__,ret);
                goto failed;
            }
            ret = 1;
            break;

#ifdef CONFIG_SCO_OVER_HCI
        case SET_ISO_CFG:
            if(get_user(hdev->voice_setting, (__u16 __user*)arg)) {
                ret = -EFAULT;
            }
            RTKBT_INFO(" voice settings = 0x%04x", hdev->voice_setting);
            break;
#endif

        case GET_USB_INFO:
            ret = hdev->open(hdev);
            if(ret < 0){
                RTKBT_ERR("%s:Failed in hdev->open(hdev):%d",__func__,ret);
                //goto done;
            }
            put_user(usb_info, (__u32 __user*)arg);
            ret = 1;
            break;
        case RESET_CONTROLLER:
            reset_controller(fw_info);
            ret = 1;
            break;

        case DWFW_CMPLT:
        {
            uint16_t lmp_sub = 0;
            if(get_user(lmp_sub, (__u16 __user*)arg)) {
                ret = -EFAULT;
            }
            else if(lmp_sub != 0) {
                fw_info->patch_entry->lmp_sub = lmp_sub;
            }
            RTKBT_INFO("%s lmp_sub = 0x%x, patch_entry->lmp_sub = 0x%x", __func__,
                          lmp_sub, fw_info->patch_entry->lmp_sub);
        }
            break;

        default:
            RTKBT_ERR("%s:Failed with wrong Cmd:%d",__func__,cmd);
            goto failed;
        }
failed:
        return ret;

}

#ifdef CONFIG_COMPAT
static long compat_btchr_ioctl (struct file *filp, unsigned int cmd, unsigned long arg)
{
    return btchr_ioctl(filp, cmd, (unsigned long) compat_ptr(arg));
}
#endif

static struct file_operations bt_chrdev_ops  = {
    open    :    btchr_open,
    release    :    btchr_close,
    read    :    btchr_read,
    write    :    btchr_write,
    poll    :    btchr_poll,
    unlocked_ioctl   :   btchr_ioctl,
#ifdef CONFIG_COMPAT
    compat_ioctl :  compat_btchr_ioctl,
#endif
};

static int btchr_init(void)
{
    int res = 0;
    struct device *dev;

    RTKBT_INFO("Register usb char device interface for BT driver");
    skb_queue_head_init(&btchr_readq);
    init_waitqueue_head(&btchr_read_wait);
    init_waitqueue_head(&bt_drv_state_wait);

    bt_char_class = class_create(THIS_MODULE, BT_CHAR_DEVICE_NAME);
    if (IS_ERR(bt_char_class)) {
        RTKBT_ERR("Failed to create bt char class");
        return PTR_ERR(bt_char_class);
    }

    res = alloc_chrdev_region(&bt_devid, 0, 1, BT_CHAR_DEVICE_NAME);
    if (res < 0) {
        RTKBT_ERR("Failed to allocate bt char device");
        goto err_alloc;
    }

    dev = device_create(bt_char_class, NULL, bt_devid, NULL, BT_CHAR_DEVICE_NAME);
    if (IS_ERR(dev)) {
        RTKBT_ERR("Failed to create bt char device");
        res = PTR_ERR(dev);
        goto err_create;
    }

    cdev_init(&bt_char_dev, &bt_chrdev_ops);
    res = cdev_add(&bt_char_dev, bt_devid, 1);
    if (res < 0) {
        RTKBT_ERR("Failed to add bt char device");
        goto err_add;
    }

    return 0;

err_add:
    device_destroy(bt_char_class, bt_devid);
err_create:
    unregister_chrdev_region(bt_devid, 1);
err_alloc:
    class_destroy(bt_char_class);
    return res;
}

static void btchr_exit(void)
{
    RTKBT_INFO("Unregister usb char device interface for BT driver");

    device_destroy(bt_char_class, bt_devid);
    cdev_del(&bt_char_dev);
    unregister_chrdev_region(bt_devid, 1);
    class_destroy(bt_char_class);

    return;
}
#endif

static int send_hci_cmd(firmware_info *fw_info)
{
   int i = 0;
   int ret_val = -1;
   while((ret_val<0)&&(i++<10))
   {
       ret_val = usb_control_msg(
          fw_info->udev, fw_info->pipe_out,
          0, USB_TYPE_CLASS, 0, 0,
          (void *)(fw_info->send_pkt),
          fw_info->pkt_len, MSG_TO);
   }
   return ret_val;
}

static int rcv_hci_evt(firmware_info *fw_info)
{
    int ret_len = 0, ret_val = 0;
    int i;

    while (1) {
        for(i = 0; i < 5; i++) {
        ret_val = usb_interrupt_msg(
            fw_info->udev, fw_info->pipe_in,
            (void *)(fw_info->rcv_pkt), PKT_LEN,
            &ret_len, MSG_TO);
            if (ret_val >= 0)
                break;
        }

        if (ret_val < 0)
            return ret_val;

        if (CMD_CMP_EVT == fw_info->evt_hdr->evt) {
            if (fw_info->cmd_hdr->opcode == fw_info->cmd_cmp->opcode)
                return ret_len;
        }
    }
}

static int set_bt_onoff(firmware_info *fw_info, uint8_t onoff)
{
    patch_info *patch_entry;
    int ret_val;

    RTKBT_INFO("%s: %s", __func__, onoff != 0 ? "on" : "off");

    patch_entry = fw_info->patch_entry;
    if (!patch_entry)
        return -1;

    fw_info->cmd_hdr->opcode = cpu_to_le16(BTOFF_OPCODE);
    fw_info->cmd_hdr->plen = 1;
    fw_info->pkt_len = CMD_HDR_LEN + 1;
    fw_info->send_pkt[CMD_HDR_LEN] = onoff;

    ret_val = send_hci_cmd(fw_info);
    if (ret_val < 0) {
        RTKBT_ERR("%s: Failed to send bt %s cmd, errno %d",
                __func__, onoff != 0 ? "on" : "off", ret_val);
        return ret_val;
    }

    ret_val = rcv_hci_evt(fw_info);
    if (ret_val < 0) {
        RTKBT_ERR("%s: Failed to receive bt %s event, errno %d",
                __func__, onoff != 0 ? "on" : "off", ret_val);
        return ret_val;
    }

    return ret_val;
}

static patch_info *get_fw_table_entry(struct usb_device* udev)
{
    patch_info *patch_entry = fw_patch_table;
    uint16_t vid = le16_to_cpu(udev->descriptor.idVendor);
    uint16_t pid = le16_to_cpu(udev->descriptor.idProduct);
    uint32_t entry_size = sizeof(fw_patch_table) / sizeof(fw_patch_table[0]);
    uint32_t i;

    RTKBT_INFO("%s: Product id = 0x%04x, fw table entry size %d", __func__, pid, entry_size);
    usb_info = (uint32_t)(vid<<16) | pid;

    for (i = 0; i < entry_size; i++, patch_entry++) {
        if ((vid == patch_entry->vid)&&(pid == patch_entry->pid))
            break;
    }

    if (i == entry_size) {
        RTKBT_ERR("%s: No fw table entry found", __func__);
        return NULL;
    }

    return patch_entry;
}

#if SUSPNED_DW_FW
static patch_info *get_suspend_fw_table_entry(struct usb_device* udev)
{
    patch_info *patch_entry = fw_patch_table;
    patch_info *patch_entry_real = NULL;
    uint16_t vid = le16_to_cpu(udev->descriptor.idVendor);
    uint16_t pid = le16_to_cpu(udev->descriptor.idProduct);
    uint32_t entry_size = sizeof(fw_patch_table) / sizeof(fw_patch_table[0]);
    uint32_t i;

    RTKBT_INFO("%s: Product id = 0x%04x, fw table entry size %d", __func__, pid, entry_size);

    for (i = 0; i < entry_size; i++, patch_entry++) {
        if ((vid == patch_entry->vid)&&(pid == patch_entry->pid))
            break;
    }

    if (i == entry_size) {
        RTKBT_ERR("%s: No fw table entry found", __func__);
        return NULL;
    }
    patch_entry_real = kmalloc(sizeof(fw_patch_table[0]), GFP_KERNEL);
    if(!patch_entry_real)
        return NULL;
    memcpy(patch_entry_real, patch_entry, sizeof(fw_patch_table[0]));
    return patch_entry_real;
}
#endif

static struct rtk_epatch_entry *get_fw_patch_entry(struct rtk_epatch *epatch_info, uint16_t eco_ver)
{
    int patch_num = epatch_info->number_of_total_patch;
    uint8_t *epatch_buf = (uint8_t *)epatch_info;
    struct rtk_epatch_entry *p_entry = NULL;
    int coex_date;
    int coex_ver;
    int i;

    for (i = 0; i < patch_num; i++) {
        if (*(uint16_t *)(epatch_buf + 14 + 2*i) == eco_ver + 1) {
            p_entry = kzalloc(sizeof(*p_entry), GFP_KERNEL);
            if (!p_entry) {
                RTKBT_ERR("%s: Failed to allocate mem for patch entry", __func__);
                return NULL;
            }
            p_entry->chip_id = eco_ver + 1;
            p_entry->patch_length = *(uint16_t*)(epatch_buf + 14 + 2*patch_num + 2*i);
            p_entry->start_offset = *(uint32_t*)(epatch_buf + 14 + 4*patch_num + 4*i);
            p_entry->coex_version = *(uint32_t*)(epatch_buf + p_entry->start_offset + p_entry->patch_length - 12);
            p_entry->svn_version = *(uint32_t*)(epatch_buf + p_entry->start_offset + p_entry->patch_length - 8);
            p_entry->fw_version = *(uint32_t*)(epatch_buf + p_entry->start_offset + p_entry->patch_length - 4);

            coex_date = ((p_entry->coex_version >> 16) & 0x7ff) + ((p_entry->coex_version >> 27) * 10000);
            coex_ver = p_entry->coex_version & 0xffff;

            RTKBT_INFO("BTCOEX:20%06d-0x%04x svn version:0x%08x fw version:0x%08x rtk_btusb version:%s Cut:%d, patch length:0x%04x, patch offset:0x%08x\n", \
                    coex_date, coex_ver, p_entry->svn_version, p_entry->fw_version, VERSION, p_entry->chip_id, p_entry->patch_length, p_entry->start_offset);
            break;
        }
    }

    return p_entry;
}

/*reset_controller is aimed to reset_bt_fw before updata Fw patch*/
int reset_controller(firmware_info* fw_info)
{
    int ret_val;
    RTKBT_ERR("reset_controller");

    if (!fw_info)
        return -ENODEV;

    fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VENDOR_FORCE_RESET_AND_PATCHABLE);
    fw_info->cmd_hdr->plen = 0;
    fw_info->pkt_len = CMD_HDR_LEN;
    ret_val = send_hci_cmd(fw_info);

    if (ret_val < 0) {
        RTKBT_ERR("%s: Failed to send hci cmd 0x%04x, errno %d",
                __func__, fw_info->cmd_hdr->opcode, ret_val);
        return ret_val;
    }

    //sleep 1s for firmware reset.
    msleep(1000);
    RTKBT_INFO("%s: Wait fw reset for 1000ms",__func__);

    return ret_val;
}
/*reset_controller is aimed to reset_bt_fw before updata Fw patch*/

/*
 * check the return value
 * 1: need to download fw patch
 * 0: no need to download fw patch
 * <0: failed to check lmp version
 */
static int check_fw_version(firmware_info* fw_info, bool resume_check)
{
    struct hci_rp_read_local_version *read_ver_rsp;
    patch_info *patch_entry = NULL;
    int ret_val = -1, i, ret_len = 0;
    struct sk_buff *rtk_skb_copy = NULL;
    unsigned char pkt_type = HCI_EVENT_PKT;

    fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_OP_READ_LOCAL_VERSION);
    fw_info->cmd_hdr->plen = 0;
    fw_info->pkt_len = CMD_HDR_LEN;

    ret_val = send_hci_cmd(fw_info);
    if (ret_val < 0) {
        RTKBT_ERR("%s: Failed to send hci cmd 0x%04x, errno %d",
                __func__, fw_info->cmd_hdr->opcode, ret_val);
        return ret_val;
    }

    while (1) {
        for(i = 0; i < 5; i++) {
        ret_val = usb_interrupt_msg(
            fw_info->udev, fw_info->pipe_in,
            (void *)(fw_info->rcv_pkt), PKT_LEN,
            &ret_len, MSG_TO);
            if (ret_val >= 0)
                break;
        }

        if (ret_val < 0) {
            RTKBT_ERR("%s: Failed to receive hci event, errno %d",
                __func__, ret_val);
            return ret_val;
        }

        if ((CMD_CMP_EVT == fw_info->evt_hdr->evt) &&
              (fw_info->cmd_hdr->opcode == fw_info->cmd_cmp->opcode)) {
                break;
        }
        else if(resume_check) {
            rtk_skb_copy = bt_skb_alloc((ret_len), GFP_ATOMIC);
            if (!rtk_skb_copy) {
              RTKBT_ERR("%s: Failed to allocate mem", __func__);
              return 2;
            }

            memcpy(skb_put(rtk_skb_copy, ret_len), fw_info->rcv_pkt, ret_len);
            memcpy(skb_push(rtk_skb_copy, 1), &pkt_type, 1);
            rtk_enqueue(rtk_skb_copy);

            rtk_skb_copy = NULL;
            wake_up_interruptible(&btchr_read_wait);
        }
    }

    patch_entry = fw_info->patch_entry;
    read_ver_rsp = (struct hci_rp_read_local_version *)(fw_info->rsp_para);

    RTKBT_INFO("%s: Controller lmp = 0x%04x, patch lmp = 0x%04x, default patch lmp = 0x%04x",
            __func__, read_ver_rsp->lmp_subver, patch_entry->lmp_sub, patch_entry->lmp_sub_default);

    if (read_ver_rsp->lmp_subver == patch_entry->lmp_sub_default) {
        RTKBT_INFO("%s: Cold BT controller startup", __func__);

        return 2;

    } else if (read_ver_rsp->lmp_subver != patch_entry->lmp_sub) {
        RTKBT_INFO("%s: Warm BT controller startup with updated lmp", __func__);
        return 1;
    } else {
        RTKBT_INFO("%s: Warm BT controller startup with same lmp", __func__);
        return 0;
    }
}

#if SET_WAKEUP_DEVICE
int set_wakeup_device(firmware_info* fw_info, uint8_t* wakeup_bdaddr)
{
    struct rtk_eversion_evt *ever_evt;
    int ret_val;

    if (!fw_info)
        return -ENODEV;

    fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VENDOR_ADD_WAKE_UP_DEVICE);
    fw_info->cmd_hdr->plen = 7;
    memcpy(fw_info->req_para, wakeup_bdaddr, 7);
    fw_info->pkt_len = CMD_HDR_LEN + 7;

    ret_val = send_hci_cmd(fw_info);
    if (ret_val < 0) {
        RTKBT_ERR("%s: Failed to send hci cmd 0x%04x, errno %d\n",
            __func__, fw_info->cmd_hdr->opcode, ret_val);
        return ret_val;
    }

    ret_val = rcv_hci_evt(fw_info);
    if (ret_val < 0) {
        RTKBT_ERR("%s: Failed to receive hci event, errno %d\n",__func__, ret_val);
        return ret_val;
    }

    ever_evt = (struct rtk_eversion_evt *)(fw_info->rsp_para);

    RTKBT_DBG("%s: status %d, eversion %d", __func__, ever_evt->status, ever_evt->version);
    return ret_val;
}
#endif

/*reset_channel to recover the communication between wifi 8192eu with 8761 bt controller in case of geteversion error*/

static int reset_channel(firmware_info* fw_info)
{
    struct rtk_reset_evt *ever_evt;
    int ret_val;

    if (!fw_info)
        return -ENODEV;

    fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VENDOR_RESET);
    fw_info->cmd_hdr->plen = 0;
    fw_info->pkt_len = CMD_HDR_LEN;

    ret_val = send_hci_cmd(fw_info);
    if (ret_val < 0) {
        RTKBT_ERR("%s: Failed to send  hci cmd 0x%04x, errno %d",
                __func__, fw_info->cmd_hdr->opcode, ret_val);
        return ret_val;
    }

    ret_val = rcv_hci_evt(fw_info);
    if (ret_val < 0) {
        RTKBT_ERR("%s: Failed to receive  hci event, errno %d",
                __func__, ret_val);
        return ret_val;
    }

    ever_evt = (struct rtk_reset_evt *)(fw_info->rsp_para);

    RTKBT_INFO("%s: status %d ", __func__, ever_evt->status);

    //sleep 300ms for channel reset.
    msleep(300);
    RTKBT_INFO("%s: Wait channel reset for 300ms",__func__);

    return ret_val;
}


//sometimes the controller is in warm resume,and still send message to host
//we should reset controller and clean the hardware buffer
static bool reset_and_clean_hw_buffer(firmware_info* fw_info)
{
    int ret_val/*, i*/;
    int ret_len = 0;
    bool event_recv = false;

    if (!fw_info)
        return -ENODEV;

    fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VENDOR_RESET);
    fw_info->cmd_hdr->plen = 0;
    fw_info->pkt_len = CMD_HDR_LEN;

    ret_val = send_hci_cmd(fw_info);
    if (ret_val < 0) {
        RTKBT_ERR("%s: Failed to send  hci cmd 0x%04x, errno %d",
                __func__, fw_info->cmd_hdr->opcode, ret_val);
        return ret_val;
    }

    //we need to clean the hardware buffer
    while (1) {
        ret_val = usb_interrupt_msg(
            fw_info->udev, fw_info->pipe_in,
            (void *)(fw_info->rcv_pkt), PKT_LEN,
            &ret_len, (MSG_TO/2));

        if(ret_val >= 0) {
          if(event_recv) {
            RTKBT_INFO("%s: clear hardware event", __func__);
            continue;
          }
        }
        else {
          return event_recv;
        }

        if (CMD_CMP_EVT == fw_info->evt_hdr->evt) {
            if (fw_info->cmd_hdr->opcode == fw_info->cmd_cmp->opcode) {
              event_recv = true;
            }
        }
    }
    return ret_val;
}
#if 0
static int read_localversion(firmware_info* fw_info)
{
    struct rtk_localversion_evt *ever_evt;
    int ret_val;

    if (!fw_info)
        return -ENODEV;

    fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VENDOR_READ_LMP_VERISION);
    fw_info->cmd_hdr->plen = 0;
    fw_info->pkt_len = CMD_HDR_LEN;

    ret_val = send_hci_cmd(fw_info);
    if (ret_val < 0) {
        RTKBT_ERR("%s: Failed to send  hci cmd 0x%04x, errno %d",
                __func__, fw_info->cmd_hdr->opcode, ret_val);
        return ret_val;
    }

    ret_val = rcv_hci_evt(fw_info);
    if (ret_val < 0) {
        RTKBT_ERR("%s: Failed to receive  hci event, errno %d",
                __func__, ret_val);
        return ret_val;
    }

    ever_evt = (struct rtk_localversion_evt *)(fw_info->rsp_para);

    RTKBT_INFO("%s: status %d ", __func__, ever_evt->status);
    RTKBT_INFO("%s: hci_version %d ", __func__, ever_evt->hci_version);
    RTKBT_INFO("%s: hci_revision %d ", __func__, ever_evt->hci_revision);
    RTKBT_INFO("%s: lmp_version %d ", __func__, ever_evt->lmp_version);
    RTKBT_INFO("%s: lmp_subversion %d ", __func__, ever_evt->lmp_subversion);
    RTKBT_INFO("%s: lmp_manufacture %d ", __func__, ever_evt->lmp_manufacture);
    //sleep 300ms for channel reset.
    msleep(300);
    RTKBT_INFO("%s: Wait channel reset for 300ms",__func__);

    return ret_val;
}
#endif
static int get_eversion(firmware_info* fw_info)
{
    struct rtk_eversion_evt *ever_evt;
    int ret_val;

    if (!fw_info)
        return -ENODEV;

    fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VENDOR_READ_RTK_ROM_VERISION);
    fw_info->cmd_hdr->plen = 0;
    fw_info->pkt_len = CMD_HDR_LEN;

    ret_val = send_hci_cmd(fw_info);
    if (ret_val < 0) {
        RTKBT_ERR("%s: Failed to send hci cmd 0x%04x, errno %d",
                __func__, fw_info->cmd_hdr->opcode, ret_val);
        return ret_val;
    }

    ret_val = rcv_hci_evt(fw_info);
    if (ret_val < 0) {
        RTKBT_ERR("%s: Failed to receive hci event, errno %d",
                __func__, ret_val);
        return ret_val;
    }

    ever_evt = (struct rtk_eversion_evt *)(fw_info->rsp_para);

    RTKBT_INFO("%s: status %d, eversion %d", __func__, ever_evt->status, ever_evt->version);

    if (ever_evt->status)
        fw_info->patch_entry->eversion = 0;
    else
        fw_info->patch_entry->eversion = ever_evt->version;

    return ret_val;
}

static void rtk_update_altsettings(patch_info *patch_entry, const unsigned char* org_config_buf, int org_config_len, unsigned char ** new_config_buf_ptr, int *new_config_len_ptr)
{
    static unsigned char config_buf[1024];
    unsigned short offset[256];
    unsigned char val[256];

    struct rtk_bt_vendor_config* config = (struct rtk_bt_vendor_config*) config_buf;
    struct rtk_bt_vendor_config_entry* entry = config->entry;

    int count = 0,temp = 0, i = 0, j;

    memset(config_buf, 0, sizeof(config_buf));
    memset(offset, 0, sizeof(offset));
    memset(val, 0, sizeof(val));

    memcpy(config_buf, org_config_buf, org_config_len);
    *new_config_buf_ptr = config_buf;
    *new_config_len_ptr = org_config_len;

    count = getAltSettings(patch_entry, offset, sizeof(offset)/sizeof(unsigned short));
    if(count <= 0){
        RTKBT_INFO("rtk_update_altsettings: No AltSettings");
        return;
    }else{
        RTKBT_INFO("rtk_update_altsettings: %d AltSettings", count);
    }

    RTKBT_INFO("ORG Config len=%08x:\n", org_config_len);
    for(i=0;i<=org_config_len;i+=0x10)
    {
        RTKBT_INFO("%08x: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", i, \
            config_buf[i], config_buf[i+1], config_buf[i+2], config_buf[i+3], config_buf[i+4], config_buf[i+5], config_buf[i+6], config_buf[i+7], \
            config_buf[i+8], config_buf[i+9], config_buf[i+10], config_buf[i+11], config_buf[i+12], config_buf[i+13], config_buf[i+14], config_buf[i+15]);
    }

    if (config->data_len != org_config_len - sizeof(struct rtk_bt_vendor_config))
    {
        RTKBT_ERR("rtk_update_altsettings: config len(%x) is not right(%x)", (int)(config->data_len), (int)(org_config_len-sizeof(struct rtk_bt_vendor_config)));
        return;
    }

    for (i=0; idata_len;)
    {
        for(j = 0; j < count;j++)
        {
            if(entry->offset == offset[j])
                offset[j] = 0;
        }
        if(getAltSettingVal(patch_entry, entry->offset, val) == entry->entry_len){
            RTKBT_INFO("rtk_update_altsettings: replace %04x[%02x]", entry->offset, entry->entry_len);
            memcpy(entry->entry_data, val, entry->entry_len);
        }
        temp = entry->entry_len + sizeof(struct rtk_bt_vendor_config_entry);
        i += temp;
        entry = (struct rtk_bt_vendor_config_entry*)((uint8_t*)entry + temp);
    }
    for(j = 0; j < count;j++){
        if(offset[j] == 0)
            continue;
        entry->entry_len = getAltSettingVal(patch_entry, offset[j], val);
        if(entry->entry_len <= 0)
            continue;
        entry->offset = offset[j];
        memcpy(entry->entry_data, val, entry->entry_len);
        RTKBT_INFO("rtk_update_altsettings: add %04x[%02x]", entry->offset, entry->entry_len);
        temp = entry->entry_len + sizeof(struct rtk_bt_vendor_config_entry);
        i += temp;
        entry = (struct rtk_bt_vendor_config_entry*)((uint8_t*)entry + temp);
    }
    config->data_len = i;
    *new_config_buf_ptr = config_buf;
    *new_config_len_ptr = config->data_len+sizeof(struct rtk_bt_vendor_config);

    return;
}

static int load_firmware(firmware_info *fw_info, uint8_t **buff)
{
    const struct firmware *fw, *cfg;
    struct usb_device *udev;
    patch_info *patch_entry;
    char *config_name, *fw_name;
    int fw_len = 0;
    int ret_val;

    int config_len = 0, buf_len = -1;
    uint8_t *buf = *buff, *config_file_buf = NULL;
    uint8_t *epatch_buf = NULL;

    struct rtk_epatch *epatch_info = NULL;
    uint8_t need_download_fw = 1;
    struct rtk_extension_entry patch_lmp = {0};
    struct rtk_epatch_entry *p_epatch_entry = NULL;
    uint16_t lmp_version;
    //uint8_t use_mp_fw = 0;
    RTKBT_DBG("%s: start", __func__);

    udev = fw_info->udev;
    patch_entry = fw_info->patch_entry;
    lmp_version = patch_entry->lmp_sub_default;
    config_name = patch_entry->config_name;
/* 1 Mptool Fw; 0 Normal Fw */
    if(DRV_MP_MODE == mp_drv_mode){
        fw_name = patch_entry->mp_patch_name;
    }else{
        fw_name = patch_entry->patch_name;
    }

    RTKBT_INFO("%s: Default lmp version = 0x%04x, config file name[%s], "
            "fw file name[%s]", __func__, lmp_version,config_name, fw_name);

    ret_val = request_firmware(&cfg, config_name, &udev->dev);
    if (ret_val < 0)
        config_len = 0;
    else {
        int i;
        rtk_update_altsettings(patch_entry, cfg->data, cfg->size, &config_file_buf, &config_len);

        RTKBT_INFO("Final Config len=%08x:\n", config_len);
        for(i=0;i<=config_len;i+=0x10)
        {
            RTKBT_INFO("%08x: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", i, \
                config_file_buf[i], config_file_buf[i+1], config_file_buf[i+2], config_file_buf[i+3], config_file_buf[i+4], config_file_buf[i+5], config_file_buf[i+6], config_file_buf[i+7], \
                config_file_buf[i+8], config_file_buf[i+9], config_file_buf[i+10], config_file_buf[i+11], config_file_buf[i+12], config_file_buf[i+13], config_file_buf[i+14], config_file_buf[i+15]);
        }

        release_firmware(cfg);
    }

    ret_val = request_firmware(&fw, fw_name, &udev->dev);
    if (ret_val < 0)
        goto fw_fail;
    else {
        epatch_buf = vmalloc(fw->size);
        RTKBT_INFO("%s: epatch_buf = vmalloc(fw->size, GFP_KERNEL)", __func__);
        if (!epatch_buf) {
            release_firmware(fw);
            goto fw_fail;
        }
        memcpy(epatch_buf, fw->data, fw->size);
        fw_len = fw->size;
        buf_len = fw_len + config_len;
        release_firmware(fw);
    }

    if (lmp_version == ROM_LMP_8723a) {
        RTKBT_DBG("%s: 8723a -> use old style patch", __func__);
        if (!memcmp(epatch_buf, RTK_EPATCH_SIGNATURE, 8)) {
            RTKBT_ERR("%s: 8723a check signature error", __func__);
            need_download_fw = 0;
        } else {
            if (!(buf = kzalloc(buf_len, GFP_KERNEL))) {
                RTKBT_ERR("%s: Failed to allocate mem for fw&config", __func__);
                buf_len = -1;
            } else {
                RTKBT_DBG("%s: 8723a -> fw copy directly", __func__);
                memcpy(buf, epatch_buf, buf_len);
                patch_entry->lmp_sub = *(uint16_t *)(buf + buf_len - config_len - 4);
                RTKBT_DBG("%s: Config lmp version = 0x%04x", __func__,
                        patch_entry->lmp_sub);
                vfree(epatch_buf);
                RTKBT_INFO("%s:ROM_LMP_8723a vfree(epatch_buf)", __func__);
                epatch_buf = NULL;
                if (config_len)
                    memcpy(buf + buf_len - config_len, config_file_buf, config_len);
            }
        }
    } else {
        RTKBT_DBG("%s: Not 8723a -> use new style patch", __func__);

        RTKBT_DBG("%s: reset_channel before get_eversion from bt controller", __func__);
        ret_val = reset_channel(fw_info);
        if (ret_val < 0) {
            RTKBT_ERR("%s: Failed to reset_channel, errno %d", __func__, ret_val);
            goto fw_fail;
        }
//        read_localversion(fw_info);
        RTKBT_DBG("%s: get_eversion from bt controller", __func__);

        ret_val = get_eversion(fw_info);
        if (ret_val < 0) {
            RTKBT_ERR("%s: Failed to get eversion, errno %d", __func__, ret_val);
            goto fw_fail;
        }
        RTKBT_DBG("%s: Get eversion =%d", __func__, patch_entry->eversion);
        if (memcmp(epatch_buf + buf_len - config_len - 4 , EXTENSION_SECTION_SIGNATURE, 4)) {
            RTKBT_ERR("%s: Failed to check extension section signature", __func__);
            need_download_fw = 0;
        } else {
            uint8_t *temp;
            temp = epatch_buf+buf_len-config_len - 5;
            do {
                if (*temp == 0x00) {
                    patch_lmp.opcode = *temp;
                    patch_lmp.length = *(temp-1);
                    if ((patch_lmp.data = kzalloc(patch_lmp.length, GFP_KERNEL))) {
                        int k;
                        for (k = 0; k < patch_lmp.length; k++) {
                            *(patch_lmp.data+k) = *(temp-2-k);
                            RTKBT_DBG("data = 0x%x", *(patch_lmp.data+k));
                        }
                    }
                    RTKBT_DBG("%s: opcode = 0x%x, length = 0x%x, data = 0x%x", __func__,
                            patch_lmp.opcode, patch_lmp.length, *(patch_lmp.data));
                    break;
                }
                temp -= *(temp-1) + 2;
            } while (*temp != 0xFF);

            if (patch_lmp.data && lmp_version != project_id[*(patch_lmp.data)]) {
                RTKBT_ERR("%s: Default lmp_version 0x%04x, project_id[%d] 0x%04x "
                        "-> not match", __func__, lmp_version, *(patch_lmp.data),project_id[*(patch_lmp.data)]);
                if (patch_lmp.data)
                    kfree(patch_lmp.data);
                need_download_fw = 0;
            } else {
                if (patch_lmp.data) {
                    RTKBT_INFO("%s: Default lmp_version 0x%04x, project_id[%d] 0x%04x "
                            "-> match", __func__, lmp_version, *(patch_lmp.data), project_id[*(patch_lmp.data)]);
                }
                if (patch_lmp.data)
                    kfree(patch_lmp.data);
                if (memcmp(epatch_buf, RTK_EPATCH_SIGNATURE, 8)) {
                    RTKBT_ERR("%s: Check signature error", __func__);
                    need_download_fw = 0;
                } else {
                    epatch_info = (struct rtk_epatch*)epatch_buf;
                    patch_entry->lmp_sub = (uint16_t)epatch_info->fw_version;

                    RTKBT_DBG("%s: lmp version 0x%04x, fw_version 0x%x, "
                            "number_of_total_patch %d", __func__,
                            patch_entry->lmp_sub, epatch_info->fw_version,
                            epatch_info->number_of_total_patch);

                    /* Get right epatch entry */
                    p_epatch_entry = get_fw_patch_entry(epatch_info, patch_entry->eversion);
                    if (p_epatch_entry == NULL) {
                        RTKBT_WARN("%s: Failed to get fw patch entry", __func__);
                        ret_val = -1;
                        goto fw_fail ;
                    }

                    buf_len = p_epatch_entry->patch_length + config_len;
                    RTKBT_DBG("buf_len = 0x%x", buf_len);

                    if (!(buf = kzalloc(buf_len, GFP_KERNEL))) {
                        RTKBT_ERR("%s: Can't alloc memory for  fw&config", __func__);
                        buf_len = -1;
                        kfree(p_epatch_entry);
                    } else {
                        memcpy(buf, &epatch_buf[p_epatch_entry->start_offset], p_epatch_entry->patch_length);
                        memcpy(&buf[p_epatch_entry->patch_length-4], &epatch_info->fw_version, 4);
                        kfree(p_epatch_entry);
                    }
                    vfree(epatch_buf);
                    RTKBT_INFO("%s: vfree(epatch_buf)", __func__);
                    epatch_buf = NULL;

                    if (buf && config_len)
                        memcpy(&buf[buf_len - config_len], config_file_buf, config_len);
                }
            }
        }
    }

    RTKBT_INFO("%s: fw%s exists, config file%s exists", __func__,
            (buf_len > 0) ? "" : " not", (config_len > 0) ? "":" not");

    if (buf && buf_len > 0 && need_download_fw)
        *buff = buf;

    RTKBT_DBG("%s: done", __func__);

    return buf_len;

fw_fail:
    return ret_val;
}

static void load_firmware_info(firmware_info *fw_info)
{
    const struct firmware *fw/*, *cfg*/;
    struct usb_device *udev;
    patch_info *patch_entry;
    char *fw_name;
    int ret_val;

    int buf_len = -1;
    uint8_t *epatch_buf = NULL;

    struct rtk_epatch *epatch_info = NULL;
    struct rtk_extension_entry patch_lmp = {0};
    uint16_t lmp_version;
    RTKBT_DBG("%s: start", __func__);

    udev = fw_info->udev;
    patch_entry = fw_info->patch_entry;
    lmp_version = patch_entry->lmp_sub_default;

    if(DRV_MP_MODE == mp_drv_mode){
        fw_name = patch_entry->mp_patch_name;
    } else {
        fw_name = patch_entry->patch_name;
    }

    RTKBT_INFO("%s: Default lmp version = 0x%04x, fw file name[%s]", __func__, lmp_version, fw_name);

    ret_val = request_firmware(&fw, fw_name, &udev->dev);
    if (ret_val < 0)
        goto fw_fail;
    else {
        epatch_buf = vmalloc(fw->size);
        RTKBT_INFO("%s: epatch_buf = vmalloc(fw->size, GFP_KERNEL)", __func__);
        if (!epatch_buf) {
            release_firmware(fw);
            goto fw_fail;
        }
        memcpy(epatch_buf, fw->data, fw->size);
        buf_len = fw->size;
        release_firmware(fw);
    }

    ret_val = reset_and_clean_hw_buffer(fw_info);

    if (lmp_version != ROM_LMP_8723a) {
        RTKBT_DBG("%s: Not 8723a -> use new style patch", __func__);
        ret_val = get_eversion(fw_info);
        if (ret_val < 0) {
            RTKBT_ERR("%s: Failed to get eversion, errno %d", __func__, ret_val);
            goto fw_fail;
        }
        RTKBT_DBG("%s: Get eversion =%d", __func__, patch_entry->eversion);
        if (memcmp(epatch_buf + buf_len - 4 , EXTENSION_SECTION_SIGNATURE, 4)) {
            RTKBT_ERR("%s: Failed to check extension section signature", __func__);
        } else {
            uint8_t *temp;
            temp = epatch_buf + buf_len - 5;
            do {
                if (*temp == 0x00) {
                    patch_lmp.opcode = *temp;
                    patch_lmp.length = *(temp-1);
                    if ((patch_lmp.data = vmalloc(patch_lmp.length))) {
                        int k;
                        for (k = 0; k < patch_lmp.length; k++) {
                            *(patch_lmp.data+k) = *(temp-2-k);
                            RTKBT_DBG("data = 0x%x", *(patch_lmp.data+k));
                        }
                    }
                    else
                      goto fw_fail;
                    RTKBT_DBG("%s: opcode = 0x%x, length = 0x%x, data = 0x%x", __func__,
                            patch_lmp.opcode, patch_lmp.length, *(patch_lmp.data));
                    break;
                }
                temp -= *(temp-1) + 2;
            } while (*temp != 0xFF);

            if (patch_lmp.data && lmp_version != project_id[*(patch_lmp.data)]) {
                RTKBT_ERR("%s: Default lmp_version 0x%04x, project_id[%d] 0x%04x "
                        "-> not match", __func__, lmp_version, *(patch_lmp.data),project_id[*(patch_lmp.data)]);
            } else {
                if (patch_lmp.data) {
                RTKBT_INFO("%s: Default lmp_version 0x%04x, project_id[%d] 0x%04x "
                        "-> match", __func__, lmp_version, *(patch_lmp.data), project_id[*(patch_lmp.data)]);
                }
                if (memcmp(epatch_buf, RTK_EPATCH_SIGNATURE, 8)) {
                    RTKBT_ERR("%s: Check signature error", __func__);
                } else {
                    epatch_info = (struct rtk_epatch*)epatch_buf;
                    patch_entry->lmp_sub = (uint16_t)epatch_info->fw_version;

                    RTKBT_DBG("%s: lmp version 0x%04x, fw_version 0x%x, "
                            "number_of_total_patch %d", __func__,
                            patch_entry->lmp_sub, epatch_info->fw_version,
                            epatch_info->number_of_total_patch);
                }
            }
        }
    }

    RTKBT_DBG("%s: done", __func__);
fw_fail:
    if(epatch_buf)
        vfree(epatch_buf);
    if (patch_lmp.data)
        vfree(patch_lmp.data);
}

#if SUSPNED_DW_FW
static int load_suspend_firmware(firmware_info *fw_info, uint8_t **buff)
{
    const struct firmware *fw, *cfg;
    struct usb_device *udev;
    patch_info *patch_entry;
    char config_name[100] = {0};
    char fw_name[100] = {0};
    int fw_len = 0;
    int ret_val;

    int config_len = 0, buf_len = -1;
    uint8_t *buf = *buff, *config_file_buf = NULL;
    uint8_t *epatch_buf = NULL;

    struct rtk_epatch *epatch_info = NULL;
    uint8_t need_download_fw = 1;
    struct rtk_extension_entry patch_lmp = {0};
    struct rtk_epatch_entry *p_epatch_entry = NULL;
    uint16_t lmp_version;
    RTKBT_DBG("%s: start", __func__);

    udev = fw_info->udev;
    patch_entry = fw_info->patch_entry;
    lmp_version = patch_entry->lmp_sub_default;
    sprintf(config_name, "%s_suspend", patch_entry->config_name);
    sprintf(fw_name, "%s_suspend", patch_entry->patch_name);

    RTKBT_INFO("%s: Default lmp version = 0x%04x, config file name[%s], "
            "fw file name[%s]", __func__, lmp_version,config_name, fw_name);

    ret_val = request_firmware(&cfg, config_name, &udev->dev);
    if (ret_val < 0)
        config_len = 0;
    else {
        int i;
        rtk_update_altsettings(patch_entry, cfg->data, cfg->size, &config_file_buf, &config_len);

        RTKBT_INFO("Final Config len=%08x:\n", config_len);
        for(i=0;i<=config_len;i+=0x10)
        {
            RTKBT_INFO("%08x: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", i, \
                config_file_buf[i], config_file_buf[i+1], config_file_buf[i+2], config_file_buf[i+3], config_file_buf[i+4], config_file_buf[i+5], config_file_buf[i+6], config_file_buf[i+7], \
                config_file_buf[i+8], config_file_buf[i+9], config_file_buf[i+10], config_file_buf[i+11], config_file_buf[i+12], config_file_buf[i+13], config_file_buf[i+14], config_file_buf[i+15]);
        }

        release_firmware(cfg);
    }

    ret_val = request_firmware(&fw, fw_name, &udev->dev);
    if (ret_val < 0)
        goto fw_fail;
    else {
        epatch_buf = vmalloc(fw->size);
        RTKBT_INFO("%s: epatch_buf = vmalloc(fw->size, GFP_KERNEL)", __func__);
        if (!epatch_buf) {
            release_firmware(fw);
            goto fw_fail;
        }
        memcpy(epatch_buf, fw->data, fw->size);
        fw_len = fw->size;
        buf_len = fw_len + config_len;
        release_firmware(fw);
    }

    RTKBT_DBG("%s: Not 8723a -> use new style patch", __func__);

    RTKBT_DBG("%s: get_eversion from bt controller", __func__);

    ret_val = get_eversion(fw_info);
    if (ret_val < 0) {
        RTKBT_ERR("%s: Failed to get eversion, errno %d", __func__, ret_val);
        goto fw_fail;
    }
    RTKBT_DBG("%s: Get eversion =%d", __func__, patch_entry->eversion);
    if (memcmp(epatch_buf + buf_len - config_len - 4 , EXTENSION_SECTION_SIGNATURE, 4)) {
        RTKBT_ERR("%s: Failed to check extension section signature", __func__);
        need_download_fw = 0;
    } else {
        uint8_t *temp;
        temp = epatch_buf+buf_len-config_len - 5;
        do {
            if (*temp == 0x00) {
                patch_lmp.opcode = *temp;
                patch_lmp.length = *(temp-1);
                if ((patch_lmp.data = kzalloc(patch_lmp.length, GFP_KERNEL))) {
                    int k;
                    for (k = 0; k < patch_lmp.length; k++) {
                        *(patch_lmp.data+k) = *(temp-2-k);
                        RTKBT_DBG("data = 0x%x", *(patch_lmp.data+k));
                    }
                }
                RTKBT_DBG("%s: opcode = 0x%x, length = 0x%x, data = 0x%x", __func__,
                    patch_lmp.opcode, patch_lmp.length, *(patch_lmp.data));
                break;
            }
            temp -= *(temp-1) + 2;
        } while (*temp != 0xFF);

        if (lmp_version != project_id[*(patch_lmp.data)]) {
            RTKBT_ERR("%s: Default lmp_version 0x%04x, project_id[%d] 0x%04x "
                "-> not match", __func__, lmp_version, *(patch_lmp.data),project_id[*(patch_lmp.data)]);
            if (patch_lmp.data)
                kfree(patch_lmp.data);
            need_download_fw = 0;
        } else {
            RTKBT_INFO("%s: Default lmp_version 0x%04x, project_id[%d] 0x%04x "
                "-> match", __func__, lmp_version, *(patch_lmp.data), project_id[*(patch_lmp.data)]);
            if (patch_lmp.data)
                kfree(patch_lmp.data);
            if (memcmp(epatch_buf, RTK_EPATCH_SIGNATURE, 8)) {
                RTKBT_ERR("%s: Check signature error", __func__);
                need_download_fw = 0;
            } else {
                epatch_info = (struct rtk_epatch*)epatch_buf;
                patch_entry->lmp_sub = (uint16_t)epatch_info->fw_version;

                RTKBT_DBG("%s: lmp version 0x%04x, fw_version 0x%x, "
                    "number_of_total_patch %d", __func__,
                    patch_entry->lmp_sub, epatch_info->fw_version,
                    epatch_info->number_of_total_patch);

             /* Get right epatch entry */
                p_epatch_entry = get_fw_patch_entry(epatch_info, patch_entry->eversion);
                if (p_epatch_entry == NULL) {
                    RTKBT_WARN("%s: Failed to get fw patch entry", __func__);
                    ret_val = -1;
                    goto fw_fail ;
                }

                buf_len = p_epatch_entry->patch_length + config_len;
                RTKBT_DBG("buf_len = 0x%x", buf_len);

                if (!(buf = kzalloc(buf_len, GFP_KERNEL))) {
                    RTKBT_ERR("%s: Can't alloc memory for  fw&config", __func__);
                    buf_len = -1;
                    kfree(p_epatch_entry);
                } else {
                    memcpy(buf, &epatch_buf[p_epatch_entry->start_offset], p_epatch_entry->patch_length);
                    memcpy(&buf[p_epatch_entry->patch_length-4], &epatch_info->fw_version, 4);
                    kfree(p_epatch_entry);
                }
                vfree(epatch_buf);
                RTKBT_INFO("%s: vfree(epatch_buf)", __func__);
                epatch_buf = NULL;

                if (config_len)
                    memcpy(&buf[buf_len - config_len], config_file_buf, config_len);
            }
        }
    }

    RTKBT_INFO("%s: fw%s exists, config file%s exists", __func__,
            (buf_len > 0) ? "" : " not", (config_len > 0) ? "":" not");

    if (buf && buf_len > 0 && need_download_fw)
        *buff = buf;

    RTKBT_DBG("%s: done", __func__);

    return buf_len;

fw_fail:
    return ret_val;
}
#endif

static int get_firmware(firmware_info *fw_info, int cached)
{
    patch_info *patch_entry = fw_info->patch_entry;

    RTKBT_INFO("%s: start, cached %d,patch_entry->fw_len= %d", __func__, cached,patch_entry->fw_len);

    if (cached > 0) {
        if (patch_entry->fw_len > 0) {
            fw_info->fw_data = kzalloc(patch_entry->fw_len, GFP_KERNEL);
            if (!fw_info->fw_data)
                return -ENOMEM;
            memcpy(fw_info->fw_data, patch_entry->fw_cache, patch_entry->fw_len);
            fw_info->fw_len = patch_entry->fw_len;
        } else {
            fw_info->fw_len = load_firmware(fw_info, &fw_info->fw_data);
            if (fw_info->fw_len <= 0)
                return -1;
        }
    } else {
        fw_info->fw_len = load_firmware(fw_info, &fw_info->fw_data);
        if (fw_info->fw_len <= 0)
            return -1;
    }

    return 0;
}

#if SUSPNED_DW_FW
static int get_suspend_firmware(firmware_info *fw_info, int cached)
{
    patch_info *patch_entry = fw_info->patch_entry;

    RTKBT_INFO("%s: start, cached %d,patch_entry->fw_len= %d", __func__, cached,patch_entry->fw_len);

    if (cached > 0) {
        if (patch_entry->fw_len > 0) {
            fw_info->fw_data = kzalloc(patch_entry->fw_len, GFP_KERNEL);
            if (!fw_info->fw_data)
                return -ENOMEM;
            memcpy(fw_info->fw_data, patch_entry->fw_cache, patch_entry->fw_len);
            fw_info->fw_len = patch_entry->fw_len;
        } else {
            fw_info->fw_len = load_suspend_firmware(fw_info, &fw_info->fw_data);
            if (fw_info->fw_len <= 0)
                return -1;
        }
    } else {
        fw_info->fw_len = load_suspend_firmware(fw_info, &fw_info->fw_data);
        if (fw_info->fw_len <= 0)
            return -1;
    }

    return 0;
}
#endif

/*
 * Open the log message only if in debugging,
 * or it will decelerate download procedure.
 */
static int download_data(firmware_info *fw_info)
{
    download_cp *cmd_para;
    download_rp *evt_para;
    uint8_t *pcur;
    int pkt_len, frag_num, frag_len;
    int i, ret_val;
    int ncmd = 1, step = 1;

    RTKBT_DBG("%s: start", __func__);

    cmd_para = (download_cp *)fw_info->req_para;
    evt_para = (download_rp *)fw_info->rsp_para;
    pcur = fw_info->fw_data;
    pkt_len = CMD_HDR_LEN + sizeof(download_cp);
    frag_num = fw_info->fw_len / PATCH_SEG_MAX + 1;
    frag_len = PATCH_SEG_MAX;

    for (i = 0; i < frag_num; i++) {
        cmd_para->index = i?((i-1)%0x7f+1):0;
        if (i == (frag_num - 1)) {
            cmd_para->index |= DATA_END;
            frag_len = fw_info->fw_len % PATCH_SEG_MAX;
            pkt_len -= (PATCH_SEG_MAX - frag_len);
        }
        fw_info->cmd_hdr->opcode = cpu_to_le16(DOWNLOAD_OPCODE);
        fw_info->cmd_hdr->plen = sizeof(uint8_t) + frag_len;
        fw_info->pkt_len = pkt_len;
        memcpy(cmd_para->data, pcur, frag_len);

        if (step > 0) {
            ret_val = send_hci_cmd(fw_info);
            if (ret_val < 0) {
                RTKBT_DBG("%s: Failed to send frag num %d", __func__, cmd_para->index);
                return ret_val;
            } else
                RTKBT_DBG("%s: Send frag num %d", __func__, cmd_para->index);

            if (--step > 0 && i < frag_num - 1) {
                RTKBT_DBG("%s: Continue to send frag num %d", __func__, cmd_para->index + 1);
                pcur += PATCH_SEG_MAX;
                continue;
            }
        }

        while (ncmd > 0) {
            ret_val = rcv_hci_evt(fw_info);
            if (ret_val < 0) {
                RTKBT_ERR("%s: rcv_hci_evt err %d", __func__, ret_val);
                return ret_val;
            } else {
                RTKBT_DBG("%s: Receive acked frag num %d", __func__, evt_para->index);
                ncmd--;
            }

            if (0 != evt_para->status) {
                RTKBT_ERR("%s: Receive acked frag num %d, err status %d",
                        __func__, ret_val, evt_para->status);
                return -1;
            }

            if ((evt_para->index & DATA_END) || (evt_para->index == frag_num - 1)) {
                RTKBT_DBG("%s: Receive last acked index %d", __func__, evt_para->index);
                goto end;
            }
        }

        ncmd = step = fw_info->cmd_cmp->ncmd;
        pcur += PATCH_SEG_MAX;
        RTKBT_DBG("%s: HCI command packet num %d", __func__, ncmd);
    }

    /*
     * It is tricky that Host cannot receive DATA_END index from BT
     * controller, at least for 8723au. We are doomed if failed.
     */
#if 0
    /* Continue to receive the responsed events until last index occurs */
    if (i == frag_num) {
        RTKBT_DBG("%s: total frag count %d", __func__, frag_num);
        while (!(evt_para->index & DATA_END)) {
            ret_val = rcv_hci_evt(fw_info);
            if (ret_val < 0) {
                RTKBT_ERR("%s: rcv_hci_evt err %d", __func__, ret_val);
                return ret_val;
            }
            if (0 != evt_para->status)
                return -1;
            RTKBT_DBG("%s: continue to receive acked frag num %d", __func__, evt_para->index);
        }
    }
#endif
end:
    RTKBT_INFO("%s: done, sent %d frag pkts, received %d frag events",
            __func__, cmd_para->index, evt_para->index);
    return fw_info->fw_len;
}

int download_patch(firmware_info *fw_info, int cached)
{
    int ret_val = 0;

    RTKBT_DBG("%s: Download fw patch start, cached %d", __func__, cached);

    if (!fw_info || !fw_info->patch_entry) {
        RTKBT_ERR("%s: No patch entry exists(fw_info %p)", __func__, fw_info);
        ret_val = -1;
        goto end;
    }

    /*
     * step1: get local firmware if existed
     * step2: check firmware version
     * step3: download firmware if updated
     */
    ret_val = get_firmware(fw_info, cached);
    if (ret_val < 0) {
        RTKBT_ERR("%s: Failed to get firmware", __func__);
        goto end;
    }

#if SUSPNED_DW_FW
    if(fw_info_4_suspend) {
        RTKBT_DBG("%s: get suspend fw first cached %d", __func__, cached);
        ret_val = get_suspend_firmware(fw_info_4_suspend, cached);
        if (ret_val < 0) {
            RTKBT_ERR("%s: Failed to get suspend firmware", __func__);
            goto end;
        }
    }
#endif

    /*check the length of fw to be download*/
    RTKBT_DBG("%s: Check fw_info->fw_len:%d max_patch_size %d", __func__, fw_info->fw_len, fw_info->patch_entry->max_patch_size);
    if (fw_info->fw_len > fw_info->patch_entry->max_patch_size) {
        RTKBT_ERR("%s: Total length of fw&config(%08x) larger than max_patch_size 0x%08x", __func__, fw_info->fw_len, fw_info->patch_entry->max_patch_size);
        ret_val = -1;
        goto free;
    }

    ret_val = check_fw_version(fw_info, false);

    if (2 == ret_val) {
        RTKBT_ERR("%s: Cold reset bt chip only download", __func__);
        ret_val = download_data(fw_info);
        if (ret_val > 0)
            RTKBT_ERR("%s: Download fw patch done, fw len %d", __func__, ret_val);
    } else if(1 == ret_val){
        //   reset bt chip to update Fw patch
        ret_val = reset_controller(fw_info);
        RTKBT_ERR("%s: reset bt chip to update Fw patch, fw len %d", __func__, ret_val);
        ret_val = download_data(fw_info);
        if (ret_val > 0)
                RTKBT_ERR("%s: Download fw patch done, fw len %d", __func__, ret_val);
    }


free:
    /* Free fw data after download finished */
    kfree(fw_info->fw_data);
    fw_info->fw_data = NULL;

end:
    return ret_val;
}

#if SUSPNED_DW_FW
static int download_suspend_patch(firmware_info *fw_info, int cached)
{
    int ret_val = 0;

    RTKBT_DBG("%s: Download fw patch start, cached %d", __func__, cached);

    if (!fw_info || !fw_info->patch_entry) {
        RTKBT_ERR("%s: No patch entry exists(fw_info %p)", __func__, fw_info);
        ret_val = -1;
        goto end;
    }

    /*check the length of fw to be download*/
    RTKBT_DBG("%s:Check RTK_PATCH_LENGTH fw_info->fw_len:%d", __func__,fw_info->fw_len);
    if (fw_info->fw_len > fw_info->patch_entry->max_patch_size || fw_info->fw_len == 0) {
        RTKBT_ERR("%s: Total length of fw&config(%08x) larger than max_patch_size 0x%08x", __func__, fw_info->fw_len, fw_info->patch_entry->max_patch_size);
        ret_val = -1;
        goto free;
    }

    ret_val = check_fw_version(fw_info, false);

    if (2 == ret_val) {
        RTKBT_ERR("%s: Cold reset bt chip only download", __func__);
        ret_val = download_data(fw_info);
        if (ret_val > 0)
            RTKBT_ERR("%s: Download fw patch done, fw len %d", __func__, ret_val);
    } else if(1 == ret_val){
        //   reset bt chip to update Fw patch
        ret_val = reset_controller(fw_info);
        RTKBT_ERR("%s: reset bt chip to update Fw patch, fw len %d", __func__, ret_val);
        ret_val = download_data(fw_info);
        if (ret_val > 0)
                RTKBT_ERR("%s: Download fw patch done, fw len %d", __func__, ret_val);
    }


free:
    /* Free fw data after download finished */
    kfree(fw_info->fw_data);
    fw_info->fw_data = NULL;

end:
    return ret_val;
}

static void suspend_firmware_info_init(firmware_info *fw_info)
{
    RTKBT_DBG("%s: start", __func__);
    if(!fw_info)
        return;

    fw_info_4_suspend= kzalloc(sizeof(*fw_info), GFP_KERNEL);
    if (!fw_info_4_suspend)
        goto error;

    fw_info_4_suspend->send_pkt = kzalloc(PKT_LEN, GFP_KERNEL);
    if (!fw_info_4_suspend->send_pkt) {
        kfree(fw_info_4_suspend);
        goto error;
    }

    fw_info_4_suspend->rcv_pkt = kzalloc(PKT_LEN, GFP_KERNEL);
    if (!fw_info_4_suspend->rcv_pkt) {
        kfree(fw_info_4_suspend->send_pkt);
        kfree(fw_info_4_suspend);
        goto error;
    }

    fw_info_4_suspend->patch_entry = get_suspend_fw_table_entry(fw_info->udev);
    if (!fw_info_4_suspend->patch_entry) {
        kfree(fw_info_4_suspend->rcv_pkt);
        kfree(fw_info_4_suspend->send_pkt);
        kfree(fw_info_4_suspend);
        goto error;
    }

    fw_info_4_suspend->intf = fw_info->intf;
    fw_info_4_suspend->udev = fw_info->udev;
    fw_info_4_suspend->cmd_hdr = (struct hci_command_hdr *)(fw_info_4_suspend->send_pkt);
    fw_info_4_suspend->evt_hdr = (struct hci_event_hdr *)(fw_info_4_suspend->rcv_pkt);
    fw_info_4_suspend->cmd_cmp = (struct hci_ev_cmd_complete *)(fw_info_4_suspend->rcv_pkt + EVT_HDR_LEN);
    fw_info_4_suspend->req_para = fw_info_4_suspend->send_pkt + CMD_HDR_LEN;
    fw_info_4_suspend->rsp_para = fw_info_4_suspend->rcv_pkt + EVT_HDR_LEN + CMD_CMP_LEN;
    fw_info_4_suspend->pipe_in = fw_info->pipe_in;
    fw_info_4_suspend->pipe_out = fw_info->pipe_out;

    return;
error:
    RTKBT_DBG("%s: fail !", __func__);
    fw_info_4_suspend = NULL;
    return;
}
#endif

#if SET_WAKEUP_DEVICE
static void set_wakeup_device_from_conf(firmware_info *fw_info)
{
    uint8_t paired_wakeup_bdaddr[7];
    uint8_t num = 0;
    int i;
    struct file *fp;
    mm_segment_t fs;
    loff_t pos;

    memset(paired_wakeup_bdaddr, 0, 7);
    fp = filp_open(SET_WAKEUP_DEVICE_CONF, O_RDWR, 0);
    if (!IS_ERR(fp)) {
        fs = get_fs();
        set_fs(KERNEL_DS);
        pos = 0;
        //read number
        vfs_read(fp, &num, 1, &pos);
        RTKBT_DBG("read number = %d", num);
        if(num) {
            for(i = 0; i < num; i++) {
            vfs_read(fp, paired_wakeup_bdaddr, 7, &pos);
            RTKBT_DBG("paired_wakeup_bdaddr: 0x%02x:0x%02x:0x%02x:0x%02x:0x%02x:0x%02x",
                paired_wakeup_bdaddr[1],paired_wakeup_bdaddr[2],paired_wakeup_bdaddr[3],
                paired_wakeup_bdaddr[4],paired_wakeup_bdaddr[5],paired_wakeup_bdaddr[6]);
            set_wakeup_device(fw_info, paired_wakeup_bdaddr);
            }
        }
        filp_close(fp, NULL);
        set_fs(fs);
    }
    else {
        RTKBT_ERR("open wakeup config file fail! errno = %ld", PTR_ERR(fp));
    }
}
#endif

static firmware_info *firmware_info_init(struct usb_interface *intf)
{
    struct usb_device *udev = interface_to_usbdev(intf);
    firmware_info *fw_info;

    RTKBT_DBG("%s: start", __func__);

    fw_info = kzalloc(sizeof(*fw_info), GFP_KERNEL);
    if (!fw_info)
        return NULL;

    fw_info->send_pkt = kzalloc(PKT_LEN, GFP_KERNEL);
    if (!fw_info->send_pkt) {
        kfree(fw_info);
        return NULL;
    }

    fw_info->rcv_pkt = kzalloc(PKT_LEN, GFP_KERNEL);
    if (!fw_info->rcv_pkt) {
        kfree(fw_info->send_pkt);
        kfree(fw_info);
        return NULL;
    }

    fw_info->patch_entry = get_fw_table_entry(udev);
    if (!fw_info->patch_entry) {
        kfree(fw_info->rcv_pkt);
        kfree(fw_info->send_pkt);
        kfree(fw_info);
        return NULL;
    }

    fw_info->intf = intf;
    fw_info->udev = udev;
    fw_info->pipe_in = usb_rcvintpipe(fw_info->udev, INTR_EP);
    fw_info->pipe_out = usb_sndctrlpipe(fw_info->udev, CTRL_EP);
    fw_info->cmd_hdr = (struct hci_command_hdr *)(fw_info->send_pkt);
    fw_info->evt_hdr = (struct hci_event_hdr *)(fw_info->rcv_pkt);
    fw_info->cmd_cmp = (struct hci_ev_cmd_complete *)(fw_info->rcv_pkt + EVT_HDR_LEN);
    fw_info->req_para = fw_info->send_pkt + CMD_HDR_LEN;
    fw_info->rsp_para = fw_info->rcv_pkt + EVT_HDR_LEN + CMD_CMP_LEN;

#if SUSPNED_DW_FW
    suspend_firmware_info_init(fw_info);
#endif

#if BTUSB_RPM
    RTKBT_INFO("%s: Auto suspend is enabled", __func__);
    usb_enable_autosuspend(udev);
    pm_runtime_set_autosuspend_delay(&(udev->dev), 2000);
#else
    RTKBT_INFO("%s: Auto suspend is disabled", __func__);
    usb_disable_autosuspend(udev);
#endif

#if BTUSB_WAKEUP_HOST
    device_wakeup_enable(&udev->dev);
#endif

    return fw_info;
}

static void firmware_info_destroy(struct usb_interface *intf)
{
    firmware_info *fw_info;
    struct usb_device *udev;
    struct btusb_data *data;

    udev = interface_to_usbdev(intf);
    data = usb_get_intfdata(intf);

    fw_info = data->fw_info;
    if (!fw_info)
        return;

#if BTUSB_RPM
    usb_disable_autosuspend(udev);
#endif

    /*
     * In order to reclaim fw data mem, we free fw_data immediately
     * after download patch finished instead of here.
     */
    kfree(fw_info->rcv_pkt);
    kfree(fw_info->send_pkt);
    kfree(fw_info);

#if SUSPNED_DW_FW
    if (!fw_info_4_suspend)
        return;

    kfree(fw_info_4_suspend->rcv_pkt);
    kfree(fw_info_4_suspend->send_pkt);
    kfree(fw_info_4_suspend->patch_entry);
    kfree(fw_info_4_suspend);
    fw_info_4_suspend = NULL;
#endif
}

static struct usb_driver btusb_driver;

static struct usb_device_id btusb_table[] = {
    { .match_flags = USB_DEVICE_ID_MATCH_VENDOR |
                     USB_DEVICE_ID_MATCH_INT_INFO,
      .idVendor = 0x0bda,
      .bInterfaceClass = 0xe0,
      .bInterfaceSubClass = 0x01,
      .bInterfaceProtocol = 0x01 },

    { .match_flags = USB_DEVICE_ID_MATCH_VENDOR |
                     USB_DEVICE_ID_MATCH_INT_INFO,
      .idVendor = 0x13d3,
      .bInterfaceClass = 0xe0,
      .bInterfaceSubClass = 0x01,
      .bInterfaceProtocol = 0x01 },

    { }
};

MODULE_DEVICE_TABLE(usb, btusb_table);

static int inc_tx(struct btusb_data *data)
{
    unsigned long flags;
    int rv;

    spin_lock_irqsave(&data->txlock, flags);
    rv = test_bit(BTUSB_SUSPENDING, &data->flags);
    if (!rv)
        data->tx_in_flight++;
    spin_unlock_irqrestore(&data->txlock, flags);

    return rv;
}

#ifdef CONFIG_SCO_OVER_HCI
static void check_sco_event(struct urb *urb)
{
    u8* opcode = (u8*)(urb->transfer_buffer);
    u8 status;
    uint16_t handle;
    struct hci_dev *hdev = urb->context;
    struct btusb_data *data = GET_DRV_DATA(hdev);

    switch (*opcode) {
    case HCI_EV_SYNC_CONN_COMPLETE:
        RTKBT_INFO("%s: HCI_EV_SYNC_CONN_COMPLETE(0x%02x)", __func__, *opcode);
        status = *(opcode + 2);
        data->sco_handle = *(opcode + 3) | *(opcode + 4) << 8;
        //hdev->voice_setting = *(uint16_t*)&opcode[15];
        if (status == 0) {
            hdev->conn_hash.sco_num++;
            hdev->notify(hdev, 0);
        }
        break;
    case HCI_EV_DISCONN_COMPLETE:
        status = *(opcode + 2);
        handle = *(opcode + 3) | *(opcode + 4) << 8;
        if (status == 0 && data->sco_handle == handle) {
            RTKBT_INFO("%s: SCO HCI_EV_DISCONN_COMPLETE(0x%02x)", __func__, *opcode);
            hdev->conn_hash.sco_num--;
            hdev->notify(hdev, 0);
            data->sco_handle = 0;
        }
        break;
    default:
        RTKBT_DBG("%s: event 0x%02x", __func__, *opcode);
        break;
    }
}
#endif
static void btusb_intr_complete(struct urb *urb)
{
    struct hci_dev *hdev = urb->context;
    struct btusb_data *data = GET_DRV_DATA(hdev);
    int err;

    RTKBT_DBG("%s: urb %p status %d count %d ", __func__,
            urb, urb->status, urb->actual_length);

#ifdef CONFIG_SCO_OVER_HCI
    check_sco_event(urb);
#endif

    if (!test_bit(HCI_RUNNING, &hdev->flags))
        return;


    if (urb->status == 0) {
        hdev->stat.byte_rx += urb->actual_length;

        if (hci_recv_fragment(hdev, HCI_EVENT_PKT,
                        urb->transfer_buffer,
                        urb->actual_length) < 0) {
            RTKBT_ERR("%s: Corrupted event packet", __func__);
            hdev->stat.err_rx++;
        }
    }
    /* Avoid suspend failed when usb_kill_urb */
    else if(urb->status == -ENOENT)    {
        return;
    }


    if (!test_bit(BTUSB_INTR_RUNNING, &data->flags))
        return;

    usb_mark_last_busy(data->udev);
    usb_anchor_urb(urb, &data->intr_anchor);

    err = usb_submit_urb(urb, GFP_ATOMIC);
    if (err < 0) {
        /* EPERM: urb is being killed;
         * ENODEV: device got disconnected */
        if (err != -EPERM && err != -ENODEV)
            RTKBT_ERR("%s: Failed to re-submit urb %p, err %d",
                    __func__, urb, err);
        usb_unanchor_urb(urb);
    }
}

static int btusb_submit_intr_urb(struct hci_dev *hdev, gfp_t mem_flags)
{
    struct btusb_data *data = GET_DRV_DATA(hdev);
    struct urb *urb;
    unsigned char *buf;
    unsigned int pipe;
    int err, size;

    if (!data->intr_ep)
        return -ENODEV;

    urb = usb_alloc_urb(0, mem_flags);
    if (!urb)
        return -ENOMEM;

    size = le16_to_cpu(data->intr_ep->wMaxPacketSize);

    buf = kmalloc(size, mem_flags);
    if (!buf) {
        usb_free_urb(urb);
        return -ENOMEM;
    }

    RTKBT_DBG("%s: mMaxPacketSize %d, bEndpointAddress 0x%02x",
            __func__, size, data->intr_ep->bEndpointAddress);

    pipe = usb_rcvintpipe(data->udev, data->intr_ep->bEndpointAddress);

    usb_fill_int_urb(urb, data->udev, pipe, buf, size,
                        btusb_intr_complete, hdev,
                        data->intr_ep->bInterval);

    urb->transfer_flags |= URB_FREE_BUFFER;

    usb_anchor_urb(urb, &data->intr_anchor);

    err = usb_submit_urb(urb, mem_flags);
    if (err < 0) {
        RTKBT_ERR("%s: Failed to submit urb %p, err %d",
                __func__, urb, err);
        usb_unanchor_urb(urb);
    }

    usb_free_urb(urb);

    return err;
}

static void btusb_bulk_complete(struct urb *urb)
{
    struct hci_dev *hdev = urb->context;
    struct btusb_data *data = GET_DRV_DATA(hdev);
    int err;

    RTKBT_DBG("%s: urb %p status %d count %d",
            __func__, urb, urb->status, urb->actual_length);

    if (!test_bit(HCI_RUNNING, &hdev->flags))
        return;

    if (urb->status == 0) {
        hdev->stat.byte_rx += urb->actual_length;

        if (hci_recv_fragment(hdev, HCI_ACLDATA_PKT,
                        urb->transfer_buffer,
                        urb->actual_length) < 0) {
            RTKBT_ERR("%s: Corrupted ACL packet", __func__);
            hdev->stat.err_rx++;
        }
    }
    /* Avoid suspend failed when usb_kill_urb */
    else if(urb->status == -ENOENT)    {
        return;
    }


    if (!test_bit(BTUSB_BULK_RUNNING, &data->flags))
        return;

    usb_anchor_urb(urb, &data->bulk_anchor);
    usb_mark_last_busy(data->udev);

    err = usb_submit_urb(urb, GFP_ATOMIC);
    if (err < 0) {
        /* -EPERM: urb is being killed;
         * -ENODEV: device got disconnected */
        if (err != -EPERM && err != -ENODEV)
            RTKBT_ERR("btusb_bulk_complete %s urb %p failed to resubmit (%d)",
                        hdev->name, urb, -err);
        usb_unanchor_urb(urb);
    }
}

static int btusb_submit_bulk_urb(struct hci_dev *hdev, gfp_t mem_flags)
{
    struct btusb_data *data = GET_DRV_DATA(hdev);
    struct urb *urb;
    unsigned char *buf;
    unsigned int pipe;
    int err, size = HCI_MAX_FRAME_SIZE;

    RTKBT_DBG("%s: hdev name %s", __func__, hdev->name);

    if (!data->bulk_rx_ep)
        return -ENODEV;

    urb = usb_alloc_urb(0, mem_flags);
    if (!urb)
        return -ENOMEM;

    buf = kmalloc(size, mem_flags);
    if (!buf) {
        usb_free_urb(urb);
        return -ENOMEM;
    }

    pipe = usb_rcvbulkpipe(data->udev, data->bulk_rx_ep->bEndpointAddress);

    usb_fill_bulk_urb(urb, data->udev, pipe,
                    buf, size, btusb_bulk_complete, hdev);

    urb->transfer_flags |= URB_FREE_BUFFER;

    usb_mark_last_busy(data->udev);
    usb_anchor_urb(urb, &data->bulk_anchor);

    err = usb_submit_urb(urb, mem_flags);
    if (err < 0) {
        RTKBT_ERR("%s: Failed to submit urb %p, err %d", __func__, urb, err);
        usb_unanchor_urb(urb);
    }

    usb_free_urb(urb);

    return err;
}

static void btusb_isoc_complete(struct urb *urb)
{
    struct hci_dev *hdev = urb->context;
    struct btusb_data *data = GET_DRV_DATA(hdev);
    int i, err;


    RTKBT_DBG("%s: urb %p status %d count %d",
            __func__, urb, urb->status, urb->actual_length);

    if (!test_bit(HCI_RUNNING, &hdev->flags) || !test_bit(BTUSB_ISOC_RUNNING, &data->flags))
        return;

    if (urb->status == 0) {
        for (i = 0; i < urb->number_of_packets; i++) {
            unsigned int offset = urb->iso_frame_desc[i].offset;
            unsigned int length = urb->iso_frame_desc[i].actual_length;

            if (urb->iso_frame_desc[i].status)
                continue;

            hdev->stat.byte_rx += length;

            if (hci_recv_fragment(hdev, HCI_SCODATA_PKT,
                        urb->transfer_buffer + offset,
                                length) < 0) {
                RTKBT_ERR("%s: Corrupted SCO packet", __func__);
                hdev->stat.err_rx++;
            }
        }
    }
    /* Avoid suspend failed when usb_kill_urb */
    else if(urb->status == -ENOENT)    {
        return;
    }

    usb_anchor_urb(urb, &data->isoc_anchor);
    i = 0;
retry:
    err = usb_submit_urb(urb, GFP_ATOMIC);
    if (err < 0) {
        /* -EPERM: urb is being killed;
         * -ENODEV: device got disconnected */
        if (err != -EPERM && err != -ENODEV)
            RTKBT_ERR("%s: Failed to re-sumbit urb %p, retry %d, err %d",
                    __func__, urb, i, err);
        if (i < 10) {
            i++;
            mdelay(1);
            goto retry;
        }

        usb_unanchor_urb(urb);
    }
}

static inline void fill_isoc_descriptor(struct urb *urb, int len, int mtu)
{
    int i, offset = 0;

    RTKBT_DBG("%s: len %d mtu %d", __func__, len, mtu);

    for (i = 0; i < BTUSB_MAX_ISOC_FRAMES && len >= mtu;
                    i++, offset += mtu, len -= mtu) {
        urb->iso_frame_desc[i].offset = offset;
        urb->iso_frame_desc[i].length = mtu;
    }

    if (len && i < BTUSB_MAX_ISOC_FRAMES) {
        urb->iso_frame_desc[i].offset = offset;
        urb->iso_frame_desc[i].length = len;
        i++;
    }

    urb->number_of_packets = i;
}

static int btusb_submit_isoc_urb(struct hci_dev *hdev, gfp_t mem_flags)
{
    struct btusb_data *data = GET_DRV_DATA(hdev);
    struct urb *urb;
    unsigned char *buf;
    unsigned int pipe;
    int err, size;

    if (!data->isoc_rx_ep)
        return -ENODEV;

    urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, mem_flags);
    if (!urb)
        return -ENOMEM;

    size = le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize) *
                        BTUSB_MAX_ISOC_FRAMES;

    buf = kmalloc(size, mem_flags);
    if (!buf) {
        usb_free_urb(urb);
        return -ENOMEM;
    }

    pipe = usb_rcvisocpipe(data->udev, data->isoc_rx_ep->bEndpointAddress);

    urb->dev      = data->udev;
    urb->pipe     = pipe;
    urb->context  = hdev;
    urb->complete = btusb_isoc_complete;
    urb->interval = data->isoc_rx_ep->bInterval;

    urb->transfer_flags  = URB_FREE_BUFFER | URB_ISO_ASAP;
    urb->transfer_buffer = buf;
    urb->transfer_buffer_length = size;

    fill_isoc_descriptor(urb, size,
            le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize));

    usb_anchor_urb(urb, &data->isoc_anchor);

    err = usb_submit_urb(urb, mem_flags);
    if (err < 0) {
        RTKBT_ERR("%s: Failed to submit urb %p, err %d", __func__, urb, err);
        usb_unanchor_urb(urb);
    }

    usb_free_urb(urb);

    return err;
}

static void btusb_tx_complete(struct urb *urb)
{
    struct sk_buff *skb = urb->context;
    struct hci_dev *hdev = (struct hci_dev *) skb->dev;
    struct btusb_data *data = GET_DRV_DATA(hdev);

    if (!test_bit(HCI_RUNNING, &hdev->flags))
        goto done;

    if (!urb->status)
        hdev->stat.byte_tx += urb->transfer_buffer_length;
    else
        hdev->stat.err_tx++;

done:
    spin_lock(&data->txlock);
    data->tx_in_flight--;
    spin_unlock(&data->txlock);

    kfree(urb->setup_packet);

    kfree_skb(skb);
}

static void btusb_isoc_tx_complete(struct urb *urb)
{
    struct sk_buff *skb = urb->context;
    struct hci_dev *hdev = (struct hci_dev *) skb->dev;

    RTKBT_DBG("%s: urb %p status %d count %d",
            __func__, urb, urb->status, urb->actual_length);

    if (skb && hdev) {
        if (!test_bit(HCI_RUNNING, &hdev->flags))
            goto done;

        if (!urb->status)
            hdev->stat.byte_tx += urb->transfer_buffer_length;
        else
            hdev->stat.err_tx++;
    } else
        RTKBT_ERR("%s: skb 0x%p hdev 0x%p", __func__, skb, hdev);

done:
    kfree(urb->setup_packet);

    kfree_skb(skb);
}

static int btusb_open(struct hci_dev *hdev)
{
    struct btusb_data *data = GET_DRV_DATA(hdev);
    int i, err = 0;

    RTKBT_INFO("%s: Start, PM usage count %d", __func__,
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 9, 0)
          atomic_read(&data->intf->dev.power.usage_count)
#else
          0
#endif
    );

    err = usb_autopm_get_interface(data->intf);
    if (err < 0)
        return err;

    data->intf->needs_remote_wakeup = 1;
    for (i = 0; i < NUM_REASSEMBLY; i++) {
        if (hdev->reassembly[i]) {
            RTKBT_DBG("%s: free ressembly[%d]", __func__, i);
            kfree_skb(hdev->reassembly[i]);
            hdev->reassembly[i] = NULL;
        }
    }

    if (test_and_set_bit(HCI_RUNNING, &hdev->flags))
        goto done;

    if (test_and_set_bit(BTUSB_INTR_RUNNING, &data->flags))
        goto done;

    err = btusb_submit_intr_urb(hdev, GFP_KERNEL);
    if (err < 0)
        goto failed;

    err = btusb_submit_bulk_urb(hdev, GFP_KERNEL);
    if (err < 0) {
        mdelay(URB_CANCELING_DELAY_MS);
        usb_kill_anchored_urbs(&data->intr_anchor);
        goto failed;
    }

    set_bit(BTUSB_BULK_RUNNING, &data->flags);
    btusb_submit_bulk_urb(hdev, GFP_KERNEL);

done:
    usb_autopm_put_interface(data->intf);

    RTKBT_INFO("%s: End, PM usage count %d", __func__,
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 9, 0)
          atomic_read(&data->intf->dev.power.usage_count)
#else
          0
#endif
     );
    return 0;

failed:
    clear_bit(BTUSB_INTR_RUNNING, &data->flags);
    clear_bit(HCI_RUNNING, &hdev->flags);
    usb_autopm_put_interface(data->intf);

    RTKBT_ERR("%s: Failed, PM usage count %d", __func__,
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 9, 0)
          atomic_read(&data->intf->dev.power.usage_count)
#else
          0
#endif
        );
    return err;
}

static void btusb_stop_traffic(struct btusb_data *data)
{
    mdelay(URB_CANCELING_DELAY_MS);
    usb_kill_anchored_urbs(&data->intr_anchor);
    usb_kill_anchored_urbs(&data->bulk_anchor);
    usb_kill_anchored_urbs(&data->isoc_anchor);
}

static int btusb_close(struct hci_dev *hdev)
{
    struct btusb_data *data = GET_DRV_DATA(hdev);
    int err;

    RTKBT_INFO("%s: hci running %lu", __func__, hdev->flags & HCI_RUNNING);

    if (!test_and_clear_bit(HCI_RUNNING, &hdev->flags))
        return 0;

    cancel_work_sync(&data->work);
    cancel_work_sync(&data->waker);

    clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
    clear_bit(BTUSB_BULK_RUNNING, &data->flags);
    clear_bit(BTUSB_INTR_RUNNING, &data->flags);

    btusb_stop_traffic(data);
    err = usb_autopm_get_interface(data->intf);
    if (err < 0)
        goto failed;

    data->intf->needs_remote_wakeup = 0;
    usb_autopm_put_interface(data->intf);

failed:
    mdelay(URB_CANCELING_DELAY_MS);
    usb_scuttle_anchored_urbs(&data->deferred);
    return 0;
}

static int btusb_flush(struct hci_dev *hdev)
{
    struct btusb_data *data = GET_DRV_DATA(hdev);

    RTKBT_DBG("%s", __func__);

    mdelay(URB_CANCELING_DELAY_MS);
    usb_kill_anchored_urbs(&data->tx_anchor);

    return 0;
}

#ifdef CONFIG_SCO_OVER_HCI
static void btusb_isoc_snd_tx_complete(struct urb *urb);

static int snd_send_sco_frame(struct sk_buff *skb)
{
    struct hci_dev *hdev = (struct hci_dev *) skb->dev;

    struct btusb_data *data = GET_DRV_DATA(hdev);
    //struct usb_ctrlrequest *dr;
    struct urb *urb;
    unsigned int pipe;
    int err;

    RTKBT_DBG("%s:pkt type %d, packet_len : %d",
            __func__,bt_cb(skb)->pkt_type, skb->len);

    if (!hdev && !test_bit(HCI_RUNNING, &hdev->flags))
        return -EBUSY;

    if (!data->isoc_tx_ep || hdev->conn_hash.sco_num < 1) {
        kfree(skb);
        return -ENODEV;
    }

    urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, GFP_ATOMIC);
    if (!urb) {
        RTKBT_ERR("%s: Failed to allocate mem for sco pkts", __func__);
        kfree(skb);
        return -ENOMEM;
    }

    pipe = usb_sndisocpipe(data->udev, data->isoc_tx_ep->bEndpointAddress);

    usb_fill_int_urb(urb, data->udev, pipe,
            skb->data, skb->len, btusb_isoc_snd_tx_complete,
            skb, data->isoc_tx_ep->bInterval);

    urb->transfer_flags  = URB_ISO_ASAP;

    fill_isoc_descriptor(urb, skb->len,
            le16_to_cpu(data->isoc_tx_ep->wMaxPacketSize));

    hdev->stat.sco_tx++;

    usb_anchor_urb(urb, &data->tx_anchor);

    err = usb_submit_urb(urb, GFP_ATOMIC);
    if (err < 0) {
        RTKBT_ERR("%s: Failed to submit urb %p, pkt type %d, err %d",
                __func__, urb, bt_cb(skb)->pkt_type, err);
        kfree(urb->setup_packet);
        usb_unanchor_urb(urb);
    } else
        usb_mark_last_busy(data->udev);
    usb_free_urb(urb);

    return err;

}

static bool snd_copy_send_sco_data( RTK_sco_card_t *pSCOSnd)
{
    struct snd_pcm_runtime *runtime = pSCOSnd->playback.substream->runtime;
  	unsigned int frame_bytes = 2, frames1;
    const u8 *source;

    snd_pcm_uframes_t period_size = runtime->period_size;
    int i, count;
    u8 buffer[period_size * 3];
    int sco_packet_bytes = pSCOSnd->playback.sco_packet_bytes;
    struct sk_buff *skb;

    count = frames_to_bytes(runtime, period_size)/sco_packet_bytes;
    skb = bt_skb_alloc(((sco_packet_bytes + HCI_SCO_HDR_SIZE) * count), GFP_ATOMIC);
    skb->dev = (void *)hci_dev_get(0);
    bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
    skb_put(skb, ((sco_packet_bytes + HCI_SCO_HDR_SIZE) * count));
    if(!skb)
        return false;

    RTKBT_DBG("%s, buffer_pos: %d", __FUNCTION__, pSCOSnd->playback.buffer_pos);

    source = runtime->dma_area + pSCOSnd->playback.buffer_pos * frame_bytes;

    if (pSCOSnd->playback.buffer_pos + period_size <= runtime->buffer_size) {
      memcpy(buffer, source, period_size * frame_bytes);
    } else {
      /* wrap around at end of ring buffer */
      frames1 = runtime->buffer_size - pSCOSnd->playback.buffer_pos;
      memcpy(buffer, source, frames1 * frame_bytes);
      memcpy(&buffer[frames1 * frame_bytes],
             runtime->dma_area, (period_size - frames1) * frame_bytes);
    }

    pSCOSnd->playback.buffer_pos += period_size;
    if ( pSCOSnd->playback.buffer_pos >= runtime->buffer_size)
       pSCOSnd->playback.buffer_pos -= runtime->buffer_size;

    for(i = 0; i < count; i++) {
        *((__u16 *)(skb->data + i * (sco_packet_bytes + HCI_SCO_HDR_SIZE))) = pSCOSnd->usb_data->sco_handle;
        *((__u8 *)(skb->data + i*(sco_packet_bytes + HCI_SCO_HDR_SIZE) + 2)) = sco_packet_bytes;
        memcpy((skb->data + i * (sco_packet_bytes + HCI_SCO_HDR_SIZE) + HCI_SCO_HDR_SIZE),
          &buffer[sco_packet_bytes * i], sco_packet_bytes);
    }

    if(test_bit(ALSA_PLAYBACK_RUNNING, &pSCOSnd->states)) {
        snd_pcm_period_elapsed(pSCOSnd->playback.substream);
    }
    snd_send_sco_frame(skb);
    return true;
}

static void btusb_isoc_snd_tx_complete(struct urb *urb)
{
    struct sk_buff *skb = urb->context;
    struct hci_dev *hdev = (struct hci_dev *) skb->dev;
    struct btusb_data *data = GET_DRV_DATA(hdev);
    RTK_sco_card_t  *pSCOSnd = data->pSCOSnd;

    RTKBT_DBG("%s: status %d count %d",
            __func__,urb->status, urb->actual_length);

    if (skb && hdev) {
        if (!test_bit(HCI_RUNNING, &hdev->flags))
            goto done;

        if (!urb->status)
            hdev->stat.byte_tx += urb->transfer_buffer_length;
        else
            hdev->stat.err_tx++;
    } else
        RTKBT_ERR("%s: skb 0x%p hdev 0x%p", __func__, skb, hdev);

done:
    kfree(urb->setup_packet);
    kfree_skb(skb);
    if(test_bit(ALSA_PLAYBACK_RUNNING, &pSCOSnd->states)){
        snd_copy_send_sco_data(pSCOSnd);
        //schedule_work(&pSCOSnd->send_sco_work);
    }
}

static void playback_work(struct work_struct *work)
{
    RTK_sco_card_t *pSCOSnd = container_of(work, RTK_sco_card_t, send_sco_work);

    snd_copy_send_sco_data(pSCOSnd);
}

#endif

static int btusb_send_frame(struct sk_buff *skb)
{
    struct hci_dev *hdev = (struct hci_dev *) skb->dev;

    struct btusb_data *data = GET_DRV_DATA(hdev);
    struct usb_ctrlrequest *dr;
    struct urb *urb;
    unsigned int pipe;
    int err;
    int retries = 0;

    RTKBT_DBG("%s: hdev %p, btusb data %p, pkt type %d",
            __func__, hdev, data, bt_cb(skb)->pkt_type);

    if (!test_bit(HCI_RUNNING, &hdev->flags))
        return -EBUSY;

    switch (bt_cb(skb)->pkt_type) {
    case HCI_COMMAND_PKT:
        print_command(skb);
        urb = usb_alloc_urb(0, GFP_ATOMIC);
        if (!urb)
            return -ENOMEM;

        dr = kmalloc(sizeof(*dr), GFP_ATOMIC);
        if (!dr) {
            usb_free_urb(urb);
            return -ENOMEM;
        }

        dr->bRequestType = data->cmdreq_type;
        dr->bRequest     = 0;
        dr->wIndex       = 0;
        dr->wValue       = 0;
        dr->wLength      = __cpu_to_le16(skb->len);

        pipe = usb_sndctrlpipe(data->udev, 0x00);

        usb_fill_control_urb(urb, data->udev, pipe, (void *) dr,
                skb->data, skb->len, btusb_tx_complete, skb);

        hdev->stat.cmd_tx++;
        break;

    case HCI_ACLDATA_PKT:
        print_acl(skb, 1);
        if (!data->bulk_tx_ep)
            return -ENODEV;

        urb = usb_alloc_urb(0, GFP_ATOMIC);
        if (!urb)
            return -ENOMEM;

        pipe = usb_sndbulkpipe(data->udev,
                    data->bulk_tx_ep->bEndpointAddress);

        usb_fill_bulk_urb(urb, data->udev, pipe,
                skb->data, skb->len, btusb_tx_complete, skb);

        hdev->stat.acl_tx++;
        break;

    case HCI_SCODATA_PKT:
        print_sco(skb, 1);
        if (!data->isoc_tx_ep || hdev->conn_hash.sco_num < 1) {
            kfree(skb);
            return -ENODEV;
        }

        urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, GFP_ATOMIC);
        if (!urb) {
            RTKBT_ERR("%s: Failed to allocate mem for sco pkts", __func__);
            kfree(skb);
            return -ENOMEM;
        }

        pipe = usb_sndisocpipe(data->udev, data->isoc_tx_ep->bEndpointAddress);

        usb_fill_int_urb(urb, data->udev, pipe,
                skb->data, skb->len, btusb_isoc_tx_complete,
                skb, data->isoc_tx_ep->bInterval);

        urb->transfer_flags  = URB_ISO_ASAP;

        fill_isoc_descriptor(urb, skb->len,
                le16_to_cpu(data->isoc_tx_ep->wMaxPacketSize));

        hdev->stat.sco_tx++;
        goto skip_waking;

    default:
        return -EILSEQ;
    }

    err = inc_tx(data);
    if (err) {
        usb_anchor_urb(urb, &data->deferred);
        schedule_work(&data->waker);
        err = 0;
        goto done;
    }

skip_waking:
    usb_anchor_urb(urb, &data->tx_anchor);
retry:
    err = usb_submit_urb(urb, GFP_ATOMIC);
    if (err < 0) {
        RTKBT_ERR("%s: Failed to submit urb %p, pkt type %d, err %d, retries %d",
                __func__, urb, bt_cb(skb)->pkt_type, err, retries);
        if ((bt_cb(skb)->pkt_type != HCI_SCODATA_PKT) && (retries < 10)) {
            mdelay(1);

            if (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT)
                print_error_command(skb);
            retries++;
            goto retry;
        }
        kfree(urb->setup_packet);
        usb_unanchor_urb(urb);
    } else
        usb_mark_last_busy(data->udev);
    usb_free_urb(urb);

done:
    return err;
}

#if LINUX_VERSION_CODE <= KERNEL_VERSION(3, 4, 0)
static void btusb_destruct(struct hci_dev *hdev)
{
    struct btusb_data *data = GET_DRV_DATA(hdev);

    RTKBT_DBG("%s: name %s", __func__, hdev->name);

    kfree(data);
}
#endif

static void btusb_notify(struct hci_dev *hdev, unsigned int evt)
{
    struct btusb_data *data = GET_DRV_DATA(hdev);

    RTKBT_DBG("%s: name %s, evt %d", __func__, hdev->name, evt);

    RTKBT_INFO("%s: hdev->conn_hash.sco_num= %d, data->sco_num = %d", __func__, hdev->conn_hash.sco_num,
      data->sco_num);
    if (hdev->conn_hash.sco_num != data->sco_num) {
        data->sco_num = hdev->conn_hash.sco_num;
        schedule_work(&data->work);
    }
}

static inline int set_isoc_interface(struct hci_dev *hdev, int altsetting)
{
    struct btusb_data *data = GET_DRV_DATA(hdev);
    struct usb_interface *intf = data->isoc;
    struct usb_endpoint_descriptor *ep_desc;
    int i, err;

    if (!data->isoc)
        return -ENODEV;

    err = usb_set_interface(data->udev, 1, altsetting);
    if (err < 0) {
        RTKBT_ERR("%s: Failed to set interface, altsetting %d, err %d",
                __func__, altsetting, err);
        return err;
    }

    data->isoc_altsetting = altsetting;

    data->isoc_tx_ep = NULL;
    data->isoc_rx_ep = NULL;

    for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
        ep_desc = &intf->cur_altsetting->endpoint[i].desc;

        if (!data->isoc_tx_ep && usb_endpoint_is_isoc_out(ep_desc)) {
            data->isoc_tx_ep = ep_desc;
            continue;
        }

        if (!data->isoc_rx_ep && usb_endpoint_is_isoc_in(ep_desc)) {
            data->isoc_rx_ep = ep_desc;
            continue;
        }
    }

    if (!data->isoc_tx_ep || !data->isoc_rx_ep) {
        RTKBT_ERR("%s: Invalid SCO descriptors", __func__);
        return -ENODEV;
    }

    return 0;
}

static int check_controller_support_msbc( struct usb_device *udev)
{
    //fix this in the future,when new card support msbc decode and encode
    RTKBT_INFO("%s:pid = 0x%02x, vid = 0x%02x",__func__,udev->descriptor.idProduct, udev->descriptor.idVendor);
    switch (udev->descriptor.idProduct) {

        default:
          return 0;
    }
    return 0;
}

static void btusb_work(struct work_struct *work)
{
    struct btusb_data *data = container_of(work, struct btusb_data, work);
    struct hci_dev *hdev = data->hdev;
    struct sk_buff *skb;

    int err;
    int new_alts;
    if (data->sco_num > 0) {
        if (!test_bit(BTUSB_DID_ISO_RESUME, &data->flags)) {
            err = usb_autopm_get_interface(data->isoc ? data->isoc : data->intf);
            if (err < 0) {
                clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
                mdelay(URB_CANCELING_DELAY_MS);
                usb_kill_anchored_urbs(&data->isoc_anchor);
                return;
            }

            set_bit(BTUSB_DID_ISO_RESUME, &data->flags);
        }

        RTKBT_INFO("%s voice settings = 0x%04x", __func__, hdev->voice_setting);
        if (!(hdev->voice_setting & 0x0003)) {
            if(data->sco_num == 1)
                new_alts = 2;
            else {
              RTKBT_ERR("%s: we don't support mutiple sco link for cvsd", __func__);
              return;
            }
        } else{
            if(check_controller_support_msbc(data->udev)) {
                if(data->sco_num == 1)
                    new_alts = 4;
                else {
                    RTKBT_ERR("%s: we don't support mutiple sco link for msbc", __func__);
                    return;
                }
            } else {
                new_alts = 2;
            }
        }
        if (data->isoc_altsetting != new_alts) {

            clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
            mdelay(URB_CANCELING_DELAY_MS);
            usb_kill_anchored_urbs(&data->isoc_anchor);

            if(hdev->reassembly[HCI_SCODATA_PKT - 1]) {
                skb = hdev->reassembly[HCI_SCODATA_PKT - 1];
                hdev->reassembly[HCI_SCODATA_PKT - 1] = NULL;
                kfree_skb(skb);
            }
            if (set_isoc_interface(hdev, new_alts) < 0)
                return;
        }

        if (!test_and_set_bit(BTUSB_ISOC_RUNNING, &data->flags)) {
            if (btusb_submit_isoc_urb(hdev, GFP_KERNEL) < 0)
                clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
            else
                btusb_submit_isoc_urb(hdev, GFP_KERNEL);
        }
#ifdef CONFIG_SCO_OVER_HCI
        if(test_bit(BTUSB_ISOC_RUNNING, &data->flags)) {
            set_bit(USB_CAPTURE_RUNNING, &data->pSCOSnd->states);
            set_bit(USB_PLAYBACK_RUNNING, &data->pSCOSnd->states);
        }
#endif
    } else {
        clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
#ifdef CONFIG_SCO_OVER_HCI
        clear_bit(USB_CAPTURE_RUNNING, &data->pSCOSnd->states);
        clear_bit(USB_PLAYBACK_RUNNING, &data->pSCOSnd->states);
#endif
        mdelay(URB_CANCELING_DELAY_MS);
        usb_kill_anchored_urbs(&data->isoc_anchor);

        set_isoc_interface(hdev, 0);

        if (test_and_clear_bit(BTUSB_DID_ISO_RESUME, &data->flags))
            usb_autopm_put_interface(data->isoc ? data->isoc : data->intf);
    }
}

static void btusb_waker(struct work_struct *work)
{
    struct btusb_data *data = container_of(work, struct btusb_data, waker);
    int err;

    RTKBT_DBG("%s: PM usage count %d", __func__,
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 9, 0)
          atomic_read(&data->intf->pm_usage_cnt)
#else
          0
#endif
    );

    err = usb_autopm_get_interface(data->intf);
    if (err < 0)
        return;

    usb_autopm_put_interface(data->intf);
}


//#ifdef CONFIG_HAS_EARLYSUSPEND
#if 0
static void btusb_early_suspend(struct early_suspend *h)
{
    struct btusb_data *data;
    firmware_info *fw_info;
    patch_info *patch_entry;

    RTKBT_INFO("%s", __func__);

    data = container_of(h, struct btusb_data, early_suspend);
    fw_info = data->fw_info;
    patch_entry = fw_info->patch_entry;

    patch_entry->fw_len = load_firmware(fw_info, &patch_entry->fw_cache);
    if (patch_entry->fw_len <= 0) {
        /* We may encount failure in loading firmware, just give a warning */
        RTKBT_WARN("%s: Failed to load firmware", __func__);
    }
}

static void btusb_late_resume(struct early_suspend *h)
{
    struct btusb_data *data;
    firmware_info *fw_info;
    patch_info *patch_entry;

    RTKBT_INFO("%s", __func__);

    data = container_of(h, struct btusb_data, early_suspend);
    fw_info = data->fw_info;
    patch_entry = fw_info->patch_entry;

    /* Reclaim fw buffer when bt usb resumed */
    if (patch_entry->fw_len > 0) {
        kfree(patch_entry->fw_cache);
        patch_entry->fw_cache = NULL;
        patch_entry->fw_len = 0;
    }
}
#else
static int bt_pm_notify(struct notifier_block *notifier, ulong pm_event, void *unused)
{
    struct btusb_data *data;
    firmware_info *fw_info;
    patch_info *patch_entry;
    struct usb_device *udev;

    RTKBT_INFO("%s: pm event %ld", __func__, pm_event);

    data = container_of(notifier, struct btusb_data, pm_notifier);
    fw_info = data->fw_info;
    patch_entry = fw_info->patch_entry;
    udev = fw_info->udev;

    switch (pm_event) {
    case PM_SUSPEND_PREPARE:
    case PM_HIBERNATION_PREPARE:
#if 0
        patch_entry->fw_len = load_firmware(fw_info, &patch_entry->fw_cache);
        if (patch_entry->fw_len <= 0) {
        /* We may encount failure in loading firmware, just give a warning */
            RTKBT_WARN("%s: Failed to load firmware", __func__);
        }
#endif
        if (!device_may_wakeup(&udev->dev)) {
#if (CONFIG_RESET_RESUME || CONFIG_BLUEDROID)
            RTKBT_INFO("%s:remote wakeup not supported, reset resume supported", __func__);
#else
            fw_info->intf->needs_binding = 1;
            RTKBT_INFO("%s:remote wakeup not supported, binding needed", __func__);
#endif
        }
        break;

    case PM_POST_SUSPEND:
    case PM_POST_HIBERNATION:
    case PM_POST_RESTORE:
#if 0
        /* Reclaim fw buffer when bt usb resumed */
        if (patch_entry->fw_len > 0) {
            kfree(patch_entry->fw_cache);
            patch_entry->fw_cache = NULL;
            patch_entry->fw_len = 0;
        }
#endif

#if BTUSB_RPM
        usb_disable_autosuspend(udev);
        usb_enable_autosuspend(udev);
        pm_runtime_set_autosuspend_delay(&(udev->dev), 2000);
#endif
        break;

    default:
        break;
    }

    return NOTIFY_DONE;
}

static int bt_reboot_notify(struct notifier_block *notifier, ulong pm_event, void *unused)
{
    struct btusb_data *data;
    firmware_info *fw_info;
    patch_info *patch_entry;
    struct usb_device *udev;

    RTKBT_INFO("%s: pm event %ld", __func__, pm_event);

    data = container_of(notifier, struct btusb_data, reboot_notifier);
    fw_info = data->fw_info;
    patch_entry = fw_info->patch_entry;
    udev = fw_info->udev;

    switch (pm_event) {
    case SYS_DOWN:
        RTKBT_DBG("%s:system down or restart", __func__);
    break;

    case SYS_HALT:
    case SYS_POWER_OFF:
#if SUSPNED_DW_FW
        cancel_work_sync(&data->work);

        btusb_stop_traffic(data);
        mdelay(URB_CANCELING_DELAY_MS);
        usb_kill_anchored_urbs(&data->tx_anchor);


        if(fw_info_4_suspend) {
            download_suspend_patch(fw_info_4_suspend,1);
        }
	    else
		    RTKBT_ERR("%s: Failed to download suspend fw", __func__);
#endif

#if SET_WAKEUP_DEVICE
        set_wakeup_device_from_conf(fw_info_4_suspend);
#endif
        RTKBT_DBG("%s:system halt or power off", __func__);
    break;

    default:
        break;
    }

    return NOTIFY_DONE;
}

#endif

#ifdef CONFIG_SCO_OVER_HCI
static const struct snd_pcm_hardware snd_card_sco_capture_default =
{
    .info               = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_NONINTERLEAVED |
                            SNDRV_PCM_ACCESS_RW_INTERLEAVED | SNDRV_PCM_INFO_FIFO_IN_FRAMES),
    .formats            = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8,
    .rates              = (SNDRV_PCM_RATE_8000),
    .rate_min           = 8000,
    .rate_max           = 8000,
    .channels_min       = 1,
    .channels_max       = 1,
    .buffer_bytes_max   = 8 * 768,
    .period_bytes_min   = 48,
    .period_bytes_max   = 768,
    .periods_min        = 1,
    .periods_max        = 8,
    .fifo_size          = 8,

};

static int snd_sco_capture_pcm_open(struct snd_pcm_substream * substream)
{
    RTK_sco_card_t  *pSCOSnd = substream->private_data;

    RTKBT_INFO("%s", __FUNCTION__);
    pSCOSnd->capture.substream = substream;

    memcpy(&substream->runtime->hw, &snd_card_sco_capture_default, sizeof(struct snd_pcm_hardware));

    if(check_controller_support_msbc(pSCOSnd->dev)) {
        substream->runtime->hw.rates |= SNDRV_PCM_RATE_16000;
        substream->runtime->hw.rate_max = 16000;
        substream->runtime->hw.period_bytes_min = 96;
        substream->runtime->hw.period_bytes_max = 16 * 96;
        substream->runtime->hw.buffer_bytes_max = 8 * 16 * 96;
    }
    set_bit(ALSA_CAPTURE_OPEN, &pSCOSnd->states);
    return 0;
}

static int snd_sco_capture_pcm_close(struct snd_pcm_substream *substream)
{
	RTK_sco_card_t *pSCOSnd = substream->private_data;

	clear_bit(ALSA_CAPTURE_OPEN, &pSCOSnd->states);
	return 0;
}

static int snd_sco_capture_ioctl(struct snd_pcm_substream *substream,  unsigned int cmd, void *arg)
{
    RTKBT_DBG("%s, cmd = %d", __FUNCTION__, cmd);
    switch (cmd)
    {
        default:
            return snd_pcm_lib_ioctl(substream, cmd, arg);
    }
    return 0;
}

static int snd_sco_capture_pcm_hw_params(struct snd_pcm_substream * substream, struct snd_pcm_hw_params * hw_params)
{

    int err;
    struct snd_pcm_runtime *runtime = substream->runtime;
    err = snd_pcm_lib_alloc_vmalloc_buffer(substream, params_buffer_bytes(hw_params));
    RTKBT_INFO("%s,err : %d,  runtime state : %d", __FUNCTION__, err, runtime->status->state);
    return err;
}

static int snd_sco_capture_pcm_hw_free(struct snd_pcm_substream * substream)
{
    RTKBT_DBG("%s", __FUNCTION__);
    return snd_pcm_lib_free_vmalloc_buffer(substream);;
}

static int snd_sco_capture_pcm_prepare(struct snd_pcm_substream *substream)
{
    RTK_sco_card_t *pSCOSnd = substream->private_data;
    struct snd_pcm_runtime *runtime = substream->runtime;

    RTKBT_INFO("%s", __FUNCTION__);
    if (test_bit(DISCONNECTED, &pSCOSnd->states))
		    return -ENODEV;
	  if (!test_bit(USB_CAPTURE_RUNNING, &pSCOSnd->states))
		    return -EIO;

    if(runtime->rate == 8000) {
        if(pSCOSnd->usb_data->isoc_altsetting != 2)
            return -ENOEXEC;
        pSCOSnd->capture.sco_packet_bytes = 48;
    }
    else if(runtime->rate == 16000 && check_controller_support_msbc(pSCOSnd->dev)) {
        if(pSCOSnd->usb_data->isoc_altsetting != 4)
            return -ENOEXEC;
        pSCOSnd->capture.sco_packet_bytes = 96;
    }
    else if(pSCOSnd->usb_data->isoc_altsetting == 2) {
        pSCOSnd->capture.sco_packet_bytes = 48;
    }
    else if(pSCOSnd->usb_data->isoc_altsetting == 1) {
        pSCOSnd->capture.sco_packet_bytes = 24;
    }
    return 0;
}

static int snd_sco_capture_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
	  RTK_sco_card_t *pSCOSnd = substream->private_data;
    RTKBT_INFO("%s, cmd : %d", __FUNCTION__, cmd);

	  switch (cmd) {
	    case SNDRV_PCM_TRIGGER_START:
		      if (!test_bit(USB_CAPTURE_RUNNING, &pSCOSnd->states))
			      return -EIO;
		      set_bit(ALSA_CAPTURE_RUNNING, &pSCOSnd->states);
		      return 0;
	    case SNDRV_PCM_TRIGGER_STOP:
		      clear_bit(ALSA_CAPTURE_RUNNING, &pSCOSnd->states);
		      return 0;
	    default:
		      return -EINVAL;
	  }
}

static snd_pcm_uframes_t snd_sco_capture_pcm_pointer(struct snd_pcm_substream *substream)
{
	  RTK_sco_card_t *pSCOSnd = substream->private_data;

	  return pSCOSnd->capture.buffer_pos;
}


static struct snd_pcm_ops snd_sco_capture_pcm_ops = {
	.open =         snd_sco_capture_pcm_open,
	.close =        snd_sco_capture_pcm_close,
	.ioctl =        snd_sco_capture_ioctl,
	.hw_params =    snd_sco_capture_pcm_hw_params,
	.hw_free =      snd_sco_capture_pcm_hw_free,
	.prepare =      snd_sco_capture_pcm_prepare,
	.trigger =      snd_sco_capture_pcm_trigger,
	.pointer =      snd_sco_capture_pcm_pointer,
};


static const struct snd_pcm_hardware snd_card_sco_playback_default =
{
    .info               = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_NONINTERLEAVED |
                            SNDRV_PCM_ACCESS_RW_INTERLEAVED | SNDRV_PCM_INFO_FIFO_IN_FRAMES),
    .formats            = SNDRV_PCM_FMTBIT_S16_LE,
    .rates              = (SNDRV_PCM_RATE_8000),
    .rate_min           = 8000,
    .rate_max           = 8000,
    .channels_min       = 1,
    .channels_max       = 1,
    .buffer_bytes_max   = 8 * 768,
    .period_bytes_min   = 48,
    .period_bytes_max   = 768,
    .periods_min        = 1,
    .periods_max        = 8,
    .fifo_size          = 8,
};

static int snd_sco_playback_pcm_open(struct snd_pcm_substream * substream)
{
    RTK_sco_card_t *pSCOSnd = substream->private_data;
    int err = 0;

    RTKBT_INFO("%s, rate : %d", __FUNCTION__, substream->runtime->rate);
    memcpy(&substream->runtime->hw, &snd_card_sco_playback_default, sizeof(struct snd_pcm_hardware));
    if(check_controller_support_msbc(pSCOSnd->dev)) {
        substream->runtime->hw.rates |= SNDRV_PCM_RATE_16000;
        substream->runtime->hw.rate_max = 16000;
        substream->runtime->hw.period_bytes_min = 96;
        substream->runtime->hw.period_bytes_max = 16 * 96;
        substream->runtime->hw.buffer_bytes_max = 8 * 16 * 96;
    }
    pSCOSnd->playback.substream = substream;
    set_bit(ALSA_PLAYBACK_OPEN, &pSCOSnd->states);

    return err;
}

static int snd_sco_playback_pcm_close(struct snd_pcm_substream *substream)
{
    RTK_sco_card_t *pSCOSnd = substream->private_data;

	  clear_bit(ALSA_PLAYBACK_OPEN, &pSCOSnd->states);
    cancel_work_sync(&pSCOSnd->send_sco_work);
	  return 0;
}

static int snd_sco_playback_ioctl(struct snd_pcm_substream *substream,  unsigned int cmd, void *arg)
{
    RTKBT_DBG("%s, cmd : %d", __FUNCTION__, cmd);
    switch (cmd)
    {
        default:
            return snd_pcm_lib_ioctl(substream, cmd, arg);
            break;
    }
    return 0;
}

static int snd_sco_playback_pcm_hw_params(struct snd_pcm_substream * substream, struct snd_pcm_hw_params * hw_params)
{
    int err;
    err = snd_pcm_lib_alloc_vmalloc_buffer(substream, params_buffer_bytes(hw_params));
    return err;
}

static int snd_sco_palyback_pcm_hw_free(struct snd_pcm_substream * substream)
{
    RTKBT_DBG("%s", __FUNCTION__);
    return snd_pcm_lib_free_vmalloc_buffer(substream);
}

static int snd_sco_playback_pcm_prepare(struct snd_pcm_substream *substream)
{
	  RTK_sco_card_t *pSCOSnd = substream->private_data;
    struct snd_pcm_runtime *runtime = substream->runtime;

    RTKBT_INFO("%s, bound_rate = %d", __FUNCTION__, runtime->rate);

	  if (test_bit(DISCONNECTED, &pSCOSnd->states))
		    return -ENODEV;
	  if (!test_bit(USB_PLAYBACK_RUNNING, &pSCOSnd->states))
		    return -EIO;

    if(runtime->rate == 8000) {
        if(pSCOSnd->usb_data->isoc_altsetting != 2)
            return -ENOEXEC;
        pSCOSnd->playback.sco_packet_bytes = 48;
    }
    else if(runtime->rate == 16000) {
        if(pSCOSnd->usb_data->isoc_altsetting != 4)
            return -ENOEXEC;
        pSCOSnd->playback.sco_packet_bytes = 96;
    }

  	return 0;
}

static int snd_sco_playback_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
  	RTK_sco_card_t *pSCOSnd = substream->private_data;

    RTKBT_INFO("%s, cmd = %d", __FUNCTION__, cmd);
  	switch (cmd) {
      	case SNDRV_PCM_TRIGGER_START:
      		if (!test_bit(USB_PLAYBACK_RUNNING, &pSCOSnd->states))
      			return -EIO;
      		set_bit(ALSA_PLAYBACK_RUNNING, &pSCOSnd->states);
          schedule_work(&pSCOSnd->send_sco_work);
      		return 0;
      	case SNDRV_PCM_TRIGGER_STOP:
      		clear_bit(ALSA_PLAYBACK_RUNNING, &pSCOSnd->states);
      		return 0;
      	default:
      		return -EINVAL;
  	}
}

static snd_pcm_uframes_t snd_sco_playback_pcm_pointer(struct snd_pcm_substream *substream)
{
  	RTK_sco_card_t *pSCOSnd = substream->private_data;

  	return pSCOSnd->playback.buffer_pos;
}


static struct snd_pcm_ops snd_sco_playback_pcm_ops = {
	.open =         snd_sco_playback_pcm_open,
	.close =        snd_sco_playback_pcm_close,
	.ioctl =        snd_sco_playback_ioctl,
	.hw_params =    snd_sco_playback_pcm_hw_params,
	.hw_free =      snd_sco_palyback_pcm_hw_free,
	.prepare =      snd_sco_playback_pcm_prepare,
	.trigger =      snd_sco_playback_pcm_trigger,
	.pointer =      snd_sco_playback_pcm_pointer,
};


static RTK_sco_card_t* btusb_snd_init(struct usb_interface *intf, const struct usb_device_id *id, struct btusb_data *data)
{
    struct snd_card *card;
    RTK_sco_card_t  *pSCOSnd;
    int err=0;
    RTKBT_INFO("%s", __func__);
    err = snd_card_new(&intf->dev,
     -1, RTK_SCO_ID, THIS_MODULE,
     sizeof(RTK_sco_card_t), &card);
    if (err < 0) {
        RTKBT_ERR("%s: sco snd card create fail", __func__);
        return NULL;
    }
    // private data
    pSCOSnd = (RTK_sco_card_t *)card->private_data;
    pSCOSnd->card = card;
    pSCOSnd->dev = interface_to_usbdev(intf);
    pSCOSnd->usb_data = data;

    strcpy(card->driver, RTK_SCO_ID);
    strcpy(card->shortname, "Realtek sco snd");
    sprintf(card->longname, "Realtek sco over hci: VID:0x%04x, PID:0x%04x",
        id->idVendor, pSCOSnd->dev->descriptor.idProduct);

    err = snd_pcm_new(card, RTK_SCO_ID, 0, 1, 1, &pSCOSnd->pcm);
    if (err < 0) {
        RTKBT_ERR("%s: sco snd card new pcm fail", __func__);
        snd_card_free(card);
        return NULL;
    }
    pSCOSnd->pcm->private_data = pSCOSnd;
    sprintf(pSCOSnd->pcm->name, "sco_pcm:VID:0x%04x, PID:0x%04x",
      id->idVendor, pSCOSnd->dev->descriptor.idProduct);

    snd_pcm_set_ops(pSCOSnd->pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_sco_playback_pcm_ops);
    snd_pcm_set_ops(pSCOSnd->pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_sco_capture_pcm_ops);

    err = snd_card_register(card);
    if (err < 0) {
        RTKBT_ERR("%s: sco snd card register card fail", __func__);
        snd_card_free(card);
        return NULL;
    }

    spin_lock_init(&pSCOSnd->capture_lock);
    spin_lock_init(&pSCOSnd->playback_lock);
    INIT_WORK(&pSCOSnd->send_sco_work, playback_work);
    return pSCOSnd;
}

static void btusb_snd_remove(RTK_sco_card_t  *pSCOSnd)
{
    if(!pSCOSnd) {
        RTKBT_ERR("%s: sco private data is null", __func__);
        return;
    }
    set_bit(DISCONNECTED, &pSCOSnd->states);
    snd_card_disconnect(pSCOSnd->card);
    snd_card_free_when_closed(pSCOSnd->card);
}
#endif

static int btusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
    struct usb_device *udev = interface_to_usbdev(intf);
    struct usb_endpoint_descriptor *ep_desc;
    struct btusb_data *data;
    struct hci_dev *hdev;
    firmware_info *fw_info;
    int i, err=0;

    RTKBT_INFO("%s: usb_interface11111111 %p, bInterfaceNumber %d, idVendor 0x%04x, "
            "idProduct 0x%04x", __func__, intf,
            intf->cur_altsetting->desc.bInterfaceNumber,
            id->idVendor, id->idProduct);

    /* interface numbers are hardcoded in the spec */
    if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
        return -ENODEV;

    RTKBT_DBG("%s: can wakeup = %x, may wakeup = %x", __func__,
            device_can_wakeup(&udev->dev), device_may_wakeup(&udev->dev));

    data = rtk_alloc(intf);
    if (!data)
        return -ENOMEM;

    for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
        ep_desc = &intf->cur_altsetting->endpoint[i].desc;

        if (!data->intr_ep && usb_endpoint_is_int_in(ep_desc)) {
            data->intr_ep = ep_desc;
            continue;
        }

        if (!data->bulk_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) {
            data->bulk_tx_ep = ep_desc;
            continue;
        }

        if (!data->bulk_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) {
            data->bulk_rx_ep = ep_desc;
            continue;
        }
    }

    if (!data->intr_ep || !data->bulk_tx_ep || !data->bulk_rx_ep) {
        rtk_free(data);
        return -ENODEV;
    }

    data->cmdreq_type = USB_TYPE_CLASS;

    data->udev = udev;
    data->intf = intf;

    spin_lock_init(&data->lock);

    INIT_WORK(&data->work, btusb_work);
    INIT_WORK(&data->waker, btusb_waker);
    spin_lock_init(&data->txlock);

    init_usb_anchor(&data->tx_anchor);
    init_usb_anchor(&data->intr_anchor);
    init_usb_anchor(&data->bulk_anchor);
    init_usb_anchor(&data->isoc_anchor);
    init_usb_anchor(&data->deferred);

    fw_info = firmware_info_init(intf);
    if (fw_info)
        data->fw_info = fw_info;
    else {
        RTKBT_WARN("%s: Failed to initialize fw info", __func__);
        /* Skip download patch */
        goto end;
    }

    hdev = hci_alloc_dev();
    if (!hdev) {
        rtk_free(data);
        data = NULL;
        return -ENOMEM;
    }

    HDEV_BUS = HCI_USB;

    data->hdev = hdev;

    SET_HCIDEV_DEV(hdev, &intf->dev);

    hdev->open     = btusb_open;
    hdev->close    = btusb_close;
    hdev->flush    = btusb_flush;
    hdev->send     = btusb_send_frame;
    hdev->notify   = btusb_notify;

#if LINUX_VERSION_CODE > KERNEL_VERSION(3, 4, 0)
    hci_set_drvdata(hdev, data);
#else
    hdev->driver_data = data;
    hdev->destruct = btusb_destruct;
    hdev->owner = THIS_MODULE;
#endif

    /* Interface numbers are hardcoded in the specification */
    data->isoc = usb_ifnum_to_if(data->udev, 1);
    if (data->isoc) {
        err = usb_driver_claim_interface(&btusb_driver,
                            data->isoc, data);
        if (err < 0) {
            hci_free_dev(hdev);
            hdev = NULL;
            rtk_free(data);
            data = NULL;
            return err;
        }
#ifdef CONFIG_SCO_OVER_HCI
        data->pSCOSnd = btusb_snd_init(intf, id, data);
#endif
    }

    err = hci_register_dev(hdev);
    if (err < 0) {
        hci_free_dev(hdev);
        hdev = NULL;
        rtk_free(data);
        data = NULL;
        return err;
    }

    usb_set_intfdata(intf, data);

//#ifdef CONFIG_HAS_EARLYSUSPEND
#if 0
    data->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN;
    data->early_suspend.suspend = btusb_early_suspend;
    data->early_suspend.resume = btusb_late_resume;
    register_early_suspend(&data->early_suspend);
#else
    data->pm_notifier.notifier_call = bt_pm_notify;
    data->reboot_notifier.notifier_call = bt_reboot_notify;
    register_pm_notifier(&data->pm_notifier);
    register_reboot_notifier(&data->reboot_notifier);
#endif

#if CONFIG_BLUEDROID
    RTKBT_INFO("%s: Check bt reset flag %d", __func__, bt_reset);
    /* Report hci hardware error after everthing is ready,
     * especially hci register is completed. Or, btchr_poll
     * will get null hci dev when hotplug in.
     */
    if (bt_reset == 1) {
        hci_hardware_error();
        bt_reset = 0;
    } else
        bt_reset = 0; /* Clear and reset it anyway */
#endif

    load_firmware_info(fw_info);

end:
    set_driver_state_value(DEVICE_PROBED);
    return 0;
}

static void btusb_disconnect(struct usb_interface *intf)
{
    struct btusb_data *data;
    struct hci_dev *hdev = NULL;

    if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
        return;

    clear_driver_state(DEVICE_PROBED);
    if((get_driver_state_value() & CHAR_OPENED) == CHAR_OPENED)
        wake_up_interruptible(&btchr_read_wait);

    wait_event_interruptible(bt_drv_state_wait, ((get_driver_state_value() & CHAR_OPENED) == 0));

    RTKBT_INFO("%s: usb_interface %p, bInterfaceNumber %d",
            __func__, intf, intf->cur_altsetting->desc.bInterfaceNumber);

    data = usb_get_intfdata(intf);

    if (data)
        hdev = data->hdev;
    else {
        RTKBT_WARN("%s: Failed to get bt usb data[Null]", __func__);
        return;
    }

#ifdef CONFIG_SCO_OVER_HCI
    if (intf->cur_altsetting->desc.bInterfaceNumber == 0) {
        RTK_sco_card_t *pSCOSnd = data->pSCOSnd;
        btusb_snd_remove(pSCOSnd);
    }
#endif

//#ifdef CONFIG_HAS_EARLYSUSPEND
#if 0
    unregister_early_suspend(&data->early_suspend);
#else
    unregister_pm_notifier(&data->pm_notifier);
    unregister_reboot_notifier(&data->reboot_notifier);
#endif

    firmware_info_destroy(intf);

#if CONFIG_BLUEDROID
    if (test_bit(HCI_RUNNING, &hdev->flags)) {
        RTKBT_INFO("%s: Set BT reset flag", __func__);
        bt_reset = 1;
    }
#endif

    usb_set_intfdata(data->intf, NULL);

    if (data->isoc)
        usb_set_intfdata(data->isoc, NULL);

    hci_unregister_dev(hdev);

    if (intf == data->isoc)
        usb_driver_release_interface(&btusb_driver, data->intf);
    else if (data->isoc)
        usb_driver_release_interface(&btusb_driver, data->isoc);

#if !CONFIG_BLUEDROID
#if LINUX_VERSION_CODE <= KERNEL_VERSION(3, 4, 0)
    __hci_dev_put(hdev);
#endif
#endif

    hci_free_dev(hdev);
    rtk_free(data);
    data = NULL;
    set_driver_state_value(0);
}

#ifdef CONFIG_PM
static int btusb_suspend(struct usb_interface *intf, pm_message_t message)
{
    struct btusb_data *data = usb_get_intfdata(intf);
    firmware_info *fw_info = data->fw_info;

    RTKBT_INFO("%s: event 0x%x, suspend count %d", __func__,
            message.event, data->suspend_count);

    if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
        return 0;

    if (!test_bit(HCI_RUNNING, &data->hdev->flags))
        set_bt_onoff(fw_info, 1);

    if (data->suspend_count++)
        return 0;

    spin_lock_irq(&data->txlock);
    if (!((message.event & PM_EVENT_AUTO) && data->tx_in_flight)) {
        set_bit(BTUSB_SUSPENDING, &data->flags);
        spin_unlock_irq(&data->txlock);
    } else {
        spin_unlock_irq(&data->txlock);
        data->suspend_count--;
        RTKBT_ERR("%s: Failed to enter suspend", __func__);
        return -EBUSY;
    }

    cancel_work_sync(&data->work);

    btusb_stop_traffic(data);
    mdelay(URB_CANCELING_DELAY_MS);
    usb_kill_anchored_urbs(&data->tx_anchor);

#if SUSPNED_DW_FW
    if(fw_info_4_suspend) {
        download_suspend_patch(fw_info_4_suspend,1);
    }
    else
        RTKBT_ERR("%s: Failed to download suspend fw", __func__);
#endif

#if SET_WAKEUP_DEVICE
    set_wakeup_device_from_conf(fw_info_4_suspend);
#endif

    return 0;
}

static void play_deferred(struct btusb_data *data)
{
    struct urb *urb;
    int err;

    while ((urb = usb_get_from_anchor(&data->deferred))) {
        usb_anchor_urb(urb, &data->tx_anchor);
        err = usb_submit_urb(urb, GFP_ATOMIC);
        if (err < 0) {
            RTKBT_ERR("%s: Failed to submit urb %p, err %d",
                    __func__, urb, err);
            kfree(urb->setup_packet);
            usb_unanchor_urb(urb);
        } else {
            usb_mark_last_busy(data->udev);
        }
        usb_free_urb(urb);

        data->tx_in_flight++;
    }
    mdelay(URB_CANCELING_DELAY_MS);
    usb_scuttle_anchored_urbs(&data->deferred);
}

static int btusb_resume(struct usb_interface *intf)
{
    struct btusb_data *data = usb_get_intfdata(intf);
    struct hci_dev *hdev = data->hdev;
    firmware_info *fw_info = data->fw_info;
    int err = 0;

    RTKBT_INFO("%s: Suspend count %d", __func__, data->suspend_count);

    if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
        return 0;

    if (--data->suspend_count)
        return 0;

    /*check_fw_version to check the status of the BT Controller after USB Resume*/
    err = check_fw_version(fw_info, true);
    if (err !=0)
    {
        RTKBT_INFO("%s: BT Controller Power OFF And Return hci_hardware_error:%d", __func__, err);
        hci_hardware_error();
    }


    if (test_bit(BTUSB_INTR_RUNNING, &data->flags)) {
        err = btusb_submit_intr_urb(hdev, GFP_NOIO);
        if (err < 0) {
            clear_bit(BTUSB_INTR_RUNNING, &data->flags);
            goto failed;
        }
    }

    if (test_bit(BTUSB_BULK_RUNNING, &data->flags)) {
        err = btusb_submit_bulk_urb(hdev, GFP_NOIO);
        if (err < 0) {
            clear_bit(BTUSB_BULK_RUNNING, &data->flags);
            goto failed;
        }

        btusb_submit_bulk_urb(hdev, GFP_NOIO);
    }

    if (test_bit(BTUSB_ISOC_RUNNING, &data->flags)) {
        if (btusb_submit_isoc_urb(hdev, GFP_NOIO) < 0)
            clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
        else
            btusb_submit_isoc_urb(hdev, GFP_NOIO);
    }

    spin_lock_irq(&data->txlock);
    play_deferred(data);
    clear_bit(BTUSB_SUSPENDING, &data->flags);
    spin_unlock_irq(&data->txlock);
    schedule_work(&data->work);

    return 0;

failed:
    mdelay(URB_CANCELING_DELAY_MS);
    usb_scuttle_anchored_urbs(&data->deferred);
    spin_lock_irq(&data->txlock);
    clear_bit(BTUSB_SUSPENDING, &data->flags);
    spin_unlock_irq(&data->txlock);

    return err;
}
#endif

static struct usb_driver btusb_driver = {
    .name        = "rtk_btusb",
    .probe        = btusb_probe,
    .disconnect    = btusb_disconnect,
#ifdef CONFIG_PM
    .suspend    = btusb_suspend,
    .resume        = btusb_resume,
#endif
#if CONFIG_RESET_RESUME
    .reset_resume    = btusb_resume,
#endif
    .id_table    = btusb_table,
    .supports_autosuspend = 1,
#if LINUX_VERSION_CODE > KERNEL_VERSION(3, 7, 1)
    .disable_hub_initiated_lpm = 1,
#endif
};

static int __init btusb_init(void)
{
    int err;

    RTKBT_INFO("RTKBT_RELEASE_NAME: %s",RTKBT_RELEASE_NAME);
    RTKBT_INFO("Realtek Bluetooth USB driver module init, version %s", VERSION);
    driver_state = 0;
#if CONFIG_BLUEDROID
    err = btchr_init();
    if (err < 0) {
        /* usb register will go on, even bt char register failed */
        RTKBT_ERR("Failed to register usb char device interfaces");
    }
    else
      set_driver_state_value(DRIVER_ON);
#endif
    err = usb_register(&btusb_driver);
    if (err < 0)
        RTKBT_ERR("Failed to register RTK bluetooth USB driver");
    return err;
}

static void __exit btusb_exit(void)
{
    struct hci_dev *hdev;
    RTKBT_INFO("Realtek Bluetooth USB driver module exit");
#if CONFIG_BLUEDROID
    clear_driver_state(DRIVER_ON);
    hdev = hci_dev_get(0);
    while(hdev && atomic_read(&hdev->promisc)) {
        RTKBT_ERR("%s: rtkbt driver is being removed, but application is still running!", __func__);
        RTKBT_ERR("%s: wait bt application to stop, or the driver can't be removed", __func__);
        mdelay(100);
    }
    btchr_exit();
#endif
    usb_deregister(&btusb_driver);
}

module_init(btusb_init);
module_exit(btusb_exit);


module_param(mp_drv_mode, int, 0644);
MODULE_PARM_DESC(mp_drv_mode, "0: NORMAL; 1: MP MODE");


MODULE_AUTHOR("Realtek Corporation");
MODULE_DESCRIPTION("Realtek Bluetooth USB driver version");
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");

        5.2 通过vid 匹配

2023-09-05 Linux 蓝牙驱动匹配USB 蓝牙的过程简单分析,方法一通过接口描述:USB_INTERFACE_INFO 进行匹配;方法二:通过厂家ID 和device ID匹配。_第5张图片

        5.3 驱动加载成功。

2023-09-05 Linux 蓝牙驱动匹配USB 蓝牙的过程简单分析,方法一通过接口描述:USB_INTERFACE_INFO 进行匹配;方法二:通过厂家ID 和device ID匹配。_第6张图片

六、实际测试发现,如果上面两个驱动都打开,有个驱动无法匹配,不能进入probe函数,原因不明。

七、参考文章

USB描述符_usb 描述符类型_Ink bone的博客-CSDN博客

USB设备创建过程与驱动学习笔记_hello_ludy的博客-CSDN博客

你可能感兴趣的:(linux,buildroot,Linux驱动编程,linux,运维,服务器)