力扣题目链接
在柠檬水摊上,每一杯柠檬水的售价为 5 美元。
顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。
每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。
注意,一开始你手头没有任何零钱。
如果你能给每位顾客正确找零,返回 true ,否则返回 false 。
示例 1:
示例 2:
示例 3:
示例 4:
提示:
0 <= bills.length <= 10000
bills[i] 不是 5 就是 10 或是 20
只需要维护三种金额的数量,5,10和20。
有如下三种情况:
此时大家就发现 情况一,情况二,都是固定策略,都不用我们来做分析了,而唯一不确定的其实在情况三。
而情况三逻辑也不复杂甚至感觉纯模拟就可以了,其实情况三这里是有贪心的。
账单是20的情况,为什么要优先消耗一个10和一个5呢?
因为美元10只能给账单20找零,而美元5可以给账单10和账单20找零,美元5更万能!
所以局部最优:遇到账单20,优先消耗美元10,完成本次找零。全局最优:完成全部账单的找零。
局部最优可以推出全局最优,并找不出反例,那么就试试贪心算法!
代码如下:
class Solution {
public boolean lemonadeChange(int[] bills) {
int five=0;
int ten=0;
for(int i=0;i<bills.length;i++){
if(bills[i]==5){ //账单是5,直接收下。
five++;
}else if(bills[i]==10){ //账单是10,消耗一个5,增加一个10
if(five<=0) return false;
five--;
ten++;
}else if(bills[i]==20){
//账单是20,优先消耗一个10和一个5
if(five>0&&ten>0){
ten--;
five--;
}else if(five>=3){
//如果不够,再消耗三个5
five-=3;
}else return false;
}
}
return true;
}
}
力扣题目链接
假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。
请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。
示例 1:
示例 2:
提示:
题目数据确保队列可以被重建
本题有两个维度,h和k,看到这种题目一定要想如何确定一个维度,然后再按照另一个维度重新排列。
一定要先确定一个维度,再确定另一个维度。
如果两个维度一起考虑一定会顾此失彼。
对于本题相信大家困惑的点是先确定k还是先确定h呢,也就是究竟先按h排序呢,还是先按照k排序呢?
如果按照k来从小到大排序,排完之后,会发现k的排列并不符合条件,身高也不符合条件,两个维度哪一个都没确定下来。
那么按照身高h来排序呢,身高一定是从大到小排(身高相同的话则k小的站前面),让高个子在前面。
此时我们可以确定一个维度了,就是身高,前面的节点一定都比本节点高!
那么只需要按照k为下标重新插入队列就可以了,为什么呢?
以图中{5,2} 为例:
按照身高排序之后,优先按身高高的people的k来插入,后序插入节点也不会影响前面已经插入的节点,最终按照k的规则完成了队列。
所以在按照身高从大到小排序后:
局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性
全局最优:最后都做完插入操作,整个队列满足题目队列属性
局部最优可推出全局最优,找不出反例,那就试试贪心。
回归本题,整个插入过程如下:
排序完的people: [[7,0], [7,1], [6,1], [5,0], [5,2],[4,4]]
插入的过程:
此时就按照题目的要求完成了重新排列。
链表实现,代码如下:
class Solution {
public int[][] reconstructQueue(int[][] people) {
// 身高从大到小排(身高相同k小的站前面)
Arrays.sort(people, (a, b) -> {
// 当身高相同时,将K按照从小到大排序
if (a[0] == b[0]) return a[1] - b[1];
// 身高不同按照由大到小的顺序来排
return b[0] - a[0];
});
LinkedList<int[]> que = new LinkedList<>();
// 再按照K进行插入排序,优先插入K小的
for (int[] p : people) {
que.add(p[1],p); //Linkedlist.add(index, value),会将value插入到指定index里。
}
return que.toArray(new int[people.length][]);
}
}
力扣题目链接
有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组 points
,其中points[i] = [xstart, xend]
表示水平直径在 xstart
和 xend
之间的气球。你不知道气球的确切 y 坐标。
一支弓箭可以沿着 x 轴从不同点 完全垂直 地射出。在坐标 x
处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart
,xend
, 且满足 xstart ≤ x ≤ xend
,则该气球会被 引爆 。可以射出的弓箭的数量 没有限制 。 弓箭一旦被射出之后,可以无限地前进。
给你一个数组 points
,返回引爆所有气球所必须射出的 最小 弓箭数 。
给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
示例 1:
示例 2:
示例 3:
示例 4:
示例 5:
提示:
0 <= points.length <= 10^4
points[i].length == 2
-2^31 <= xstart < xend <= 2^31 - 1
如何使用最少的弓箭呢?
局部最优:当气球出现重叠,一起射,所用弓箭最少。
全局最优:把所有气球射爆所用弓箭最少。
为了让气球尽可能的重叠,需要对数组进行排序。 对左边界进行排序
既然按照起始位置排序,那么就从前向后遍历气球数组,靠左尽可能让气球重复。
从前向后遍历遇到重叠的气球了怎么办?
如果气球重叠了,重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭。
以题目示例: [[10,16],[2,8],[1,6],[7,12]]为例,如图:(方便起见,已经排序)
可以看出首先第一组重叠气球,一定是需要一个箭,气球3,的左边界大于了 第一组重叠气球的最小右边界,所以再需要一支箭来射气球3了。
代码如下:
/**
* 时间复杂度 : O(NlogN) 排序需要 O(NlogN) 的复杂度
* 空间复杂度 : O(logN) java所使用的内置函数用的是快速排序需要 logN 的空间
*/
class Solution {
public int findMinArrowShots(int[][] points) {
// 根据气球直径的开始坐标从小到大排序
// 使用Integer内置比较方法,不会溢出
Arrays.sort(points, (a, b) -> Integer.compare(a[0], b[0]));
int count = 1; // points 不为空至少需要一支箭
for (int i = 1; i < points.length; i++) {
if (points[i][0] > points[i - 1][1]) { //左边界大于右边界,一定要用一个弓箭了, 气球i和气球i-1不挨着,注意这里不是>=
count++; // 需要一支箭
} else { // 气球i和气球i-1挨着
points[i][1] = Math.min(points[i][1], points[i - 1][1]); // 更新重叠气球最小右边界
}
}
return count;
}
}