算法训练day34|贪心算法 part03(LeetCode 1005.K次取反后最大化的数组和、134. 加油站、135. 分发糖果(处理一边再处理一边))

文章目录

  • 1005.K次取反后最大化的数组和
    • 思路分析
    • 代码实现
  • 134. 加油站
    • 暴力方法
    • 贪心方法
  • 135. 分发糖果(处理一边再处理一边)
    • 思路分析
    • 代码实现
    • 思考总结

1005.K次取反后最大化的数组和

题目链接
给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。)
以这种方式修改数组后,返回数组可能的最大和。

示例 1:
输入:A = [4,2,3], K = 1
输出:5
解释:选择索引 (1,) ,然后 A 变为 [4,-2,3]。

示例 2:
输入:A = [3,-1,0,2], K = 3
输出:6
解释:选择索引 (1, 2, 2) ,然后 A 变为 [3,1,0,2]。

示例 3:
输入:A = [2,-3,-1,5,-4], K = 2
输出:13
解释:选择索引 (1, 4) ,然后 A 变为 [2,3,-1,5,4]。

提示:
1 <= A.length <= 10000
1 <= K <= 10000
-100 <= A[i] <= 100

思路分析

局部最优:让绝对值大的负数变为正数,当前数值达到最大,整体最优:整个数组和达到最大。
局部最优可以推出全局最优。

那么如果将负数都转变为正数了,K依然大于0,此时的问题是一个有序正整数序列,如何转变K次正负,让 数组和 达到最大。

那么又是一个贪心:
局部最优:只找数值最小的正整数进行反转,当前数值和可以达到最大(例如正整数数组{5, 3, 1},反转1 得到-1 比 反转5得到的-5 大多了),
全局最优:整个 数组和 达到最大。
那么本题的解题步骤为:

  • 第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
  • 第二步:从前向后遍历,遇到负数将其变为正数,同时K–
  • 第三步:如果K还大于0,那么反复转变数值最小的元素,将K用完
  • 第四步:求和

代码实现

class Solution {
public:
    static bool compare(int a,int b){
        return(abs(a)>abs(b));
    }
    int largestSumAfterKNegations(vector<int>& nums, int k) {
        sort(nums.begin(),nums.end(),compare);
        for(int i=0;i<nums.size()&&k>0;i++){
            if(nums[i]<0){
                nums[i]*=-1;
                k--;
            }
        }
        if(k%2==1) nums[nums.size()-1]*=-1;
        int result=0;
        for(int i=0;i<nums.size();i++) {
            cout<<nums[i];
            result+=nums[i];
        }
        return result;
    }
};

记录一个错误

第一次写成这样了

class Solution {
public:
    bool compare(int a,int b){//注意这里
        return(abs(a)>abs(b));
    }
    int largestSumAfterKNegations(vector<int>& nums, int k) {
        sort(nums.begin(),nums.end(),compare);
        ...
    }
};

就报错了,这是因为compare 函数是一个非静态成员函数,这意味着它与类的实例相关联。然而,在调用 sort 函数时,它期望一个普通的(非成员函数)比较器。
两种可能的方法
方法 1:将 compare 定义为静态成员函数

class Solution {
public:
    static bool compare(int a, int b) {
        return (abs(a) > abs(b));
    }

    int largestSumAfterKNegations(vector<int>& nums, int k) {
        sort(nums.begin(), nums.end(), compare);
        // 其他部分保持不变
    }
};

方法 2:将 compare 定义在类的外部

bool compare(int a, int b) {
    return (abs(a) > abs(b));
}

class Solution {
public:
    int largestSumAfterKNegations(vector<int>& nums, int k) {
        sort(nums.begin(), nums.end(), compare);
        // 其他部分保持不变
    }
};

这两种方法都将 compare 函数与类的实例无关,从而可以在 sort 函数中正常使用。


134. 加油站

题目链接
在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。

说明:
如果题目有解,该答案即为唯一答案。
输入数组均为非空数组,且长度相同。
输入数组中的元素均为非负数。

示例 1: 输入:
gas = [1,2,3,4,5]
cost = [3,4,5,1,2]
输出: 3 解释:

  • 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
  • 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
  • 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
  • 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
  • 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
  • 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
  • 因此,3 可为起始索引。

示例 2: 输入:
gas = [2,3,4]
cost = [3,4,3]
输出: -1
解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油。开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油。开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油。你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。因此,无论怎样,你都不可能绕环路行驶一周。

暴力方法

暴力的方法很明显就是O(n^2)的,遍历每一个加油站为起点的情况,模拟一圈。

如果跑了一圈,中途没有断油,而且最后油量大于等于0,说明这个起点是ok的。

暴力的方法思路比较简单,但代码写起来也不是很容易,关键是要模拟跑一圈的过程。

for循环适合模拟从头到尾的遍历,而while循环适合模拟环形遍历,要善于使用while!

C++代码如下:

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        for (int i = 0; i < cost.size(); i++) {
            int rest = gas[i] - cost[i]; // 记录剩余油量
            int index = (i + 1) % cost.size();
            while (rest > 0 && index != i) { // 模拟以i为起点行驶一圈(如果有rest==0,那么答案就不唯一了)
                rest += gas[index] - cost[index];
                index = (index + 1) % cost.size();
            }
            // 如果以i为起点跑一圈,剩余油量>=0,返回该起始位置
            if (rest >= 0 && index == i) return i;
        }
        return -1;
    }
};

贪心方法

如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。

每个加油站的剩余量rest[i]为gas[i] - cost[i]。

i从0开始累加rest[i],和记为curSum,一旦curSum小于零,说明[0, i]区间都不能作为起始位置,因为这个区间选择任何一个位置作为起点,到i这里都会断油,那么起始位置从i+1算起,再从0计算curSum。

如图:
算法训练day34|贪心算法 part03(LeetCode 1005.K次取反后最大化的数组和、134. 加油站、135. 分发糖果(处理一边再处理一边))_第1张图片
那么为什么一旦[0,i] 区间和为负数,起始位置就可以是i+1呢,i+1后面就不会出现更大的负数?

如果出现更大的负数,就是更新i,那么起始位置又变成新的i+1了。

那有没有可能 [0,i] 区间 选某一个作为起点,累加到 i这里 curSum是不会小于零呢? 如图:

算法训练day34|贪心算法 part03(LeetCode 1005.K次取反后最大化的数组和、134. 加油站、135. 分发糖果(处理一边再处理一边))_第2张图片
如果 curSum<0 说明 区间和1 + 区间和2 < 0, 那么 假设从上图中的位置开始计数curSum不会小于0的话,就是 区间和2>0。

区间和1 + 区间和2 < 0 同时 区间和2>0,只能说明区间和1 < 0, 那么就会从假设的箭头初就开始从新选择其实位置了。

那么局部最优:当前累加rest[i]的和curSum一旦小于0,起始位置至少要是i+1,因为从i之前开始一定不行。全局最优:找到可以跑一圈的起始位置。

局部最优可以推出全局最优,找不出反例,试试贪心!

整体代码:

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        int curSum=0;
        int totalSum=0;
        int startIndex=0;
        for(int i=0;i<gas.size();i++){
            curSum+=gas[i]-cost[i];
            totalSum+=gas[i]-cost[i];
            if(curSum<0) {       // 当前累加rest[i]和 curSum一旦小于0
                curSum=0;        // 起始位置更新为i+1
                startIndex=i+1;  // curSum从0开始      
            }
        }
        if(totalSum<0) return -1; // 说明怎么走都不可能跑一圈了
        return startIndex;
    }
};

135. 分发糖果(处理一边再处理一边)

题目链接
老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。
你需要按照以下要求,帮助老师给这些孩子分发糖果:

  • 每个孩子至少分配到 1 个糖果。
  • 相邻的孩子中,评分高的孩子必须获得更多的糖果。

那么这样下来,老师至少需要准备多少颗糖果呢?

示例 1:
输入: [1,0,2]
输出: 5
解释: 你可以分别给这三个孩子分发 2、1、2 颗糖果。

示例 2:
输入: [1,2,2]
输出: 4
解释: 你可以分别给这三个孩子分发 1、2、1 颗糖果。第三个孩子只得到 1 颗糖果,这已满足上述两个条件。

思路分析

这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼。

先确定右边评分大于左边的情况(也就是从前向后遍历)

此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果

局部最优可以推出全局最优。

如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1

// 从前向后
for (int i = 1; i < ratings.size(); i++) {
    if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
}

算法训练day34|贪心算法 part03(LeetCode 1005.K次取反后最大化的数组和、134. 加油站、135. 分发糖果(处理一边再处理一边))_第3张图片
再确定左孩子大于右孩子的情况(从后向前遍历)

遍历顺序这里有同学可能会有疑问,为什么不能从前向后遍历呢?

因为 rating[5]与rating[4]的比较 要利用上 rating[5]与rating[6]的比较结果,所以 要从后向前遍历。

如果从前向后遍历,rating[5]与rating[4]的比较 就不能用上 rating[5]与rating[6]的比较结果了 。如图:

算法训练day34|贪心算法 part03(LeetCode 1005.K次取反后最大化的数组和、134. 加油站、135. 分发糖果(处理一边再处理一边))_第4张图片
所以确定左孩子大于右孩子的情况一定要从后向前遍历!

如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。

那么又要贪心了,局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,保证第i个小孩的糖果数量既大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩子获得更多的糖果。

局部最优可以推出全局最优。

所以就取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,candyVec[i]只有取最大的才能既保持对左边candyVec[i - 1]的糖果多,也比右边candyVec[i + 1]的糖果多。
算法训练day34|贪心算法 part03(LeetCode 1005.K次取反后最大化的数组和、134. 加油站、135. 分发糖果(处理一边再处理一边))_第5张图片

// 从后向前
for (int i = ratings.size() - 2; i >= 0; i--) {
    if (ratings[i] > ratings[i + 1] ) {
        candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
    }
}

代码实现

class Solution {
public:
    int candy(vector<int>& ratings) {
        int result=0;
        vector<int> candy(ratings.size(),1);
        for(int i=1;i<ratings.size();i++){
            if(ratings[i]>ratings[i-1]) candy[i]=candy[i-1]+1;
        }
        for(int i=ratings.size()-1;i>0;i--){
            if(ratings[i]<ratings[i-1]) candy[i-1]=max(candy[i]+1,candy[i-1]);
        }
        for(int candy:candy){
            result+=candy;
        }
        return result;
    }
};

思考总结

本题涉及到一个思想,就是想处理好一边再处理另一边,不要两边想着一起兼顾
采用了两次贪心的策略:

  • 一次是从左到右遍历,只比较右边孩子评分比左边大的情况。
  • 一次是从右到左遍历,只比较左边孩子评分比右边大的情况。

你可能感兴趣的:(算法,算法,c++,数据结构,leetcode,贪心算法)