- 如何在GNSS信号丢失时依然保持精准导航?
EriccoShaanxi
技术文章无人机算法数据结构人工智能
在无人机飞行、自动驾驶或水下探测等场景中,GNSS信号遮挡或干扰是常见挑战。ER-GNSS/MINS-03组合导航系统凭借深度融合的GNSS/INS技术,即使在卫星信号中断时,也能持续提供高精度定位、姿态和速度数据,确保任务不间断执行。战术级MEMS惯性器件,稳定可靠该系统采用高性能MEMS陀螺仪(零偏不稳定性<0.3°/h)和加速度计(零偏不稳定性<10μg),结合全温补偿技术,在-40℃~+8
- 无人机3控接力模式技术分析
云卓SKYDROID
无人机云卓科技遥控器通道高科技
一、运行方式1.接力控制流程位置触发切换:飞控中心实时监测无人机位置,当进入预设的切换路线(如靠近下一个机库或控制器覆盖范围)时,触发切换流程。控制权请求与验证:当前控制器(如控制器A)向目标控制器(控制器B)发送接管请求。控制器B分析无人机与自身的空间关系(如竖直夹角需在20°~30°范围内),满足条件则接收控制权,否则拒绝。密钥认证接管:目标控制器与无人机通过握手机制交换序列号,飞控中心下发加
- 数学建模_插值
wwer142526363
数学建模
什么是插值拉格朗日插值法埃尔米特插值法三次样条插值法matlab应用分段三次埃尔米特插值法三次样条插值法(更好更光滑二维插值详见上机篇什么是插值省略插值法定理拉格朗日插值法牛顿插值法省略埃尔米特插值法三次样条插值法省略样条插值法matlab应用分段三次埃尔米特插值法详见上机篇三次样条插值法(更好更光滑二维插值详见上机篇上机篇24分钟开始
- 无人设备遥控器之RTK技术篇
SKYDROID云卓小助手
信号处理人工智能嵌入式硬件算法自动化
RTK(Real-TimeKinematic,实时动态差分)技术是一种基于载波相位测量的高精度卫星导航定位技术,在无人设备(如无人机、无人车、无人船)遥控器中应用广泛,可显著提升设备的定位精度与作业效能。一、技术原理:载波相位差分实现厘米级定位RTK技术的核心在于通过基准站与流动站(无人设备)之间的实时数据交互,消除卫星信号传播过程中的公共误差,实现厘米级定位精度。具体流程如下:基准站观测:部署在
- 回归预测 | MATLAB实现LSTM-SVR(长短期记忆神经网络-支持向量机)多输入单输出
matlab科研社
神经网络回归matlab
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍长短期记忆神经网络(LSTM)作为一种循环神经网络(RNN)的变体,擅长处理序列数据并捕捉长期依赖关系,而支持向量机(SVR)则是一种强大的回归算法,能够有效地处理高维数据并防止过拟合。将两者结合的LSTM
- 近期股票分析个人看法 欢迎加入讨论
niuniu15816888
财经区块链
这是今天收市三大指数的行情,未来有持续上涨的空间。今天的涨势平稳没有波动性接下来周三周四持续上涨,一样幅度不大。有稳健前行的趋势,周五有所下跌。再分析一下板块,今年的热点板块离不开军工行业,我们可以回忆一下:印巴冲突,以伊冲突,巴黎航展,九天无人机首飞,都会有很强的涨势,随着九月阅兵将会展示更多的装备,将会有更强势的走势。静下心来我们就不难发现是什么原因会让这些票这么活跃。从对等关税之后,原来优质
- 深度学习目标检测之YOLOv3实战(二)训练自己的图像数据
郎郎不会飞
深度学习目标识别python深度学习
深度学习目标检测之YOLOv3实战(二)训练自己的图像数据数据集准备数据集预处理原demo修改数据集训练目标检测补充二零二零年的大年初一,给大家拜个年,祝大家鼠年吉祥,万事如意,趁着喜气,把Yolov3训练自己的数据过程,记录一下,共勉共进。同样,无人机搭载山狗拍摄的视频,目标检测的种类是模型tank和airplane,部分效果图镇贴:数据集准备首先需要将自己的数据集准备好,不同场景下的目标数据尽
- 【锂电池SOC估计】 Matlab基于BP神经网络的锂电池SOC估计
天天Matlab代码科研顾问
matlab神经网络开发语言
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍摘要:电池荷电状态(StateofCharge,SOC)的精确估计对于电动汽车、储能系统等应用至关重要。传统的SOC估计方法存在精度受限、算法复杂等问题。本文提出了一种基于反向传播(BackPropagation,BP)神经网络的锂电池SO
- 分类预测 | MATLAB实现BP神经网络多特征分类预测
matlab科研社
分类matlab神经网络
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍近年来,随着大数据时代的到来以及计算能力的显著提升,人工智能技术得到了飞速发展。在众多人工智能算法中,反向传播神经网络(BackPropagationNeuralNetwork,BP神经网络)凭借其强大的非
- 海思Hi3519DV500方案1200万无人机吊舱套板
weixin_Todd_Wong2010
嵌入式硬件AI前端边缘计算图像处理
海思Hi3519DV500方案1200万无人机吊舱套板Hi3519DV500是一颗面向行业市场推出的超高清智能网络摄像头SoC。该芯片最高支持四路sensor输入,支持最高4K@30fps的ISP图像处理能力,支持2FWDR、多级降噪、六轴防抖、全景拼接、多光谱融合等多种传统图像增强和处理算法,支持通过AI算法对输入图像进行实时降躁等处理,为用户提供了卓越的图像处理能力,集成了高效的神经网络推理引
- 重排利器:行列式点过程(DPP)在推荐系统中的应用
Jay Kay
推荐算法数学建模推荐算法
在推荐系统的重排阶段,我们常面临结果同质化问题——精排结果相似物料扎堆,导致用户体验单调。行列式点过程(DeterminantalPointProcesses,DPP)通过数学建模相关性与多样性的平衡,成为解决该问题的经典方案。一、DPP的核心思想DPP将推荐列表视为一个点过程,其核心是计算子集出现的概率。给定候选集(Z)(精排输出的Top-N物料),DPP定义子集(Y\subseteqZ)出现的
- 机器学习中的数学:数学建模常用知识点-1
数字化与智能化
机器学习中的数学机器学习凸函数泰勒公式Jensen不等式
一、凸函数1、凸函数讲解设函数f(x)是定义在区间X上的函数,若对于区间上任意两点x1、x2和任意实数��∈(0,1),总有如下表达式成立:则称为f(x)是X上的凸函数;反之,如果下式成立:则称为f(x)在X上的凹函数。如图所示:Python实现凸函数:importnumpyasnpimportmatplotlib.pyplotasplt#定义凸函数defconvex_function(x):re
- 航天VR赋能,无人机总测实验舱开启高效新篇
ykjhr_3d
vr无人机
(一)沉浸式培训体验在传统的无人机培训中,操作人员主要通过理论学习和简单的模拟操作来掌握技能。但这种方式存在很大局限性,难以让操作人员真正感受无人机在复杂环境下的运行状态。而航天VR技术引入到VR无人机总测实验舱后,彻底改变了这一局面。操作人员戴上VR设备,就能瞬间“置身”于VR无人机总测实验舱的虚拟场景中,这里的一切都无比逼真,仿佛真实存在。在虚拟场景里,操作人员可以全方位、多角度地观察无人机的
- web端rtmp推拉流测试、抽帧识别计数,一键式生成巡检报告
(ECUT)Edward-tan
全栈开发python进阶人工智能--CV全栈YOLO
本文旨在实现无人机城市交通智慧巡检中的一个模块——无人机视频实时推拉流以及识别流并在前端展示,同时,统计目标数量以及违停数量,生成结果评估,一并发送到前端展示。对于本文任何技术上的空缺,可在博主主页前面博客寻找,有任何问题欢迎私信或评论区讨论!!!目录涉及技术栈基本效果存在的问题,亟需解决代码及粗略解释资源涉及技术栈:Django5+vue3+websocket+SRS+FFmpeg+RTMP+Y
- 前端领域前端框架的优缺点大剖析
前端视界
前端大数据与AI人工智能前端艺匠馆前端前端框架ai
前端领域主流框架的优缺点大剖析关键词:React、Vue、Angular、Svelte、虚拟DOM、响应式编程、前端工程化摘要:本文深入解析React、Vue、Angular、Svelte四大主流前端框架的核心设计原理,通过架构图解、算法源码剖析、数学建模和实战对比,揭示各框架在性能优化、开发体验、工程实践等方面的本质差异。文章包含6个完整项目案例和20+性能基准测试数据,为技术选型提供科学决策依
- 专用寻北仪如何突破煤矿井下作业空间限制?
EriccoShaanxi
技术文章无人机数据结构人工智能
在煤矿井下液压支架等狭窄空间作业中,传统寻北设备往往因体积庞大、重量过高而难以适配。然而,ER-MNS-10AMEMS寻北仪的诞生彻底打破了这一局限。作为全球最薄、最轻的寻北仪,其厚度仅14mm、重量40g,凭借颠覆性的MEMS陀螺技术,为井下作业提供了前所未有的灵活性与精度。无论是液压支架的姿态控制,还是无人机的初始对准,它都能以轻巧之躯,扛起高精度寻北的重任。极致轻薄,颠覆传统设计ER-MNS
- CKESC的ROCK 180A-H 无人机电调:100V 高压冗余设计与安全保护解析
UAV_ckesc
无人机无人机电调无人机配件无人机动力垂起固定翼冗余电调
一、核心技术参数与性能指标电压范围:支持12~26S锂电(适配110V高压系统)电流特性:持续工作电流:90A(特定散热条件)瞬时耐流(1秒):220A,3秒最大电流180A响应特性:油门响应时间400ms(可定制),电机转速滞后100~150ms防护等级:IP55(可定制IP68),适配复杂环境作业数据输出:3线制串口接口,实时传输电压、电流、转速等10项参数二、安全冗余设计与保护机制(1)多重
- 数学建模-模糊性综合评价模型
viperrrrrrr
数学建模
前言hellohello~,这里是viperrrrrrr~,欢迎大家点赞关注收藏个人主页:viperrrrrrr的博客欢迎学习数学建模算法、大数据、前端等知识,让我们一起向目标进发!对于算法的都可以在上面数据结构的专栏进行学习哦~有问题可以写在评论区或者私信我哦~目录2.1指标体系构建2.2数据收集及预处理我将通过以下的问题求解来介绍模糊性综合评价:中医药是中国传统文化的重要组成部分,凝聚了中华民
- 清风数学建模个人笔记--模糊综合评价
fvdj0
数学建模笔记
目录一、量二、分类三、模糊函数的三种表示方法四、应用:模糊综合评价(评判)一、量①确定性:经典数学(几何、代数)②不确定性:随机性(概率论、随机过程)灰性(灰色系统)模糊性(模糊数学)二、分类:偏小型:年轻、小、冷中间型:中年、中、暖偏大型:年老、大、热三、模糊函数的三种表示方法(1)模糊统计法(设计调查问卷,不推荐,主观性最弱)(2)借助已有的尺度(需要已有的指标,并能收集到数据)论域模糊集隶属
- 用无人机和AI守护高原净土:高海拔自然保护区的垃圾检测新方法
是纯一呀
DeepLearningAI无人机人工智能计算机视觉
这篇题为《AutomaticDetectionofScatteredGarbageRegionsUsingSmallUnmannedAerialVehicleLow-AltitudeRemoteSensingImagesforHigh-AltitudeNaturalReserveEnvironmentalProtection》的论文,发表于EnvironmentalScience&Technolo
- 第十六届蓝桥杯C/C++程序设计研究生组国赛 国二
岁忧
刷题那件三两事蓝桥杯蓝桥杯c语言c++算法
应该是最后一次参加蓝桥杯比赛了,很遗憾,还是没有拿到国一。大二第一次参加蓝桥杯,印象最深刻的是居然不知道1s是1000ms,花了很多时间在这题,后面节奏都乱了,抗压能力也不行,身体也不适。最后省二。大三第二次参加蓝桥杯,中间也打了其他比赛,数学建模、ccpc这些,抗压能力提升很大,哈哈哈哈,刷的题也很多啦,印象当中,做出来了很多道dp题,很有成就感,最后国二。大四保研,gap了一年。研一第三次参加
- 基于Matlab的四旋翼无人机动力学PID控制仿真,具体内容包括:
资深码侬
matlab无人机开发语言
基于Matlab的四旋翼无人机动力学PID控制仿真,具体内容包括:运用欧拉方程对地面坐标到机体坐标的转换矩阵进行了推导在无人机动力学模型基础上,采用经典PID控制算法对其内环姿态和外环位置进行控制说明文档:①详细推导四旋翼飞行器的数学模型②PID控制器的设计、位置回路控制器设计、姿态回路控制器设计③PID参数调整④仿真结果分析98文章目录**1.四旋翼飞行器的数学模型****旋转矩阵推导****2
- 基于OpenCv(开源计算机视觉库)的图像旋转匹配
我在北京coding
计算机视觉opencv人工智能
OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库,具有跨平台特性,广泛应用于工业检测、医疗影像分析、自动驾驶、无人机、机器人视觉等多个领域。本项目解决了图像模板匹配时的旋转问题。传统的模板匹配方法往往假设目标模板在搜索图像中的位置和方向与原图完全一致,但在实际应用中,目标可能因视角变化而发生旋转。因此,旋转匹配成为一种必要的技术。
- 2025国际无人机应用及防控大会四大技术专题深度解析
小幽余生不加糖
低空经济行业资讯无人机学习笔记
2025国际无人机应用及防控大会四大技术专题深度解析2025国际无人机应用及防控大会四大技术专题深度解析1无人机系统技术专题技术特点与应用领域国内领军企业及案例风险挑战与发展方向2测控与通信导航技术专题技术创新与应用突破领先企业及解决方案现存问题与发展趋势3任务载荷与智能识别技术专题技术突破与创新应用创新企业及场景落地瓶颈挑战与未来方向4智能无人控制技术专题技术层级与创新突破代表企业与应用场景风险
- 【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波——附3个算法源码
1.卡尔曼滤波卡尔曼滤波是一种线性最优估计方法,用于估计动态系统的状态。在姿态解算中,我们可以使用卡尔曼滤波来融合陀螺仪和加速度计的数据,以获得更稳定的姿态估计。以下是一个简单的卡尔曼滤波器实现:```c#include"kalman.h"voidKalman_Init(Kalman_TypeDef*Kalman){Kalman->P[0][0]=1;Kalman->P[1][1]=1;Kalma
- 基于分布式部分可观测马尔可夫决策过程与联邦强化学习的低空经济智能协同决策框架
pk_xz123456
算法无人机分布式算法matlab人工智能制造开发语言
基于分布式部分可观测马尔可夫决策过程与联邦强化学习的低空经济智能协同决策框架摘要:低空经济作为新兴战略产业,其核心场景(如无人机物流、城市空中交通、低空监测)普遍面临环境动态性强、个体观测受限、数据隐私敏感及多智能体协同复杂等挑战。本文创新性地提出一种深度融合分布式部分可观测马尔可夫决策过程(Dec-POMDP)与联邦强化学习(FederatedReinforcementLearning,FRL)
- 【Unity 如何模拟无人机真实飞行操作、姿态(超详细!!一篇全方面解答)】ProfessionalAssets 插件在 Unity 中的使用(无人机飞行控制,真实姿态展示,完整配置以及问题解决)
想要逆袭的摆烂大师
Unityunity无人机游戏引擎
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、ProfessionalAssets插件二、飞行操作按键配置1.配置InputManager2.配置操作按键三、无人机模拟飞行参数设置四、无人机最终飞行效果展示总结前言该文章解决的问题:下载并使用ProfessionalAssets插件配置无人机飞行操作按键无人机模拟飞行参数设置,详解展示无人机真实模拟控制效果一、Pr
- 无人机机巢充换电
无人机长了一个脑袋
无人机
无人机机巢充换电技术是实现无人机全自动作业的核心功能,主要包含自动充电、电池更换及能源管理系统,其核心价值在于延长作业时长、提升响应效率并降低人工依赖。具体技术特点与应用如下:一、充换电技术实现方式自动充电系统高效能源管理:支持主流无人机品牌快充协议(如PD/QC),动态调整充电功率以保护电池寿命,充电功率单端口≥200W。精准对接:通过RTK+视觉双重定位技术,确保无人机降落精度达±
- “MOOOA多目标鱼鹰算法在无人机多目标路径规划
Matlab建模攻城师
粉丝福利算法无人机
一、MOOOA算法的核心原理与多目标扩展1.基础鱼鹰优化算法(OOA)的生物启发机制OOA模拟鱼鹰捕鱼的两阶段行为:探索阶段(定位与捕鱼):鱼鹰随机探测鱼群位置并俯冲攻击,对应全局搜索。位置更新公式为:xi,jnew=xi,j+rand×(SFi,j−I×xi,j)x_{i,j}^{new}=x_{i,j}+\text{rand}\times(SF_{i,j}-I\timesx_{i,j})xi,
- 无人机 资料 (basic)
qqqweiweiqq
drone笔记
可以先按照这个博主的买所有的组件搭起来Howtobuilda7-inchlongrangeFPVDronefor$150https://www.youtube.com/watch?v=0jOUTYBneVo按照下面的这个小哥去买ESC呗https://www.youtube.com/watch?v=myyC8T7Jbsw下面的视频解析了drone的飞行https://www.youtube.com
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比