- (一)大数据---Hadoop整体介绍(架构层)----(组件(3)
2401_84166965
程序员大数据hadoop架构
复杂性:体现在数据的管理和操作上。如何抽取,转换,加载,连接,关联以把握数据内蕴的有用信息已经变得越来越有挑战性二、大数据技术有哪些(重点)===================================================================================基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计
- 正式开源:使用Kafka FDW 加载数据到 Apache Cloudberry™
数据库开源软件
ApacheCloudberry™(Incubating)由GreenplumDatabase核心开发者创建,是一款领先且成熟的开源大规模并行处理(MassivelyParallelProcessing,MPP)数据库。它基于开源版的PivotalGreenplumDatabase®衍生而来,但采用了更新的PostgreSQL内核,并具备更先进的企业级功能。Cloudberry可以作为数据仓库使用
- 数仓_数据口径
TTXS123456789ABC
#XM1离线数仓_金融零售大数据
数仓_数据口径数据口径含义数据口径包含口径收敛数据口径含义在数据仓库(数仓)中,数据口径是指在数据统计和分析过程中,对数据的定义、计算方法、范围和标准等方面的详细规定。它确保了数据的一致性和准确性,避免因统计标准不一致导致的数据误解和混淆。数据口径包含具体来说,数据口径包括以下几个方面:数据定义:明确指标的具体含义。例如,“用户注册数”指的是在某一定时间内通过平台注册的新用户数量。计算方法:规定如
- 数据仓库和数据湖 数据仓库和数据库
qq_25467441
数据仓库数据库
数据仓库和数据湖是两种不同的数据存储解决方案,它们在设计、用途和数据管理方式上有着显著的区别。以下是数据仓库和数据湖的主要区别:1.数据结构:•数据仓库:通常存储结构化数据,这些数据经过清洗、转换和加载(ETL)过程,以确保数据的一致性和准确性。数据仓库中的数据通常是预定义模式的,便于进行快速查询和分析。•数据湖:可以存储结构化、半结构化和非结构化数据。数据湖不需要预定义的模式,数据可以以其原始格
- 数据仓库、数据湖和数据湖仓
阿湯哥
数据仓库spark大数据
数据仓库、数据湖和数据湖仓是三种常见的数据存储和管理技术,各自有不同的特点和适用场景。以下是它们的详细比较:1.数据仓库(DataWarehouse)定义:用于存储结构化数据,经过清洗、转换和建模,支持复杂的查询和分析。特点:结构化数据:主要处理关系型数据。预定义模式:数据在加载前需要定义模式(Schema-on-Write)。高性能查询:优化用于复杂查询和报表生成。数据治理:提供强大的数据治理和
- 数据库MySQL 8.0.32安装包网盘资源下载(附教程)
听风说雨的人儿
数据库mysql百度云
如大家所熟悉的,MySQL是一个开源的关系型数据库管理系统(RDBMS)。它使用SQL(结构化查询语言)来管理数据,允许用户定义表、字段、索引和关系,并通过SQL语句来查询、更新和管理数据。MySQL支持多种操作系统,包括Windows、Linux和MacOS等,并且广泛用于各种应用程序中,如Web应用程序、数据仓库和电子商务系统等。MySQL的优势:成本效益与开源特性作为一个开源数据库,MySQ
- 数据仓库与数据湖的协同工作:智慧数据管理的双引擎
Echo_Wish
实战高阶大数据人工智能科技大数据
数据仓库与数据湖的协同工作:智慧数据管理的双引擎引言在数据驱动的今天,企业和组织收集和存储的数据量正以惊人的速度增长。如何高效管理和利用这些数据,成为了决策者和技术专家的共同难题。为了解决这一问题,数据仓库(DataWarehouse)和数据湖(DataLake)这两种技术应运而生,分别在不同的应用场景中发挥着重要作用。然而,随着数据管理需求的日益复杂,单一的数据仓库或数据湖并无法完全满足现代企业
- MariaDB数据库部署
m0_修道成仙
Linuxlinux数据库
MariaDB数据库·数据库介绍·MySQL与MariaDB·数据库部署1.安装MariaDB数据库2.重启mariadb服务并加入开机启动项3.!数据库初始化4.设置防火墙策略5.登录数据库·数据库常用语句·创建数据库·查询指定位置数据·数据库备份·彻底删除数据库·恢复数据·数据库介绍数据库:是指按照某些特定结构来存储数据资料的数据仓库数据库管理系统:是一种能够对数据库中存放的数据进行建立、修改
- 数据总线/一致性维度/总线矩阵
DouMiaoO_Oo
数据仓库
数据孤岛企业内部各个系统中的数据被隔离在不同的数据库中,无法进行共享和整合,严重影响了企业的决策能力和运营效率。数据仓库数据总线一种技术解决方案,旨在实现数据仓库与各个数据源之间的数据集成、交换和共享,通常做法是将所有的数据源连接到一条共享的数据总线上。数据总线通过建立数据集成层,实现了不同数据源之间的数据传输和转换,从而打破数据孤岛,实现数据共享。数据总线连接多个数据源,并将数据按照一定的规则进
- Apache Iceberg 与 Apache Hudi:数据湖领域的双雄对决
夜里慢慢行456
大数据大数据
在数据存储和处理不断发展的领域中,数据湖仓的概念已经崭露头角,成为了一种变革性的力量。数据湖仓结合了数据仓库和数据湖的最佳元素,提供了一个统一的平台,支持数据科学、商业智能、人工智能/机器学习以及临时报告等多种关键功能。这种创新的方法不仅促进了实时分析,还显著降低了平台成本,增强了数据治理,并加速了用例的实现。数据存储和处理的演变催生了被称为数据湖仓的现代分析平台。这些平台旨在解决传统架构的局限性
- 探索数据云的无缝桥梁:Apache Spark 与 Snowflake 的完美结合
窦育培
探索数据云的无缝桥梁:ApacheSpark与Snowflake的完美结合spark-snowflakeSnowflakeDataSourceforApacheSpark.项目地址:https://gitcode.com/gh_mirrors/sp/spark-snowflake项目介绍在大数据处理的浩瀚宇宙中,Snowflake以其独特的云数据仓库能力闪耀,而ApacheSpark则是数据分析和
- 数据仓库与数据挖掘记录 二
匆匆整棹还
数据仓库数据挖掘人工智能
1.数据仓库的产生从20世纪80年代初起直到90年代初,联机事务处理一直是关系数据库应用的主流。然而,应用需求在不断地变化,当联机事务处理系统应用到一定阶段时,企业家们便发现单靠拥有联机事务处理系统已经不足以获得市场竞争的优势,他们需要对其自身业务的运作以及整个市场相关行业的态势进行分析,进而做出有利的决策。这种决策需要对大量的业务数据包括历史业务数据进行分析才能得到。把这种基于业务数据的决策分析
- 数据仓库与数据挖掘记录 三
匆匆整棹还
数据挖掘
数据仓库的数据存储和处理数据的ETL过程数据ETL是用来实现异构数据源的数据集成,即完成数据的抓取/抽取、清洗、转换.加载与索引等数据调和工作,如图2.2所示。1)数据提取(Extract)从多个数据源中获取原始数据(如数据库、日志文件、API、云存储等)。数据源可能是结构化(如MySQL)、半结构化(如JSON)、非结构化(如文本)。关键技术:SQL查询、Web爬虫、日志采集工具(如Flume)
- 高聚合 低耦合
草藤木屋
软件设计DataWarehouse软件工程高聚合低耦合高聚合低耦合
这是软件工程中的概念。首先要知道一个软件是由多个子程序组装而成,而一个程序由多个模块(方法)构成!内聚就是指程序内的各个模块之间的关系紧密程度。偶合就是各个外部程序(子程序)之间的关系紧密程度.。所以很易明白,为什么要高内聚?模块之间的关系越紧密,出错就越少!低偶合?子程序间的关系越复杂,就会产生更多的意想不到的错误!会给以后的维护工作带来很多麻烦!同样的,可以将这个思想用在建设企业数据仓库上。做
- 数据湖和数据仓库的区别?
春风不会绿大地
大数据数据仓库
简介数据湖这个概念和数据仓库这两个概念一直搞不清楚,之前感觉区别就是数据湖是数据仓库的父集。数据湖是个伪命题,平时生活中也用不到,然后今天听了我的一个师哥的讲解,然后简单总结下。常见的问题1数据湖和数据仓库的区别?相似点:都可以处理海量数据,都是为了得到有价值的数据。不同点:架构上,数仓基本要求符合DDL定义的结构,数据湖则湖纳百川。数据上,数仓为结构化数据设计,数据湖,湖纳百川。模块上,数仓一般
- 新型大数据架构之湖仓一体(Lakehouse)架构特性说明——Lakehouse 架构(一)
m0_74825238
面试学习路线阿里巴巴大数据架构
文章目录为什么需要新的数据架构?湖仓一体(Lakehouse)——新的大数据架构模式同时具备数仓与数据湖的优点湖仓一体架构存储层计算层湖仓一体特性单一存储拥有数据仓库的查询性能存算分离开放式架构支持各种数据源类型支持各种使用方式架构简单数据共享schema过滤和推演时间回溯为什么需要新的数据架构?数据仓库和数据湖一直是实现数据平台最流行的架构,然而,过去几年,社区一直在努力利用不同的数据架构方法来
- 分布式架构设计全解:以银行系统为例
聚合收藏
本文还有配套的精品资源,点击获取简介:分布式架构设计对于银行处理实时交易和数据分析至关重要,本文深入分析了Hadoop、F5、Dubbo和SpringCloud等技术在银行项目中的实际应用。Hadoop用于构建大数据仓库并支持数据分析,F5优化网络流量并确保高可用性,Dubbo和SpringCloud实现服务间的通信和微服务架构。通过这些技术的集成,银行可以建立高效且弹性的IT基础设施,满足快速变
- hive数仓的分层与建模
korry24
hivehadoop数据仓库
Hive数据仓库分层和数据建模是一种常见的数据仓库设计方法,旨在通过分层的方式组织数据,提高数据的可维护性、可复用性和查询性能。以下是关于Hive数据仓库分层和数据建模的详细知识:一、Hive数据仓库分层数据仓库通常采用分层架构,目的是将数据按照不同的处理阶段和用途进行划分,便于管理和优化。常见的分层架构包括以下四层:1.ODS(OperationalDataStore,操作数据存储层)作用:OD
- HiveQL命令(三)- Hive函数
BigDataMagician
HiveQL命令hivehadoop数据仓库
文章目录前言一、Hive内置函数1.数值函数2.字符串函数3.日期与时间函数4.条件函数5.聚合函数6.集合函数7.类型转换函数8.表生成函数(UDTF)前言在大数据处理和分析的过程中,数据的转换和处理是至关重要的环节。ApacheHive作为一种流行的数据仓库工具,提供了丰富的内置函数,帮助用户高效地处理和分析存储在Hadoop分布式文件系统(HDFS)中的数据。这些内置函数涵盖了数值计算、字符
- 企业智能分析BI:洞察数据,驱动未来
用友协同与数据服务
大数据
在数据驱动的今天,企业运营不再仅仅依赖于直觉和经验,而是越来越多地依赖于深入的数据分析和精准的商业洞察。企业智能分析BI(BusinessIntelligence)系统,作为企业数据管理的得力助手,正在以其卓越的数据分析能力,帮助企业解锁数据潜能,驱动业务增长。企业智能分析BI系统,是一种运用数据仓库、在线分析和数据挖掘技术来处理和分析数据的崭新技术,目的是帮助企业决策者做出更好的决策。它像一把钥
- 第十一章数据仓库和商务智能
joewdc
DAMA-CDGA数据仓库大数据
如有需要题库可私聊我,题库都会了话,cdga基本都能过,但是光刷题库有点囫囵吞枣,不建议。单选题(每题1分,共26道题)1、[单选]数据仓库建设的主要驱动力A:整合数据、减少冗余和提高信息一致性B:运营支持职能、合规需求和商务智能活动C:数据集成、分析应用和决策支持D:客户和消费者的剧增、分析的需求、企业统一管控的需求正确答案:B你的答案:B解析:290页11.1.1第一行,选B,AC与题干无关,
- 关于阿里云DataWorks的20道面试题
编织幻境的妖
阿里云云计算
1.请简要介绍阿里云DataWorks的基本概念和主要功能。阿里云DataWorks是一个全链路的大数据开发治理平台,其主要功能包括数据集成、数据建模与开发、数据地图、数据质量和数据服务等。DataWorks的基本概念围绕其作为一个大数据开发和治理的平台,它整合了多种大数据引擎如MaxCompute、Hologres、EMR、AnalyticDB、CDP等,旨在为数据仓库、数据湖及湖仓一体化解决方
- 掌握大数据--Hive全面指南
纪祥_ee1
大数据hivehadoop
1.Hive简介2.Hive部署方式3.Hive的架构图4.Hive初体验5.HiveSQL语法--DDL操作数据库1.Hive简介ApacheHive是建立在Hadoop之上的一个数据仓库工具,它提供了一种类似于SQL的查询语言,称为HiveQL,用于查询和分析存储在Hadoop分布式文件系统(HDFS)中的大规模结构化数据。以下是Hive的一些主要特点和介绍:1.类SQL查询语言:HiveSQ
- BIEE7本中英书籍合集:商业智能学习提升全攻略
含老司开挖掘机
本文还有配套的精品资源,点击获取简介:OracleBusinessIntelligenceEnterpriseEdition(BIEE)是一个强大的商业智能平台,涵盖了数据可视化、分析和决策支持。本套书籍资源包包括7本中英文资料,为初学者提供全面的BIEE理解和技能提升。内容涵盖基础概念、安装配置、用户界面操作、分析功能、报表发布、交互式仪表板设计、数据仓库管理和最新版功能介绍,是学习BIEE的理
- 【面试系列】后端开发工程师 高频面试题及详细解答
野老杂谈
全网最全IT公司面试宝典面试职场和发展后端开发工程师
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏:⭐️全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题.⭐️AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。⭐️全流程数据技术实战指南:全面讲解从数据采集到数据可视化的整个过程,掌握构建现代化数据平台和数据仓库的核心技术和方法。文章目录常见的初级面试题1.请解释一下REST
- 关于ETL的两种架构(ETL架构和ELT架构)
不会写代码的女程序猿
etl架构数据仓库
ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。ETL是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。ETL在转化的过程中,主要体现在以
- 关于ETL的两种架构(ETL架构和ELT架构)
不会写代码的女程序猿
etl架构数据仓库
ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。ETL是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。ETL在转化的过程中,主要体现在以
- 【面试系列】软件架构师 高频面试题及详细解答
野老杂谈
全网最全IT公司面试宝典面试职场和发展软件构建
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏:工重hao:野老杂谈⭐️全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题.⭐️AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。⭐️全流程数据技术实战指南:全面讲解从数据采集到数据可视化的整个过程,掌握构建现代化数据平台和数据仓库的核心技术和方法。⭐️构建全面的数据指标体系
- 2024-JAVA-大数据-面试汇总_大数据java部门面试(1)
2401_84141419
程序员java大数据面试
判断投票信息中的选举状态:就回答到这,后来下来百度了一下。。。32hive了解吗?Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能33.说说内部表和外部表的区别?内部表的数据是由Hive自身管理的,外部表的数据是由HDFS管理的;删除内部表会删除元数据和存储的数据;删除外部表只删除元数据不删除存储的数据34,你知道UDF吗?UDF就是H
- HIVE常见面试题
兔子宇航员0301
数据开发小白成长笔记hivehadoop数据仓库
1.简述hiveHive是一个构建在Hadoop之上的数据仓库工具,主要用于处理和查询存储在HDFS上的大规模数据。Hive通过将结构化的数据文件映射成表,并提供类SQL的查询功能,使得用户可以通过编写SQL语句来进行数据分析,而不需要编写复杂的MapReduce程序2.简述hive读写文件机制Hive读写文件机制主要依赖Hadoop的HDFS(分布式文件系统)和MapReduce(计算框架)。
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,