实战:大数据Flink CDC同步Mysql数据到ElasticSearch

文章目录

    • 前言
    • 知识积累
      • CDC简介
      • CDC的种类
      • 常见的CDC方案比较
    • Springboot接入Flink CDC
      • 环境准备
      • 项目搭建
    • 本地运行
    • 集群运行
      • 将项目打包将包传入集群启动
      • 远程将包部署到flink集群
    • 写在最后

前言

前面的博文我们分享了大数据分布式流处理计算框架Flink和其基础环境的搭建,相信各位看官都已经搭建好了自己的运行环境。那么,今天就来实战一把使用Flink CDC同步Mysql数据导Elasticsearch。

知识积累

CDC简介

CDC 的全称是 Change Data Capture(变更数据捕获技术) ,在广义的概念上,只要是能捕获数据变更的技术,我们都可以称之为 CDC 。目前通常描述的 CDC 技术主要面向数据库的变更,是一种用于捕获数据库中数据变更的技术。
实战:大数据Flink CDC同步Mysql数据到ElasticSearch_第1张图片

CDC的种类

CDC 的技术方案非常多,目前业界主流的实现机制可以分为两种:
基于查询的 CDC:
◆离线调度查询作业,批处理。把一张表同步到其他系统,每次通过查询去获取表中最新的数据;
◆无法保障数据一致性,查的过程中有可能数据已经发生了多次变更;
◆不保障实时性,基于离线调度存在天然的延迟。
基于日志的 CDC:
◆实时消费日志,流处理,例如 MySQL 的 binlog 日志完整记录了数据库中的变更,可以把 binlog 文件当作流的数据源;
◆保障数据一致性,因为 binlog 文件包含了所有历史变更明细;
◆保障实时性,因为类似 binlog 的日志文件是可以流式消费的,提供的是实时数据。

常见的CDC方案比较

实战:大数据Flink CDC同步Mysql数据到ElasticSearch_第2张图片

Springboot接入Flink CDC

由于Flink官方提供了Java、Scala、Python语言接口用以开发Flink应用程序,故我们可以直接用Maven引入Flink依赖进行功能实现。

环境准备

1、SpringBoot 2.4.3
2、Flink 1.13.6
3、Scala 2.11
4、Maven 3.6.3
5、Java 8
6、mysql 8
7、es 7
Springboot、Flink、Scala版本一定要相匹配,也可以严格按照本博客进行配置。
注意:
如果只是本机测试玩玩,Maven依赖已经整合计算环境,不用额外搭建Flink环境;如果需要部署到Flink集群则需要额外搭建Flink集群。另外Scala 版本只是用于依赖选择,不用关心Scala环境。

项目搭建

1、引入Flink CDC Maven依赖

pom.xml


    org.springframework.boot
    spring-boot-starter-parent
    2.4.3
     

com.example
flink-demo
0.0.1-SNAPSHOT
flink-demo
Demo project for Spring Boot

    8
    UTF-8
    UTF-8
    1.13.6


    
        org.springframework.boot
        spring-boot-starter-web
    
    
        mysql
        mysql-connector-java
        8.0.23
    
    
    
        com.ververica
        flink-connector-mysql-cdc
        2.1.0
        
            
                org.apache.flink
                flink-shaded-guava
            
        
    

    
    
        org.apache.flink
        flink-connector-elasticsearch7_2.11
        ${flink.version}
    

    
    
        org.apache.flink
        flink-json
        ${flink.version}
    

    
    
        org.apache.flink
        flink-table-api-java-bridge_2.11
        ${flink.version}
    

    
    
        org.apache.flink
        flink-table-planner_2.11
        ${flink.version}
    
    
        org.apache.flink
        flink-table-planner-blink_2.11
        ${flink.version}
    

    
    
        org.apache.flink
        flink-clients_2.11
        ${flink.version}
    
    
        org.apache.flink
        flink-java
        ${flink.version}
    
    
    
        org.apache.flink
        flink-streaming-java_2.11
        ${flink.version}
    
    
    
        org.springframework.boot
        spring-boot-starter-test
        test
    

2、创建测试数据库表users

users表结构

CREATE TABLE `users` (
  `id` bigint NOT NULL AUTO_INCREMENT COMMENT 'ID',
  `name` varchar(50) NOT NULL COMMENT '名称',
  `birthday` timestamp NULL DEFAULT NULL COMMENT '生日',
  `ts` timestamp NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci COMMENT='用户';

3、es索引操作

es操作命令
es索引会自动创建

#设置es分片与副本
curl -X PUT "10.10.22.174:9200/users" -u elastic:VaHcSC3mOFfovLWTqW6E   -H 'Content-Type: application/json' -d'
{
    "settings" : {
        "number_of_shards" : 3,
        "number_of_replicas" : 2
    }
}'

#查询index下全部数据 
curl -X GET "http://10.10.22.174:9200/users/_search"  -u elastic:VaHcSC3mOFfovLWTqW6E -H 'Content-Type: application/json' 

#删除index
curl -X DELETE "10.10.22.174:9200/users" -u elastic:VaHcSC3mOFfovLWTqW6E

本地运行

@SpringBootTest
class FlinkDemoApplicationTests {

    /**
     * flinkCDC
     * mysql to es
     * @author senfel
     * @date 2023/8/22 14:37 
     * @return void
     */
    @Test
    void flinkCDC() throws Exception{
        EnvironmentSettings fsSettings = EnvironmentSettings.newInstance()
                //.useBlinkPlanner()
                .inStreamingMode()
                .build();
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env,fsSettings);
        tableEnv.getConfig().setSqlDialect(SqlDialect.DEFAULT);
        // 数据源表
        String sourceDDL =
                "CREATE TABLE users (\n" +
                        "  id BIGINT PRIMARY KEY NOT ENFORCED ,\n" +
                        "  name STRING,\n" +
                        "  birthday TIMESTAMP(3),\n" +
                        "  ts TIMESTAMP(3)\n" +
                        ") WITH (\n" +
                        "      'connector' = 'mysql-cdc',\n" +
                        "      'hostname' = '10.10.10.202',\n" +
                        "      'port' = '6456',\n" +
                        "      'username' = 'root',\n" +
                        "      'password' = 'MyNewPass2021',\n" +
                        "      'server-time-zone' = 'Asia/Shanghai',\n" +
                        "      'database-name' = 'cdc',\n" +
                        "      'table-name' = 'users'\n" +
                        "      )";
        // 输出目标表
        String sinkDDL =
                "CREATE TABLE users_sink_es\n" +
                        "(\n" +
                        "    id BIGINT PRIMARY KEY NOT ENFORCED,\n" +
                        "    name STRING,\n" +
                        "    birthday TIMESTAMP(3),\n" +
                        "    ts TIMESTAMP(3)\n" +
                        ") \n" +
                        "WITH (\n" +
                        "  'connector' = 'elasticsearch-7',\n" +
                        "  'hosts' = 'http://10.10.22.174:9200',\n" +
                        "  'index' = 'users',\n" +
                        "  'username' = 'elastic',\n" +
                        "  'password' = 'VaHcSC3mOFfovLWTqW6E'\n" +
                        ")";
        // 简单的聚合处理
        String transformSQL = "INSERT INTO users_sink_es SELECT * FROM users";

        tableEnv.executeSql(sourceDDL);
        tableEnv.executeSql(sinkDDL);
        TableResult result = tableEnv.executeSql(transformSQL);
        result.print();
        env.execute("mysql-to-es");
    }

请求es用户索引发现并无数据:

[root@bluejingyu-1 ~]# curl -X GET “http://10.10.22.174:9200/users/_search” -u elastic:VaHcSC3mOFfovLWTqW6E -H ‘Content-Type: application/json’
{“took”:0,“timed_out”:false,“_shards”:{“total”:3,“successful”:3,“skipped”:0,“failed”:0},“hits”:{“total”:{“value”:0,“relation”:“eq”},“max_score”:null,“hits”:[]}}

操作mysql数据库新增多条数据

5 senfel 2023-08-30 15:02:28 2023-08-30 15:02:36
6 sebfel2 2023-08-30 15:02:43 2023-08-30 15:02:47

再次获取es用户索引查看数据

[root@bluejingyu-1 ~]# curl -X GET “http://10.10.22.174:9200/users/_search” -u elastic:VaHcSC3mOFfovLWTqW6E -H ‘Content-Type: application/json’
{“took”:67,“timed_out”:false,“_shards”:{“total”:3,“successful”:3,“skipped”:0,“failed”:0},“hits”:{“total”:{“value”:2,“relation”:“eq”},“max_score”:1.0,“hits”:[{“_index”:“users”,“_type”:“_doc”,“_id”:“5”,“_score”:1.0,“_source”:{“id”:5,“name”:“senfel”,“birthday”:“2023-08-30 15:02:28”,“ts”:“2023-08-30 15:02:36”}},{“_index”:“users”,“_type”:“_doc”,“_id”:“6”,“_score”:1.0,“_source”:{“id”:6,“name”:“sebfel2”,“birthday”:“2023-08-30 15:02:43”,“ts”:“2023-08-30 15:02:47”}}]}}

由上测试结果可知本地运行无异常。

集群运行

项目树:
实战:大数据Flink CDC同步Mysql数据到ElasticSearch_第3张图片

1、创建集群运行代码逻辑

/**
 * FlinkMysqlToEs
 * @author senfel
 * @version 1.0
 * @date 2023/8/22 14:56
 */
public class FlinkMysqlToEs {

    public static void main(String[] args) throws Exception {
        EnvironmentSettings fsSettings = EnvironmentSettings.newInstance()
                //.useBlinkPlanner()
                .inStreamingMode()
                .build();
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env,fsSettings);
        tableEnv.getConfig().setSqlDialect(SqlDialect.DEFAULT);
        // 数据源表
        String sourceDDL =
                "CREATE TABLE users (\n" +
                        "  id BIGINT PRIMARY KEY NOT ENFORCED ,\n" +
                        "  name STRING,\n" +
                        "  birthday TIMESTAMP(3),\n" +
                        "  ts TIMESTAMP(3)\n" +
                        ") WITH (\n" +
                        "      'connector' = 'mysql-cdc',\n" +
                        "      'hostname' = '10.10.10.202',\n" +
                        "      'port' = '6456',\n" +
                        "      'username' = 'root',\n" +
                        "      'password' = 'MyNewPass2021',\n" +
                        "      'server-time-zone' = 'Asia/Shanghai',\n" +
                        "      'database-name' = 'cdc',\n" +
                        "      'table-name' = 'users'\n" +
                        "      )";
        // 输出目标表
        String sinkDDL =
                "CREATE TABLE users_sink_es\n" +
                        "(\n" +
                        "    id BIGINT PRIMARY KEY NOT ENFORCED,\n" +
                        "    name STRING,\n" +
                        "    birthday TIMESTAMP(3),\n" +
                        "    ts TIMESTAMP(3)\n" +
                        ") \n" +
                        "WITH (\n" +
                        "  'connector' = 'elasticsearch-7',\n" +
                        "  'hosts' = 'http://10.10.22.174:9200',\n" +
                        "  'index' = 'users',\n" +
                        "  'username' = 'elastic',\n" +
                        "  'password' = 'VaHcSC3mOFfovLWTqW6E'\n" +
                        ")";
        // 简单的聚合处理
        String transformSQL = "INSERT INTO users_sink_es SELECT * FROM users";

        tableEnv.executeSql(sourceDDL);
        tableEnv.executeSql(sinkDDL);
        TableResult result = tableEnv.executeSql(transformSQL);
        result.print();
        env.execute("mysql-to-es");
    }
}

2、集群运行需要将Flink程序打包,不同于普通的jar包,这里必须采用shade


    flink-demo
    
        
            org.apache.maven.plugins
            maven-shade-plugin
            3.2.4
            
                
                    package
                    
                        shade
                    
                    
                        false
                        
                            
                                com.google.code.findbugs:jsr305
                                org.slf4j:*
                                log4j:*
                            
                        
                        
                            
                                *:*
                                
                                    module-info.class
                                    META-INF/*.SF
                                    META-INF/*.DSA
                                    META-INF/*.RSA
                                
                            
                        
                        
                            
                                META-INF/spring.handlers
                                reference.conf
                            
                            
                                META-INF/spring.factories
                            
                            
                                META-INF/spring.schemas
                            
                            
                            
                                com.example.flinkdemo.FlinkMysqlToEs
                            
                        
                    
                
            
        
    

将项目打包将包传入集群启动

1、项目打包
mvn package -Dmaven.test.skip=true

2、手动上传到服务器拷贝如集群内部运行:
/opt/flink/bin# ./flink run …/flink-demo.jar

3、测试操作mysql数据库

删除id =6只剩下id=5的用户

5 senfel000 2023-08-30 15:02:28 2023-08-30 15:02:36

4、查询es用户索引

[root@bluejingyu-1 ~]# curl -X GET “http://10.10.22.174:9200/users/_search” -u elastic:VaHcSC3mOFfovLWTqW6E -H ‘Content-Type: application/json’
{“took”:931,“timed_out”:false,“_shards”:{“total”:3,“successful”:3,“skipped”:0,“failed”:0},“hits”:{“total”:{“value”:1,“relation”:“eq”},“max_score”:1.0,“hits”:[{“_index”:“users”,“_type”:“_doc”,“_id”:“5”,“_score”:1.0,“_source”:{“id”:5,“name”:“senfel”,“birthday”:“2023-08-30 15:02:28”,“ts”:“2023-08-30 15:02:36”}}]}}[

如上所示es中只剩下了id==5的数据;
经测试手动部署到集群环境成功。

远程将包部署到flink集群

1、新增controller触发接口

/**
 * remote runTask
 * @author senfel
 * @date 2023/8/30 16:57 
 * @return org.apache.flink.api.common.JobID
 */
@GetMapping("/runTask")
public JobID runTask() {
    try {
        // 集群信息
        Configuration configuration = new Configuration();
        configuration.setString(JobManagerOptions.ADDRESS, "10.10.22.91");
        configuration.setInteger(JobManagerOptions.PORT, 6123);
        configuration.setInteger(RestOptions.PORT, 8081);
        RestClusterClient  client = new RestClusterClient<>(configuration, StandaloneClusterId.getInstance());
        //jar包存放路径,也可以直接调用hdfs中的jar
        File jarFile = new File("input/flink-demo.jar");
        SavepointRestoreSettings savepointRestoreSettings = SavepointRestoreSettings.none();
        //构建提交任务参数
        PackagedProgram program = PackagedProgram
                .newBuilder()
                .setConfiguration(configuration)
                .setEntryPointClassName("com.example.flinkdemo.FlinkMysqlToEs")
                .setJarFile(jarFile)
                .setSavepointRestoreSettings(savepointRestoreSettings).build();
        //创建任务
        JobGraph jobGraph = PackagedProgramUtils.createJobGraph(program, configuration, 1, false);
        //提交任务
        CompletableFuture result = client.submitJob(jobGraph);
        return result.get();
    } catch (Exception e) {
        e.printStackTrace();
        return null;
    }
}

2、启动Springboot项目
实战:大数据Flink CDC同步Mysql数据到ElasticSearch_第4张图片

3、postman请求
实战:大数据Flink CDC同步Mysql数据到ElasticSearch_第5张图片
4、查看Fink集群控制台
实战:大数据Flink CDC同步Mysql数据到ElasticSearch_第6张图片

由上图所示已将远程部署完成。

5、测试操作mysql数据库

5 senfel000 2023-08-30 15:02:28 2023-08-30 15:02:36
7 eeeee 2023-08-30 17:12:00 2023-08-30 17:12:04
8 33333 2023-08-30 17:12:08 2023-08-30 17:12:11

6、查询es用户索引

[root@bluejingyu-1 ~]# curl -X GET “http://10.10.22.174:9200/users/_search” -u elastic:VaHcSC3mOFfovLWTqW6E -H ‘Content-Type: application/json’
{“took”:766,“timed_out”:false,“_shards”:{“total”:3,“successful”:3,“skipped”:0,“failed”:0},“hits”:{“total”:{“value”:3,“relation”:“eq”},“max_score”:1.0,“hits”:[{“_index”:“users”,“_type”:“_doc”,“_id”:“5”,“_score”:1.0,“_source”:{“id”:5,“name”:“senfel000”,“birthday”:“2023-08-30 15:02:28”,“ts”:“2023-08-30 15:02:36”}},{“_index”:“users”,“_type”:“_doc”,“_id”:“7”,“_score”:1.0,“_source”:{“id”:7,“name”:“eeeee”,“birthday”:“2023-08-30 17:12:00”,“ts”:“2023-08-30 17:12:04”}},{“_index”:“users”,“_type”:“_doc”,“_id”:“8”,“_score”:1.0,“_source”:{“id”:8,“name”:“33333”,“birthday”:“2023-08-30 17:12:08”,“ts”:“2023-08-30 17:12:11”}}]}}

如上所以es中新增了两条数据;
经测试远程发布Flink Task完成。

写在最后

大数据Flink CDC同步Mysql数据到ElasticSearch搭建与测试运行较为简单,对于基础的学习测试环境独立集群目前只支持单个任务部署,如果需要多个任务或者运用于生产可以采用Yarn与Job分离模式进行部署。

你可能感兴趣的:(大数据,flink,docker,大数据,flink,mysql,elasticsearch,cdc)