Comparable和Comparator接口都是实现集合中元素的比较、排序的,下面先简单介绍下他们的用法。
public class Person {
private String name;
private Integer age;
public Person() {}
public Person(String name, Integer age) {
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Integer getAge() {
return age;
}
public void setAge(Integer age) {
this.age = age;
}
@Override
public String toString() {
return "Person{" +
"name='" + name + '\'' +
", age=" + age +
'}';
}
@Override
public int compareTo(Person o) {
return this.age - o.age;
}
}
ArrayList<Person> list = new ArrayList<>();
list.add(new Person("朱一百",100));
list.add(new Person("朱八零",80));
list.add(new Person("朱八一",81));
list.add(new Person("朱九零",90));
list.add(new Person("朱八二",82));
list.add(new Person("朱七七",77));
list.add(new Person("朱八八",88));
list.add(new Person("朱重八",88));
public class Person implements Comparable<Person>{
......
@Override
public int compareTo(Person o) {
if (this.getAge() < o.getAge()) {
return -1;
} else if (this.getAge() > o.getAge()) {
return 1;
} else {
return this.getName().compareTo(o.getName());
}
}
}
public class ComparableTest {
public static void main(String[] args) {
......
Collections.sort(list);
list.forEach(System.out::println);
}
}
public class PersonComparator implements Comparator<Person> {
@Override
public int compare(Person o1, Person o2) {
if (o1.getAge() < o2.getAge()) {
return -1;
} else if (o1.getAge() > o2.getAge()) {
return 1;
} else {
return o1.getName().compareTo(o2.getName());
}
}
}
public class ComparatorTest {
public static void main(String[] args) {
......
Collections.sort(list,new PersonComparator());
list.forEach(System.out::println);
}
}
以上的两个例子输出的结果如下所示:
Person{name='朱七七', age=77}
Person{name='朱八零', age=80}
Person{name='朱八一', age=81}
Person{name='朱八二', age=82}
Person{name='朱八八', age=88}
Person{name='朱啊八', age=88}
Person{name='朱九零', age=90}
Person{name='朱一百', age=100}
按照年龄升序排列,年龄相同时按照姓名升序排序。
在上面的例子中我们分别实现了compare()
和compareTo()
对集合继续宁排序,但是我们想知道方法返回-1、0、1对集合排序的关系。
List#sort() =>ArrayList#sort() => Arrays#sort() ⇒ ComparableTimSort#sort() ⇒ ComparableTimSort.#countRunAndMakeAscending()
可以看到到Comparator c == null 时进入sort()
方法,当我们实现Comparator进行排序时,进入的方法就应该是 TimSort.sort()
countRunAndMakeAscending方法如下:
private static int countRunAndMakeAscending(Object[] a, int lo, int hi) {
assert lo < hi;
int runHi = lo + 1;
if (runHi == hi)
return 1;
if (((Comparable) a[runHi++]).compareTo(a[lo]) < 0) { // Descending
while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) < 0)
runHi++;
reverseRange(a, lo, runHi);
} else { // Ascending
while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) >= 0)
runHi++;
}
return runHi - lo;
}
如果当前子序列是"递减"的,也就是 a[runHi] 小于 a[lo],那么需要找到连续"递减"的子序列的结束位置 runHi。直到找到第一个不满足"递减"条件的元素。然后,调用 reverseRange 方法将"递减"的子序列反转为"递增"的子序列。
如果当前子序列是"递增"的,也就是 a[runHi] 大于等于 a[lo],那么需要找到连续"递增"的子序列的结束位置 runHi。
最后,返回 runHi - lo,即子序列的长度。
private static void binarySort(Object[] a, int lo, int hi, int start) {
assert lo <= start && start <= hi;
if (start == lo)
start++;
for ( ; start < hi; start++) {
Comparable pivot = (Comparable) a[start];
int left = lo;
int right = start;
assert left <= right;
/*
* Invariants:
* pivot >= all in [lo, left).
* pivot < all in [right, start).
*/
while (left < right) {
int mid = (left + right) >>> 1;
// pivot元素的索引比a[mid]的索引大
// pivot元素在数组中比a[mid]靠后
if (pivot.compareTo(a[mid]) < 0)
right = mid;
else
left = mid + 1;
}
assert left == right;
int n = start - left; // The number of elements to move
// Switch is just an optimization for arraycopy in default case
switch (n) {
case 2: a[left + 2] = a[left + 1];
case 1: a[left + 1] = a[left];
break;
default: System.arraycopy(a, left, a, left + 1, n);
}
a[left] = pivot;
}
}
这个方法做的事情如下:
countRunAndMakeAscending()
方法 start位置之前的集合是有序的,于是start位置开始,pivot=array[start]
,使用二分查找法对start之前已经有序的数组比对,从start下标开始从后往前找,找到start下标之前第一个大于array[start]的元素下标index;n = start - left
做了优化,但是目的是将[left, start-1]范围内的数组值都向后移动一位,放在 [left+1~start],再把pivot的值赋予array[left];我们实现的compareTo()
方法返回-1 0 1 和集合的排序是升序或者降序没有直接的关系,在上面的方法我们可以看到的是compareTo()
返回会导致如下结果:
所以我们应该能比较清楚的知道返回-1 0 1 给我们排序带来的效果了,比如上方的pivot.compareTo(a[mid])
pivot在数组中比a[mid]靠后,当 if (this.getAge() < o.getAge()) {return -1};
我们希望pivot的age小于a[mid]时交换位置,最后排序的结果就是年龄的升序,如果if (this.getAge() < o.getAge()) {return 1};
最后排序的结果就是年龄的降序