Python Opencv实践 - Shi-Tomasi角点检测

参考资料:Harris和Shi-tomasi角点检测笔记(详细推导)_harris焦点检测_亦枫Leonlew的博客-CSDN博客

 cv.goodFeaturesToTrack:Shi-Tomasi角点检测-OpenCV-python_独憩的博客-CSDN博客

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread("../SampleImages/armcore.jpg", cv.IMREAD_COLOR)
plt.imshow(img[:,:,::-1])

#转换为灰度图像
img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
plt.imshow(img_gray, plt.cm.gray)


#Shi-Tomasi角点检测
#corners = cv.goodFeaturesToTrack( image, maxCorners, qualityLevel, minDistance[, corners[, mask[, blockSize[, useHarrisDetector[, k]]]]] )
#  image:8位或32位浮点型输入图像,单通道
#  maxCorners:角点数目最大值,如果实际检测的角点超过此值,则只返回前maxCorners个强角点
#  qualityLevel:角点的品质因子,0-1中的数字
#  minDistance:对于初选出的角点而言,如果在其周围minDistance范围内存在其他更强角点,则将此角点删除
#  _mask:指定感兴趣区,如不需在整幅图上寻找角点,则用此参数指定ROI
#  blockSize:计算协方差矩阵时的窗口大小
#  useHarrisDetector:指示是否使用Harris角点检测,如不指定,则计算shi-tomasi角点
#  harrisK:Harris角点检测需要的k值
#  一般来说,可以只输入image maxCorners, qualityLevel, minDistanc
#参考资料:https://blog.csdn.net/qq_54517101/article/details/121762965
corners = cv.goodFeaturesToTrack(img_gray, 800, 0.09, 5)
#绘制角点
for corner in corners:
    x,y = corner.ravel()
    cv.circle(img, (int(x),int(y)), 2, (0,255,0), -1)

plt.imshow(img[:,:,::-1])

Python Opencv实践 - Shi-Tomasi角点检测_第1张图片

Python Opencv实践 - Shi-Tomasi角点检测_第2张图片

Python Opencv实践 - Shi-Tomasi角点检测_第3张图片 Python Opencv实践 - Shi-Tomasi角点检测_第4张图片

你可能感兴趣的:(OpenCV实践-python,opencv,人工智能,计算机视觉,图像处理,python)