学习视频:序列模型【动手学深度学习v2】
官方笔记:序列模型
想象一下有人正在看网飞(Netflix,一个国外的视频网站)上的电影。 一名忠实的用户会对每一部电影都给出评价, 毕竟一部好电影需要更多的支持和认可。 然而事实证明,事情并不那么简单。 随着时间的推移,人们对电影的看法会发生很大的变化。 事实上,心理学家甚至对这些现象起了名字:
简而言之,电影评分决不是固定不变的。 因此,使用时间动力学可以得到更准确的电影推荐,当然,序列数据不仅仅是关于电影评分的。 下面给出了更多的场景。
对p(x)进行展开
RNN属于潜变量模型
总结:
- 时序模型中,当前数据跟之前观察到的数据相关
- 自回归模型使用自身过去数据预测未来
- 马尔科夫模型假设当前只跟最近少数数据相关,从而简化模型
- 潜变量模型使用潜变量来概括历史信息
在了解了上述统计工具后,让我们在实践中尝试一下! 首先,我们生成一些数据:使用正弦函数和一些可加性噪声来生成序列数据, 时间步为1,2,…1000
tau = 4
features = torch.zeros((T - tau,tau))
for i in range(tau):
'''
features[:,0]=x[0:996]
features[:,1]=x[1:997]
features[:,2]=x[2:998]
features[:,3]=x[3:999]
'''
features[:,i] = x[i:T - tau + i]
labels = x[tau:].reshape((-1,1))
batch_size,n_train = 16,600
# 只有前n_train个样本用于训练
train_iter = d2l.load_array((features[:n_train],labels[:n_train]),
batch_size,is_train=True)
在这里,我们使用一个相当简单的架构训练模型: 一个拥有两个全连接层的多层感知机,ReLU激活函数和平方损失。
# 初始化网络权重的函数
def init_weights(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
# 一个简单的多层感知机
def get_net():
net = nn.Sequential(nn.Linear(4, 10),
nn.ReLU(),
nn.Linear(10, 1))
net.apply(init_weights)
return net
# 平方损失。注意:MSELoss计算平方误差时不带系数1/2
loss = nn.MSELoss(reduction='none')
准备训练模型
def train(net, train_iter, loss, epochs, lr):
trainer = torch.optim.Adam(net.parameters(), lr)
for epoch in range(epochs):
for X, y in train_iter:
trainer.zero_grad()
l = loss(net(X), y)
l.sum().backward()
trainer.step()
print(f'epoch {epoch + 1}, '
f'loss: {d2l.evaluate_loss(net, train_iter, loss):f}')
net = get_net()
train(net, train_iter, loss, 5, 0.01)
由于训练损失很小,因此我们期望模型能有很好的工作效果。 让我们看看这在实践中意味着什么。 首先是检查模型预测下一个时间步的能力, 也就是单步预测(one-step-ahead prediction)。
onestep_preds = net(features)
d2l.plot([time, time[tau:]],
[x.detach().numpy(), onestep_preds.detach().numpy()], 'time',
'x', legend=['data', '1-step preds'], xlim=[1, 1000],
figsize=(6, 3))
multistep_preds = torch.zeros(T)
multistep_preds[: n_train + tau] = x[: n_train + tau]
for i in range(n_train + tau, T):
multistep_preds[i] = net(
multistep_preds[i - tau:i].reshape((1, -1)))
d2l.plot([time, time[tau:], time[n_train + tau:]],
[x.detach().numpy(), onestep_preds.detach().numpy(),
multistep_preds[n_train + tau:].detach().numpy()], 'time',
'x', legend=['data', '1-step preds', 'multistep preds'],
xlim=[1, 1000], figsize=(6, 3))
max_steps = 64
features = torch.zeros((T - tau - max_steps + 1, tau + max_steps))
# 列i(i
for i in range(tau):
features[:, i] = x[i: i + T - tau - max_steps + 1]
# 列i(i>=tau)是来自(i-tau+1)步的预测,其时间步从(i)到(i+T-tau-max_steps+1)
for i in range(tau, tau + max_steps):
features[:, i] = net(features[:, i - tau:i]).reshape(-1)
steps = (1, 4, 16, 64)
d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],
[features[:, (tau + i - 1)].detach().numpy() for i in steps], 'time', 'x',
legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],
figsize=(6, 3))
以上例子清楚地说明了当我们试图预测更远的未来时,预测的质量是如何变化的。 虽然“4步预测”看起来仍然不错,但超过这个跨度的任何预测几乎都是无用的。