- 鸿蒙 ArkTS 开发知识点全体系(HarmonyOS NEXT 架构)
码农乐园
harmonyos架构华为
一、基础知识:ArkTS语言与项目结构1.ArkTS基础语法(华为增强TypeScript)类型声明与推导函数与箭头函数类、接口、枚举、泛型模块导入与导出装饰器语法(@Entry、@Component等)异步编程(async/await)2.DevEcoStudio开发环境项目创建与构建模拟器配置与真机调试工程结构(entry、pages、resources、common、config.json)
- ZYNQ无DMA的四路HP总线极限性能探索
芯作者
D1:ZYNQ设计fpga开发硬件工程智能硬件
深入挖掘AXIHP总线的直接传输潜力,突破传统DMA的性能瓶颈一、HP总线:ZYNQ系统的"高速公路"在XilinxZYNQ架构中,HP(HighPerformance)总线是连接PS(处理器系统)和PL(可编程逻辑)的关键通道。传统方案依赖DMA控制器进行数据传输,但当我们需要超低延迟或确定性响应时,无DMA的直接CPU控制成为更优选择。本文将揭示如何通过四路HP总线实现惊人的24GB/s理论带
- 高斯混合模型GMM&K均值(十三-1)——K均值是高斯混合模型的特例
phoenix@Capricornus
模式识别与机器学习均值算法机器学习算法
EM算法与K均值算法的关系K均值可以看成是高斯混合模型的特例。对K均值算法与EM算法进行比较后,可以发现它们之间有很大的相似性。K均值算法将数据点硬(hard)分配到聚类中,每个数据点唯一地与一个聚类相关联,而EM算法基于后验概率进行软(soft)分配。事实上,可以从EM算法推导出K均值算法。考虑一个高斯混合模型,其中混合分量的协方差矩阵由σ2I{\sigma^2}Iσ2I给出,其中σ2{\sig
- 基于灰色马尔科夫模型预测人口数量,是一种结合灰色系统理论(处理少数据、不确定性)与马尔科夫链(描述随机波动)的融合预测方法
利用灰色模型捕捉人口变化的总体趋势,再通过马尔科夫链修正因随机因素导致的预测偏差,从而提高预测精度。一、模型理论基础灰色系统理论原理(核心:处理少数据、部分信息未知的系统)差异信息原理:系统内外的差异是信息源,人口数据的时间序列差异蕴含变化规律。解的非唯一性原理:信息不完全时,预测结果存在多个可能区间(与马尔科夫状态划分契合)。最小信息原理:仅需少量历史数据(通常≥4个)即可建模,适合人口统计资料
- 误差的回响:反向传播算法与神经网络的惊天逆转
田园Coder
人工智能科普人工智能科普
当专家系统在20世纪80年代初期大放异彩,成为人工智能实用化的耀眼明星时,另一股曾经被宣判“死刑”的力量——连接主义(神经网络)——正在寒冬的冻土下悄然涌动,孕育着一场惊天动地的复苏。马文·明斯基和西摩·帕尔特在1969年《感知机》专著中那精准而冷酷的理论批判,如同沉重的封印,将多层神经网络的研究禁锢了近二十年。他们指出的核心死结——缺乏有效算法来训练具有隐藏层的网络——仿佛一道无法逾越的天堑。单
- 支持java8的kafka版本
兮动人
kafka分布式支持java8的kafka版本
文章目录1.Kafka支持Java8的版本范围2.官方建议与兼容性3.版本迁移建议4.关键时间点5.注意事项6.总结1.Kafka支持Java8的版本范围Kafka2.x和3.x版本:Kafka2.x和3.x版本(如2.8.0、3.0.0等)理论上支持Java8,但官方已逐步弃用对Java8的支持。Kafka3.0:官方在3.0版本中弃用Java8(但仍允许使用),并强烈建议升级到Java11或更
- Python各版本发布时间和重要特性
mosquito_lover1
python
1.Python1.x:-Python1.0(1994年1月):第一个正式版本。-Python1.6(2000年9月):最后一个1.x版本。2.Python2.x:-Python2.0(2000年10月):引入了列表推导、垃圾回收等特性。-Python2.7(2010年7月):Python2.x系列的最后一个版本,长期支持至2020年1月1日。3.Python3.x:-Python3.0(2008
- 2024年BCSP-X小高组基础知识题目(模拟题)
天秀信奥编程培训
#BCXP-X模拟题北京BCSP-X试题讲解专栏BCSP-Xc++算法数据结构
一、单项选择计算机的核心部件是什么()?A.显示器B.键盘C.中央处理器(CPU)D.鼠标将十进制小数9.375转换为二进制小数,其正确的二进制表示是()。A.1001.11B.1011.11C.1001.011D.1011.011假设有一个内存显示为96MB的文件夹,里面存储的都是分辨率为1024×2048的24位图像,请问理论上存储了()张图像?(不考虑图像技术压缩对内存的优化)A.16张B.
- Maven 多模块项目调试与问题排查总结
博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c=1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编程,高并发设计,Springboot和微服务,熟悉Linux,ESXI虚拟化以及云原生Docker和K8s,热衷于探索科技的边界,并将理论知识转化为实际应用。保持对新技术的好奇心,乐于分
- 21个MySQL索引优化实战技巧
MySQL索引优化是提升数据库性能的关键手段,一个合理的索引设计和使用策略,往往能将查询速度提升几十倍甚至上百倍。然而,索引优化并不简单,既需要扎实的理论基础,也需要丰富的实战经验。本文总结了21个MySQL索引优化的实战技巧,从索引选择、设计到维护、监控的全生命周期,帮助你解决日常开发中的索引性能问题。基础知识回顾在具体介绍前,让我们先简单回顾索引的基础知识:MySQL常用的索引类型包括:主键索
- 蔡高厅老师 - 高等数学-阅读笔记 - 01 - 前言、函数【视频第01、02、03、】
Franklin
数学线性代数
高等数学前言;196学时,每周6课主要内容:上册一元、多元函数数,微分学、积分学、矢量代数、空间解析几何无穷级数、微分方程,多元函数微分学和积分学目的:高等数学3基:1高等数学的基本知识2高度数学的基本理论3高等数学的基本计算方法提高数学素养培养:抽象思维、逻辑推理、辩证的思想方法、空间想象能力、分析问题、解决问题的能力为进一步学习打下必要的学习基础和初等数学不同,研究的不是常量而是变量,变量和变
- 212springboot基于javaweb的城乡居民基本医疗信息管理系统医院(源码+文档+运行视频+讲解视频)
QQ2279239102
vuejavamavenSpringboothtml
项目技术:springboot+Maven+Vue等等组成,B/S模式+Maven管理等等。环境需要1.运行环境:最好是javajdk1.8,我们在这个平台上运行的。其他版本理论上也可以。2.IDE环境:IDEA,Eclipse,Myeclipse都可以。推荐IDEA;3.tomcat环境:Tomcat7.x,8.x,9.x版本均可4.硬件环境:windows7/8/101G内存以上;或者MacO
- RNN笔记
sjtu_哈基坤
LLM随笔rnn笔记人工智能
来源见此处概述RNN(RecurrentNeuralNetwork)RNN之所以称为循环神经网络,是因为一个序列的当前的输出与前面的输出也有关.具体表现是网络会对前面的信息进行记忆并且应用于当前输出的计算中.即隐藏层之间的节点也是有连接的.并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出.理论上RNN能对任何长度的序列进行处理,但是在实践中,为了降低复杂性,往往假设当前状态只与前面几
- 如何设计和训练大模型(神经网络):从入门到精通!
“学习一门技术,先找一套工具和理论研究下去;千万不要反复横跳,什么都想学”大模型作为未来重要的发展方向,很多人想学习大模型技术,但又苦于无从下手;而本公众号前前后后也写过一些怎么学习大模型技术的方法论;但大部分都是从应用的角度作为切入点。但是,有一个问题就是,如果你是一个技术从业者,想学习和设计一款属于自己的大模型,应该怎么做?设计一个自己的大模型大模型作为一门快速发展的新型技术,其理论与实现也是
- 【人工智能】微调的秘密武器:释放大模型的无限潜能
蒙娜丽宁
Python杂谈人工智能人工智能
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在人工智能迅猛发展的今天,大规模语言模型(LLMs)以其强大的通用能力席卷各行各业。然而,如何让这些通用模型在特定领域或任务中发挥最大潜力?答案是微调(Fine-tuning)。本文深入探讨微调的理论基础、技术细节与实践方法,揭示其作为解锁大模型隐藏潜力
- Python实现图像处理的快速傅里叶变换(FFT)或离散余弦变换(DCT)
闲人编程
图像处理图像处理python计算机视觉FFTDCT傅里叶离散余弦变换
目录Python实现图像处理的快速傅里叶变换(FFT)或离散余弦变换(DCT)一、引言1.1图像处理简介1.2快速傅里叶变换与离散余弦变换简介1.3本文目标与结构二、理论背景与数学原理2.1快速傅里叶变换(FFT)介绍2.2离散余弦变换(DCT)介绍2.3两者的应用领域与区别三、算法实现3.1快速傅里叶变换(FFT)实现3.1.1使用Python实现FFT3.1.2图像的频域处理3.2离散余弦变换
- 【架构专题】架构风格(上):从理论到实践的全面解析
A.说学逗唱的Coke
架构
架构风格详解:从理论到实践的全面解析一、引言在软件系统设计中,架构风格是决定系统质量与可维护性的核心要素。根据软考高级资格考试大纲要求,系统架构设计师需掌握软件架构风格的定义、分类及选型方法。本文将结合Garlan和Shaw的经典理论,结合软考实践案例,系统阐述架构风格的理论基础与应用策略。二、架构风格的定义与核心要素2.1定义软件架构风格是描述特定应用领域中系统组织方式的惯用模式,其本质是通过构
- 高级 Python 测试工程师学习提升计划
code36
python学习开发语言测试爬虫高级测试
一、测试理论与流程夯实系统梳理:每周安排3-4小时,深入研读软件测试的艺术、Google软件测试之道,重点强化功能、性能、安全性测试流程,整理流程关键节点与执行要点笔记。实践模拟:基于线上开源项目(如GitHub找小型Web应用),每月开展2次全流程测试实践,从需求分析到测试报告输出,巩固理论应用。二、Python及测试工具深化Python进阶:利用Python高级课程资料,主攻面向对象编程、装饰
- 学习笔记丨信号处理新趋势:量子计算将如何颠覆传统DSP?
棱镜研途
量子计算信号处理学习人工智能单片机网络安全密码学
在算力需求爆炸式增长的今天,传统数字信号处理(DSP)芯片正面临物理极限的严峻挑战。当经典计算机架构在摩尔定律的黄昏中挣扎时,量子计算正以颠覆性姿态崛起,准备重新定义信号处理的未来图景。目录传统DSP的瓶颈:经典架构的物理极限量子新突破:从理论优越到实用跨越量子DSP的颠覆性优势:算法与架构的双重变革应用场景:从芯片校准到生命科学技术挑战与产业化路径未来已来:量子重塑信号处理传统DSP的瓶颈:经典
- 4、理解线性代数的核心概念与应用
rice5
线性代数第五版深度解析线性代数向量空间子空间
理解线性代数的核心概念与应用1引言线性代数是现代数学的重要分支之一,广泛应用于科学、工程、计算机科学等领域。理解线性代数的基本概念和原理不仅有助于学术研究,还能够提升解决实际问题的能力。本文将深入探讨线性代数中的核心概念,帮助读者建立坚实的理论基础,并掌握实际应用技巧。2向量空间向量空间是线性代数的基础概念之一。一个向量空间(V)是指一个集合,其元素称为向量,并且这些向量之间可以进行加法运算和标量
- Kubernetes在混合云平台中的应用:跨云容器编排实战
AI云原生与云计算技术学院
AI云原生与云计算kubernetes容器云原生ai
Kubernetes在混合云平台中的应用:跨云容器编排实战关键词:Kubernetes,混合云平台,跨云容器编排,容器化,云原生摘要:本文围绕Kubernetes在混合云平台中的应用展开,详细阐述了跨云容器编排的相关技术。首先介绍了混合云及Kubernetes的背景知识,接着深入剖析Kubernetes跨云容器编排的核心概念与架构,讲解了相关算法原理和操作步骤,并通过数学模型进行了理论分析。通过具
- C++补充知识+专题思维导图
Cyrus_柯
C++c++算法开发语言面向对象
补充知识:1.nullptrNULL在源码中就是一个0,因此可能会出现一些二义性的问题。#includeusingnamespacestd;voidfunc(inta){coutusingnamespacestd;voidfunc(inta){coutusingnamespacestd;intmain(){autoa=10;//a的类型被推导为整型(int)coutusingnamespacest
- 2025学年湖北省职业院校技能大赛 “信息安全管理与评估”赛项 样题卷(五)
2025学年湖北省职业院校技能大赛“信息安全管理与评估”赛项样题卷(五)第二部分:网络安全事件响应、数字取证调查、应用程序安全任务书任务1:应急响应(可以培训有答案)任务2:通信数据分析取证(40分)任务3:基于Windows计算机单机取证(120分)第三部分应用程序安全任务4:C代码审计(40分)第三部分:网络安全渗透、理论技能与职业素养任务一:门户网站(60分)可以培训任务二:办公系统(60分
- 一个LoRa网关的容量多大?
豆豆在西安
LoRa网关网络服务器运维
在LoRaWAN网络部署过程中,客户最常问的问题之一就是:“一个LoRa网关能接入多少设备?”这个问题看似简单,实则涉及多个技术参数和业务场景。LoRa网关的容量并不是一个固定的数字,而是受到多种因素的影响。本文将带你深入了解LoRa网关的系统容量是如何计算的,以及影响容量的关键因素。一、LoRa网关的理论最大容量LoRa网关的容量与其使用的信道数量和扩频因子(SF)密切相关。以常见的8信道LoR
- 代码随想录|图论理论基础
1.图的种类(有向图和无向图)有向图:图中边有方向无向图:图中边无方向加权有向图:图中边是有权值和方向的,无向图也是如此2.度(无向图中有几条边连接该节点,该节点就有几度)出度:从该节点出发的边的个数入度:指向该节点边的个数3.连通性(在图中表示节点的联通情况,我们称之为连通性)连通图:在无向图中,任何两个节点都是可以到达的(可以借助其他节点)非连通图:有节点不能到达其他节点强连通图:在有向图中,
- 三生原理形式化证明:如何解决Coq工具仅覆盖部分逻辑链问题?
葫三生
三生学派算法数学建模人工智能机器学习量子计算
AI辅助创作:解决Coq工具仅覆盖部分逻辑链的问题,需结合理论扩展、工程优化与协作机制进行系统性改进,具体方案如下:一、理论层面:扩展等价判定能力补充外延式等价关系通过扩展归纳构造演算(CIC)理论,在内涵等价判定基础上增加外延式理论(如Presburger代数),增强对自然数类型等复杂结构的等价验证能力,覆盖原有工具无法判定的逻辑分支。构建抽象约束框架设计通用约束规则,使满足条件的任
- 代码随想录|图论|04广度优先搜索理论基础
Paper Clouds
图论宽度优先算法数据结构leetcodec++
广搜的使用场景广搜的搜索方式就适合于解决两个点之间的最短路径问题。因为广搜是从起点出发,以起始点为中心一圈一圈进行搜索,一旦遇到终点,记录之前走过的节点就是一条最短路。当然,也有一些问题是广搜和深搜都可以解决的,例如岛屿问题,这类问题的特征就是不涉及具体的遍历方式,只要能把相邻且相同属性的节点标记上就行。(我们会在具体题目讲解中详细来说)比如下面这个图,从start开始慢慢向外扩展,第4次扩展才到
- 51单片机基础与应用实例解析
大数据无毛兽
本文还有配套的精品资源,点击获取简介:本课程设计项目专注于51单片机的基础知识和应用实践,适合初学者。51单片机是微控制器的经典代表,广泛应用于教育和工业等领域。项目通过20个实例,涵盖C语言编程、单片机内部结构、I/O操作、定时器和计数器、中断系统、串行通信、晶振和复位电路、编程和调试、实验板使用以及项目实现等多个关键知识点,帮助学生掌握单片机的编程和应用技能,并将理论知识转化为实际操作能力。1
- 多通道时间间隔测量模块在时频行业的重要性
西安同步高经理
网络
时间间隔测量在科学研究、工程技术、日常生活等多个领域都具有重要的意义和作用,具体如下:科学研究物理学研究:在粒子物理实验中,精确测量粒子的寿命、衰变时间间隔等,有助于了解粒子的性质和相互作用规律。例如,通过测量μ子的衰变时间间隔,验证了相对论的时间膨胀效应。在原子物理中,对原子跃迁过程中时间间隔的测量,可用于研究原子的能级结构和光谱特性,为量子力学理论的发展和验证提供重要依据。天文学观测:测量天体
- 特斯拉及新能源车企笔试面试题型解析上-21期
启芯硬件笔记
经验分享PCBEMI硬件工程面试职场和发展
本专栏预计更新90期左右。当前第21期-特斯拉硬件.特斯拉作为全球领先的电动汽车、能源存储和人工智能公司,其硬件工程师岗位的招聘通常包括笔试和多轮技术面试,考察领域涵盖数字电路设计、模拟电路、嵌入式系统、电动车技术和自动驾驶等。由于特斯拉的创新性和技术领先地位,其面试问题可能更加注重实际应用和问题解决能力。笔试通常旨在考察候选人的基础理论知识、问题分析能力、电路设计与调试经验、以及对相关工具和方法
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理