- 面经-C语言——指针相关概念总结
tt555555555555
面经C语言学习笔记c语言嵌入式
C语言指针相关概念总结:指针数组、数组指针、指针常量、常量指针、指向常量的常量指针、指针函数和函数指针1.指针数组(ArrayofPointers)2.数组指针(PointertoanArray)3.指针常量(PointerConstant)4.常量指针(PointertoaConstant)5.指向常量的常量指针(PointertoaConstantConstant)6.指针函数(Pointer
- React中的key属性有什么作用,如何使用?
JJCTO袁龙
reactreact.jsjavascript前端
React中的key属性:作用与使用指南在React中,key属性是一个非常重要的概念,尤其在构建动态列表时,它的作用不容小觑。理解key的使用对提高应用性能、优化渲染以及避免潜在的渲染问题都有很大的帮助。本文将详细探讨React中的key属性,为什么它是必需的以及如何正确使用它。1.key的作用在React中,当我们使用map或类似的方法生成列表时,key属性帮助React识别哪些元素已更改、添
- 微调特定于域的搜索的文本嵌入:附Python代码详解
人工智能
微调特定于域的搜索的文本嵌入:附Python代码详解阅读时长:20分钟发布时间:2025-02-02近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】嵌入模型将文本表示为具有语义意义的向量。尽管它们可以很容易地用于无数的用例(例如检索、分类),但通用嵌入模型在特定领域的任务上可能表现不佳。
- 【深度学习】Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,论文
XD742971636
深度学习机器学习深度学习transformer人工智能
必读文章:https://blog.csdn.net/qq_37541097/article/details/121119988SwinTransformer:HierarchicalVisionTransformerusingShiftedWindows论文:https://arxiv.org/abs/2103.14030代码:https://github.com/microsoft/Swin-
- 使用URL Rewrite实现网站伪静态
实现网站的伪静态功能,通常是通过配置Web服务器的URL重写功能(URLRewrite)来实现的。伪静态能有效提升网站的用户体验与SEO优化,给用户呈现简洁、易懂的URL地址,而实际上服务器内部还是通过动态的URL进行处理。下面,我们详细介绍如何通过配置URLRewrite规则来实现这一目标。1.配置Web服务器:确保你的网站运行在支持URLRewrite的Web服务器上,如Apache或Ngin
- Scikit-Learn K均值聚类
对许
#Python#人工智能与机器学习scikit-learn聚类机器学习
Scikit-LearnK均值聚类1、K均值聚类1.1、K均值聚类及原理1.2、K均值聚类的优缺点1.3、聚类与分类的区别2、Scikit-LearnK均值聚类2.1、Scikit-LearnK均值聚类API2.2、K均值聚类初体验(寻找最佳K)2.3、K均值聚类案例1、K均值聚类K-均值(K-Means)是一种聚类算法,属于无监督学习。K-Means在机器学习知识结构中的位置如下:1.1、K均值
- 解决Cookie值不允许出现中文的问题
解决Cookie值不允许出现中文的问题,主要是因为HTTP协议对Cookie的值有一些限制,其中包括不支持非ASCII字符(如中文字符)。为了实现这一点,我们可以通过以下方法进行处理。1.编码转换:中文字符通常不是URL安全字符,它们包含非ASCII字符,需要进行编码转换。我们可以使用UTF-8编码,将中文字符转换成适合存储在Cookie中的格式。URL编码将中文字符转化为其UTF-8的字节表示,
- 【15-聚类分析入门:使用Scikit-learn进行K-means聚类】
是阿牛啊
机器学习回归预测大数据挖掘kmeans聚类python机器学习人工智能sklearn性能优化
文章目录前言K-means聚类的原理Scikit-learn中的K-means实现安装与导入生成模拟数据应用K-means聚类可视化聚类结果选择K的值总结前言 聚类分析是一种无监督学习方法,用于将数据集中的样本分组成若干个簇(cluster)。K-means是最广泛使用的聚类算法之一,其核心思想是将数据点分配到K个簇中,使得每个点到其簇中心的距离之和最小。在本文中,我们将介绍如何使用Scikit
- Python小案例:数字炸弹游戏(优化版)
Marilynhom
#Python基础案例python游戏windows
优化内容上次所写的数字炸弹案例中所留了的bug: a.两次死循环,其实可以只用一次的;☑ b.如果其中一个人输入的数据是无效的后游戏将会重新开始,规则上来讲是直接淘汰该玩家☑本次利用列表坐标name_Nub叠加,和一个continue就解决了,具体代码如下:#数字炸弹游戏#1、首先由用户输入一个范围猜取的范围初始值start_Value、end_Value和一个数字作为炸弹Bombs;star
- 本地部署DeepSeek 多模态大模型Janus-Pro-7B
网络安全我来了
人工智能AI人工智能
本地部署Janus-Pro-7B的完整指南在今天,AI无处不在,它深刻改变了我们与世界的互动方式。是否曾想过,如何能够将强大的多模态大模型,如DeepSeek的Janus-Pro-7B,部署到本地使其为你所用呢?本篇文章将带你逐步了解Janus-Pro-7B的特点和部署过程,并解决你可能遇到的各种问题。1.Janus-Pro-7B简介1.1模型特点与创新在众多AI模型中,Janus-Pro-7B犹
- Markdown:常用公式、行列式、矩阵、方程组等
Marilynhom
#Markdown矩阵线性代数
目录前言1.常用公式1.1常用公式符号1.1.1上下标1.1.2括号和分隔符1.1.3分数1.1.4开方2.输出格式2.1行列式2.2矩阵2.3方程组前言 当前整理出来的皆为实际使用过的,欢迎大佬路过补充说明或者指正错误点。无用请轻喷。1.常用公式1.1常用公式符号1.1.1上下标显示效果公式代码描述xyx^yxy$x^y$或$x^{y}$上标,若独显一个上标直接用^,若需要实现:xx+yx
- 42步进电机转速力矩曲线_【专业】步进电机的尺寸42步进电机、57步进电机分类标准是什么?...
weixin_39622980
42步进电机转速力矩曲线
市面上最常见的步进电机是混合式步进电机,所以说步进电机往往是默认是混合式步进电机了。大家经常说42步进电机,57步进电机等等是按照什么方式分类的?各种型号的步进电机的尺寸是多少?目前绝大多数步进电机的安装尺寸是有行业标准的,通常情况下是按照标准尺寸设计生产的,这样很方便客户替换产品。步进电机有很多种分类方式,人们喜欢按照法兰尺寸给步进电机分类,按照法兰尺寸,现在市面上比较常见的混合式步进电机有20
- LSTM 网络在强化学习中的应用
AI天才研究院
LLM大模型落地实战指南AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LSTM网络在强化学习中的应用关键词:LSTM、强化学习、时序依赖、长期记忆、深度Q网络、策略梯度、Actor-Critic摘要:本文深入探讨了长短期记忆(LSTM)网络在强化学习领域的应用。我们将详细介绍LSTM的核心概念、结构和工作原理,以及它如何解决传统循环神经网络面临的长期依赖问题。文章重点分析了LSTM在强化学习中的多种应用场景,包括深度Q网络、策略梯度方法和Actor-Critic架构
- 寒假刷题Day7
komo莫莫da
数据结构算法
一、1658.将x减到0的最小操作数给你一个整数数组nums和一个整数x。每一次操作时,你应当移除数组nums最左边或最右边的元素,然后从x中减去该元素的值。请注意,需要修改数组以供接下来的操作使用。如果可以将x恰好减到0,返回最小操作数;否则,返回-1。代码:classSolution{public:intminOperations(vector&nums,intx){inttarget=acc
- 银河麒麟系统V10(arm版)离线安装docker说明
爱T小毛驴
docker容器运维
#银河麒麟系统docker环境#随着2024年微软全球蓝屏事件的出现,系统安全越来越重要。目前很多企业开始尝试国产化操作系统上,但是很多软件依赖和环境总是会出现各种问题,比如安装了a软件,发现却b依赖,安装了b依赖又缺其他依赖。本文介绍如何在国产化银河麒麟系统V10(arm)版上安装docker。Docker是一组平台即服务(PaaS)的产品。它基于操作系统层级的虚拟化技术,将软件与其依赖项打包为
- 数据挖掘常用算法优缺点分析
天波烟客00
数据挖掘数据挖掘机器学习
领取机器学习视频教程:http://www.admin444.com/P-c8129a48常用的机器学习、数据挖掘方法有分类,回归,聚类,推荐,图像识别等。在实际应用中,一般都是采用启发式学习方式来实验。偏差&方差偏差:描述的是预测值(估计值)的期望与真实值之间的差距,偏差越大,越偏离真实数据。偏差bias其实是模型太简单而带来的估计不准确的部分---欠拟合方差:描述的是预测值的变化范围、离散程度
- kafka下载安装、简易实例、遇到的错误解决
诸葛名义
kafkalinuxhadoopzookeeper
目录kafk实例错误解决WARN[ConsumerclientId=consumer-1,groupId=console-consumer-94437]Connectiontonode-kafka启动:Nativememoryallocation(mmap)failedtomap1073741824bytesforcommittingreservedmemorkafka下载地址:https://m
- 如何本地部署DeepSeek?DeepThink R1 本地部署全攻略:零基础小白指南。
白马区块Crypto100
SolanaAI套利策略交易人工智能deepseekDeepSeekAI助手
离线运行AI,免费使用OpenAI级别推理模型本教程将手把手教你如何在本地部署DeepThinkR1AI模型,让你无需联网就能运行强大的AI推理任务。无论你是AI新手还是资深开发者,都可以轻松上手!目录DeepThinkR1介绍安装Ollama(AI运行环境)下载并安装DeepThinkR1模型在终端运行DeepThinkR1使用Chatbox浏览器UI交互创建你的专属AI伙伴进阶玩法:离线AI编
- 零信任安全架构
烁月_o9
安全网络web安全运维微信
零信任安全架构是一种创新的网络安全理念和模型,它颠覆了传统的基于边界的安全思维。一、基本理念零信任架构基于“永不信任,始终验证”的原则。这意味着无论访问请求是来自组织内部网络还是外部网络,都不能默认其是安全的,必须对每个访问请求进行严格的身份验证和授权。传统的安全架构主要聚焦于保护网络边界,一旦攻击者突破边界,就可以相对容易地在内部网络中移动并访问各种资源。而零信任架构则认为,威胁可能来自任何地方
- AI大模型基于LLM的Agent架构图解
AI产品经理
人工智能深度学习语言模型学习
Agent定义Agent是什么?Agent是一种能够自主决策、采取行动以达到某种目标的实体。AIAgent的确定义:基于人工智能(尤其是大模型)技术,能够感知和理解环境,并采取行动以完成目标的智能实体。Agent能干什么?AIAgent主要依托LLM模型和具体的业务场景来调用相应的工具来完成任务目标,智能化程度和行业贴合度会更明显。典型案例有什么?智能核保应用,如果解决方案搭载AIAgent能力,
- linux为什么不是实时操作系统
lingllllove
linux大数据运维
Linux操作系统以其强大的功能和广泛的应用被广泛使用,但它并不是一个实时操作系统(RTOS)。本文将详细解释为什么Linux不是实时操作系统,并探讨实时操作系统的关键特性和需求。一、实时操作系统的定义和特性1.1实时操作系统定义实时操作系统是一种在规定时间内对外部事件做出响应的操作系统。RTOS通常用于需要高精度时间控制和高可靠性的数据处理场景,如工业控制、航空航天、汽车电子和电信设备等。1.2
- 使用 Python 的 LSTM 进行股市预测
无水先生
数据分析深度学习人工智能综合pythonlstm开发语言
目录一、说明二、为什么需要时间序列模型?三、下载数据3.1从Alphavantage获取数据3.1从Kaggle获取数据3.3数据探索3.4数据可视化四、将数据拆分为训练集和测试集五、数据标准化六、通过平均进行一步预测6.1标准平均值6.2指数移动平均线6.3如果指数移动平均线这么好,为什么还需要更好的模型?6.4预测未来不止一步七、LSTM简介:预测未来的股票走势7.1数据生成器7.2数据增强7
- 什么是LLM?看这一篇就够了!
Python程序员罗宾
人工智能语言模型AIGC自然语言处理
前言自从2022年12月ChatGPT横空面世以来,AI领域获得了十足的关注和资本,其实AI的概念在早些年也火过一波,本轮AI热潮相比于之前的AI,最大的区别在于:生成式。本文主要介绍大语言模型(LargeLanguageModel,简称LLM)。大语言模型介绍什么是大语言模型(LLM)通过海量文本训练的、能识别人类语言、执行语言类任务、拥有大量参数的模型,称之为大语言模型。GPT、LLaMA、M
- 后台管理系统通用页面抽离=>高阶组件+配置文件+hooks
秀秀_heo
小轮子javaandroidjavascript
目录结构配置文件和通用页面组件content.config.tsconstcontentConfig={pageName:"role",header:{title:"角色列表",btnText:"新建角色"},propsList:[{type:"selection",label:"选择",width:"80px"},{type:"index",label:"序号",width:"80px"},{t
- 【机器学习与数据挖掘实战】案例11:基于灰色预测和SVR的企业所得税预测分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘灰色预测SVR人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- Kafka 下载安装及使用总结
GreyFable
开发技术及框架kafka分布式
1.下载安装官网下载地址:ApacheKafka下载对应的文件上传到服务器上,解压tar-xzfkafka_2.13-3.7.0.tgz目录结果如下├──bin│└──windows├──config│└──kraft├──libs├──licenses└──site-docs官方文档:ApacheKafkakafka有两种启动方式,ZooKeeper和KRaft,这里采用KRaft的方式,使用k
- Scikit-learn提供了哪些机器学习算法以及如何使用Scikit-learn进行模型训练和评估
Java资深爱好者
机器学习scikit-learn算法
Scikit-learn库的使用一、Scikit-learn提供的机器学习算法Scikit-learn(通常简称为sklearn)是一个广泛使用的Python机器学习库,它提供了多种用于数据挖掘和数据分析的算法。Scikit-learn支持的机器学习算法可以大致分为以下几类:分类算法:支持向量机(SVM)随机森林(RandomForest)逻辑回归(LogisticRegression)朴素贝叶斯
- 你怎么比较MongoDB、CouchDB及CouchBase?思维导图 代码示例(java 架构)
用心去追梦
mongodbjava架构
MongoDB、CouchDB和Couchbase是三种流行的NoSQL数据库,它们各自有着独特的设计哲学和技术特点。以下是它们之间的比较,涵盖了架构、数据模型、查询语言、复制机制、扩展性以及其他关键特性。MongoDB、CouchDB及Couchbase比较-思维导图概要您可以创建一个以“MongoDBvs.CouchDBvs.Couchbase”为核心节点的思维导图,并根据以下分类展开:概述简
- 数据挖掘常用算法
kaiyuanheshang
AI数据挖掘算法人工智能
文章目录基于机器学习~~线性/逻辑回归~~树模型~~贝叶斯~~~~聚类~~集成算法神经网络~~支持向量机~~~~降维算法~~基于机器学习线性/逻辑回归类似单层神经网络y=k*x+b树模型优点可以做可视化分析速度快结果稳定依赖前期对业务和数据的理解贝叶斯贝叶斯依赖先验概率,先验知识越准,结果越好聚类集成算法xgboostlightbgm神经网络在文本、视觉领域效果非常好。但是过程黑盒,缺乏解释性支持
- DeepSeek Janus-Pro:多模态AI模型的突破与创新
大模型之路
大模型(LLM)Deepseekdeepseekr1deepseekLLM强化学习
近年来,人工智能领域取得了显著的进展,尤其是在多模态模型(MultimodalModels)方面。多模态模型能够同时处理和理解文本、图像等多种类型的数据,极大地扩展了AI的应用场景。DeepSeek(DeepSeek-V3深度剖析:下一代AI模型的全面解读)公司最新发布的Janus-Pro模型,正是在这一领域的一次重大突破。本文将深入探讨Janus-Pro的技术特点、创新之处以及其在多模态任务中的
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少