pytorch常用损失函数

 损失函数的基本用法:

criterion = LossCriterion() #构造函数有自己的参数
loss = criterion(x, y) #调用标准时也有参数

得到的loss结果已经对mini-batch数量取了平均值

 

1.BCELoss(二分类)

CLASS torch.nn.BCELoss(weight=None, size_average=None, reduce=None, reduction='mean')

创建一个衡量目标和输出之间二进制交叉熵的criterion

 

unreduced loss函数(即reduction参数设置为'none')为:

N表示batch size,xn为输出,yn为目标

 

如果reduction不为'none'(默认设为'mean'),则:

即默认情况下,loss会基于element求平均值,如果size_average=False的话,loss会被累加。

这是用来测量误差error的重建,例如一个自动编码器。注意 0<=target[i]<=1。

 

参数:

  • weight (Tensor,可选) – 每批元素损失的手工重标权重。如果给定,则必须是一个大小为“nbatch”的张量。
  • size_average (bool, 可选) – 弃用(见reduction参数)。默认情况下,设置为True,即对批处理中的每个损失元素进行平均。注意,对于某些损失,每个样本有多个元素。如果字段size_average设置为False,则对每个小批的损失求和。当reduce为False时,该参数被忽略。默认值:True
  • reduce (bool,可选) – 弃用(reduction参数)。默认情况下,设置为True,即根据size_average参数的值决定对每个小批的观察值是进行平均或求和。如果reduce为False,则返回每个批处理元素的损失,不进行平均和求和操作,即忽略size_average参数。默认值:True
  • reduction (string,可选) – 指定要应用于输出的reduction操作:' none ' | 'mean' | ' sum '。“none”:表示不进行任何reduction,“mean”:输出的和除以输出中的元素数,即求平均值,“sum”:输出求和。注意:size_average和reduce正在被弃用,与此同时,指定这两个arg中的任何一个都将覆盖reduction参数。默认值:“mean”

 形状:

  • 输入:(N,*), *代表任意数目附加维度
  • 目标:(N,*),与输入拥有同样的形状
  • 输出:标量scalar,即输出一个值。如果reduce为False,即不进行任何处理,则(N,*),形状与输入相同。

 举例:

 

m = nn.Sigmoid()
loss = nn.BCELoss()
input = torch.randn(3,requires_grad=True)
target = torch.empty(3).random_(2) output = loss(m(input), target) output.backward()

 

input,target,output

返回:

(tensor([-0.8728,  0.3632, -0.0547], requires_grad=True),
 tensor([1., 0., 0.]), tensor(0.9264, grad_fn=))

 

m(input)结果为:

tensor([0.2947, 0.5898, 0.4863])

计算output = (1 * ln 0.2947+(1-1)*ln(1-0.2947) + 0*ln0.5898 + (1-0)*ln(1-0.5898) + 0*ln0.4863 + (1-0)*ln(1-0.4863)) / 3 = 0.9264

 

input.grad

返回:

tensor([-0.2351,  0.1966,  0.1621])

 

当我们进行的是二分类时,即激活函数使用的是sigmoid函数时,常使用交叉熵作为损失函数。这样就能够解决因sigmoid函数导致的梯度消失问题

比如当我们使用的不是二进制交叉熵作为损失函数,而是使用的是平方差损失,即MSELoss作为损失函数,如:

那么假设进行的是二分类,损失函数为 ln= (xn - yn)2 / 2, n=1,2 , 激活函数为sigmoid函数,所以xn=σ(z),其中z = wx + b

那么当进行链式求导时,得:

  • 对w求导: ∂L / ∂w = (xn - yn) * σ'(z) * z= (xn - yn) * σ'(z) * x
  • 对b求导:  ∂L / ∂b = (xn - yn) * σ'(z)

从上面两个公式可知梯度计算都与sigmoid函数的梯度相关,而因为sigmoid函数左右两边梯度趋于0,这就会导致反向传播过程中计算得到的梯度会趋于0,即导致发生梯度消失的问题

而如果是以交叉熵作为损失函数,得到的梯度计算公式就会变为:

  • 对w求导: ∂L / ∂w = 1/n *  Σi xn * (σ(z)-yn)
  • 对b求导:  ∂L / ∂b =1/n *  Σi (σ(z)-yn)

可见不会与sigmoid的梯度相关,这样就不会出现梯度消失的问题

 

2.BCEWithLogitsLoss

CLASS torch.nn.BCEWithLogitsLoss(weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None)

与BCELoss的不同:

将sigmoid函数和BCELoss方法结合到一个类中

这个版本在数值上比使用一个带着BCELoss损失函数的简单的Sigmoid函数更稳定,通过将操作合并到一层中,我们利用log-sum-exp技巧来实现数值稳定性。

损失函数(即reduction参数设置为'none')变为:

 

多出参数:

  • pos_weight (Tensor,可选) –正值例子的权重,必须是有着与分类数目相同的长度的向量

 

该参数用处:

可以通过增加正值示例的权重来权衡召回率和准确性。在多标签分类的情况下,损失可以描述为: 

c表示类的数量(c>1表明是多标签二进制分类,c=1表明是单标签二进制分类),n为一批中的例子数量,pc为类别c的正值的权重,解决正负例样本不均衡的情况

pc>1增加召回率,pc<1增加准确性

举例:例如,如果一个数据集包含一个类的100个正示例和300个负示例,那么该类的pos_weigh设为300/100=3。该损失函数将表现得像数据集包含了300个正示例

 

如果不考虑参数pos_weigh,其实BCEWithLogitsLoss就相当于比BCELoss多进行了一个sigmoid操作,所以上面的例子:

你可能感兴趣的:(人工智能)